


Lecture Notes in Computer Science 4962
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Roberto Amadio (Ed.)

Foundations
of Software Science and
Computational Structures

11th International Conference, FOSSACS 2008
Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008
Budapest, Hungary, March 29 – April 6, 2008
Proceedings

13



Volume Editor

Roberto Amadio
Université Paris 7, PPS, Case 7014
75205 Paris Cedex 13, France
E-mail: Roberto.Amadio@pps.jussieu.fr

Library of Congress Control Number: 2008922352

CR Subject Classification (1998): F.3, F.4.2, F.1.1, D.3.3-4, D.2.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-78497-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-78497-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12235414 06/3180 5 4 3 2 1 0



Foreword

ETAPS 2008 was the 11th instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference that was
established in 1998 by combining a number of existing and new conferences.
This year it comprised five conferences (CC, ESOP, FASE, FOSSACS, TACAS),
22 satellite workshops (ACCAT, AVIS, Bytecode, CMCS, COCV, DCC, FESCA,
FIT, FORMED, GaLoP, GT-VMT, LDTA, MBT, MOMPES, PDMC, QAPL,
RV, SafeCert, SC, SLA++P, WGT, and WRLA), nine tutorials, and seven invited
lectures (excluding those that were specific to the satellite events). The five
main conferences received 571 submissions, 147 of which were accepted, giving
an overall acceptance rate of less than 26%, with each conference below 27%.
Congratulations therefore to all the authors who made it to the final programme!
I hope that most of the other authors will still have found a way of participating
in this exciting event, and that you will all continue submitting to ETAPS and
contributing to make of it the best conference in the area.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis and
improvement. The languages, methodologies and tools which support these ac-
tivities are all well within its scope. Different blends of theory and practice
are represented, with an inclination towards theory with a practical motivation
on the one hand and soundly based practice on the other. Many of the issues
involved in software design apply to systems in general, including hardware sys-
tems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronized parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2008 was organized by the John von Neumann Computer Society
jointly with the Budapest University of Technology and the Eötvös University,
in cooperation with:

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST)

and with support from Microsoft Research and Danubius Hotels.



VI Foreword

The organizing team comprised:

Chair Dániel Varró
Director of

Organization István Alföldi
Main Organizers Andrea Tósoky, Gabriella Aranyos
Publicity Joost-Pieter Katoen
Advisors András Pataricza, Joaõ Saraiva
Satellite Events Zoltán Horváth, Tihamér Levendovszky,

Viktória Zsók
Tutorials László Lengyel
Web Site Ákos Horváth
Registration System Victor Francisco Fonte, Zsolt Berényi,

Róbert Kereskényi, Zoltán Fodor
Computer Support Áron Sisak
Local Arrangements László Gönczy, Gábor Huszerl,

Melinda Magyar, several student volunteers.

Overall planning for ETAPS conferences is the responsibility of its Steering
Committee, whose current membership is:

Vladimiro Sassone (Southampton, Chair), Luca de Alfaro (Santa Cruz), Roberto
Amadio (Paris), Giuseppe Castagna (Paris), Marsha Chechik (Toronto), Sophia
Drossopoulou (London), Matt Dwyer (Nebraska), Hartmut Ehrig (Berlin),
Chris Hankin (London), Laurie Hendren (McGill), Mike Hinchey (NASA God-
dard), Paola Inverardi (L’Aquila), Joost-Pieter Katoen (Aachen), Paul Klint
(Amsterdam), Kim Larsen (Aalborg), Gerald Luettgen (York) Tiziana Mar-
garia (Göttingen), Ugo Montanari (Pisa), Martin Odersky (Lausanne), Catus-
cia Palamidessi (Paris), Anna Philippou (Cyprus), CR Ramakrishnan (Stony
Brook), Don Sannella (Edinburgh), João Saraiva (Minho), Michael Schwartzbach
(Aarhus), Helmut Seidl (Munich), Perdita Stevens (Edinburgh), and Dániel
Varró (Budapest).

I would like to express my sincere gratitude to all of these people and organi-
zations, the Programme Committee Chairs and members of the ETAPS confer-
ences, the organizers of the satellite events, the speakers themselves, the many
reviewers, and Springer for agreeing to publish the ETAPS proceedings. Finally,
I would like to thank the Organizing Chair of ETAPS 2008, Dániel Varró, for
arranging for us to have ETAPS in the most beautiful city of Budapest

January 2008 Vladimiro Sassone



Preface

The present volume contains the proceedings of the 11th international conference
on the Foundations of Software Science and Computations Structures (FOS-
SACS) 2008, held in Budapest, Hungary, April 2–4, 2008. FOSSACS is an event
of the Joint European Conferences on Theory and Practice of Software (ETAPS).
The previous ten FOSSACS conferences took place in Lisbon (1998), Amsterdam
(1999), Berlin (2000), Genoa (2001), Grenoble (2002), Warsaw (2003), Barcelona
(2004), Edinburgh (2005), Vienna (2006), and Braga (2007).

FOSSACS presents original papers on foundational research with a clear sig-
nificance to software science. The Programme Committee invited papers on the-
ories and methods to support analysis, synthesis, transformation and verification
of programs and software systems. In particular, we identified the following top-
ics: algebraic models, automata and language theory, behavioral equivalences,
categorical models, computation processes over discrete and continuous data,
infinite state systems, computation structures, logics of programs, modal, spa-
tial, and temporal logics, models of concurrent, reactive, distributed, and mobile
systems, process algebras and calculi, semantics of programming languages, soft-
ware specification and refinement, type systems and type theory, fundamentals
of security, semi-structured data, program correctness and verification.

We ultimately received 124 submissions. This proceedings volume consists of
the abstract of an invited talk by Igor Walukiewicz together with 33 contributed
papers. The contributed papers were selected for publication by the Programme
Committee during a two-week electronic discussion. We sincerely thank all the
authors of papers submitted to FOSSACS 2008; we were pleased indeed by
the number and quality of the submissions. Moreover, we would like to thank
the members of the Programme Committee for their excellent job during the
selection process. Clearly, all this would not have been possible without the
valuable and detailed reports provided by the sub-reviewers. Also, through the
phases of submission, evaluation, and production of the proceedings we relied
on the invaluable assistance of the EasyChair system.

Last but not least, we would also like to thank the ETAPS 2008 Organizing
Committee chaired by Dániel Varró and the ETAPS Steering Committee chaired
by Vladimiro Sassone for their efficient coordination of all the activities leading
up to FOSSACS 2008.

January 2008 Roberto M. Amadio



Organization

Programme Chair

Roberto Amadio

Programme Committee

Luca Aceto, Reykjavik University
Roberto Amadio (Chair), Paris Diderot University
Lars Birkedal, Copenhagen IT University
Roberto Bruni, Pisa University
Hubert Comon, ENS Cachan
Thierry Coquand, Göteborg University
Zoltan Esik, Szeged University
Dan Ghica, Birmingham University
Jürgen Giesl, RWTH Aachen
Martin Hofmann, Munich University
Radha Jagadeesan, DePaul University
Petr Jančar, Ostrava Technical University
Leonid Libkin, Edinburgh University
Dale Miller, INRIA Saclay
Eugenio Moggi, Genoa University
Anca Muscholl, LABRI, Bordeaux
Vincent van Oostrom, Utrecht University
Prakash Panangaden, McGill University
Jean-François Raskin, Brussels Free University
David Sands, Göteborg University
Colin Stirling, Edinburgh University
Pawel Urzyczyn, Warsaw University
Thomas Wilke, Kiel University
Nobuko Yoshida, Imperial College, London

External Reviewers

Parosh Abdulla
Andreas Abel
Samson Abramsky
Lucia Acciai
Rajeev Alur
David Baelde

Christel Baier
Adam Bakewell
Paolo Baldan
Pablo Barcelo
Miklos Bartha
Marcin Benke



X Organization

Martin Berger
Lennart Beringer
Marco Bernardo
Nathalie Bertrand
Dietmar Berwanger
Bodil Biering
Stephen L. Bloom
Benedikt Bollig
Filippo Bonchi
Michele Boreale
Patricia Bouyer
Tomas Brazdil
Thomas Brihaye
Vaclav Brozek
Véronique Bruyère
Mikkel Bundgaard
Marzia Buscemi
Marco Carbone
Koen Claessen
David Clark
Brendan Cordy
Flavio Corradini
Silvia Crafa
Deepak D’Souza
Troels Damgaard
Søren Debois
Stéphanie Delaune
Yannick Delbecque
Stéphane Demri
Josee Desharnais
Raymond Devillers
Volker Diekert
Ernst-Erich Doberkat
Daniel Dougherty
Laurent Doyen
Ebbe Elsborg
Joerg Endrullis
Javier Esparza
Kousha Etessami
Alain Finkel
Eric Fabre
John Fearnley
Andrzej Filinski
Wan Fokkink
Vojtech Forejt

Cédric Fournet
Adrian Francalanza
Oliver Friedmann
Murdoch Gabbay
Andrew Gacek
Fabio Gadducci
Tjalling Gelsema
Thomas Genet
Hugo Gimbert
Arne Glenstrup
Andrew Gordon
Daniele Gorla
Clemens Grabmayer
Hermann Gruber
Erich Grädel
Stefano Guerrini
Vineet Gupta
Ichiro Hasuo
Dimitri Hendriks
Thomas Hildebrandt
Jane Hillston
Jan Holeček
Clement Houtmann
Helle Hvid Hansen
Szabolcs Ivan
Florent Jacquemard
Alan Jeffrey
Joost-Pieter Katoen
Tomasz Kazana
Klaus Keimel
Carsten Kern
Claude Kirchner
Vladimir Klebanov
Jetty Kleijn
Bartek Klin
Bartosz Klin
Eryk Kopczynski
Vaclav Koubek
Steve Kremer
Antonin Kucera
Ralf Kuesters
Alexander Kurz
Detlef Köhler
Barbara König
Anna Labella



Organization XI

Ivan Lanese
Martin Lange
Francois Laroussinie
S�lawomir Lasota
James J. Leifer
Stéphane Lengrand
Marina Lenisa
Giacomo Lenzi
Jérôme Leroux
Michael Leuschel
Paul Levy
Alberto Lluch-Lafuente
Christof Loeding
Markus Lohrey
Hans-Wolfgang Loidl
Etienne Lozes
Christof Löding
Sergio Maffeis
Patrick Maier
Luc Maranget
Carbone Marco
Radu Mardare
Nicolas Markey
Andrea Masini
Thierry Massart
Hernan Melgratti
Massimo Merro
Marino Miculan
Michael Mislove
Faron Moller
David Monniaux
Larry Moss
Andrzej Murawski
Anca Muscholl
Rasmus Møgelberg
Gopalan Nadathur
Sebastian Nanz
Uwe Nestmann
Linh Anh Nguyen
Damian Niwinski
Thomas Noll
Ulf Norell
Gethin Norman
David Nowak
Russell O’Connor

Jan Obdrzalek
Luke Ong
Karol Ostrovsky
Joel Ouaknine
Iain Phillips
Nir Piterman
Adam Poswolsky
Damien Pous
John Power
K.V.S. Prasad
R. Ramanujam
Julian Rathke
Pierre-Alain Reynier
Jussi Rintanen
Eike Ritter
Enric Rodŕıguez-Carbonell
Philipp Ruemmer
Michal Rutkowski
Alexis Saurin
Philippe Schnoebelen
Pierre-Yves Schobbens
Aleksy Schubert
Roberto Segala
Sebastian Seibert
Damien Sereni
Pawel Sobocinski
Jiri Srba
Ian Stark
Sam Staton
Lutz Strassburger
Jan Strejcek
Grégoire Sutre
Josef Svenningsson
Morten Heine Sørensen
Jonathan Taylor
Hayo Thielecke
René Thiemann
Sophie Tison
Alwen Tiu
Richard Trefler
Ralf Treinen
Tomasz Truderung
Theodoros Tsokos
Emilio Tuosto
Irek Ulidowski



XII Organization

Michael Ummels
Christian Urban
Sandor Vagvolgyi
Frank Valencia
Laurent Van Begin
Daniele Varacca
Björn Victor
Maria Vigliotti
Emanuele Viola
Janis Voigtlaender

David Wahlstedt
Volker Weber
Anthony Widjaja To
James Worrell
Francesco Zappa Nardelli
Gianluigi Zavattaro
Wieslaw Zielonka
Elena Zucca
Vojtěch Řehák
Franck van Breugel



Table of Contents

Finding Your Way in a Forest: On Different Types of Trees and Their
Properties (Invited Talk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Igor Walukiewicz

Simple Stochastic Games with Few Random Vertices Are Easy to
Solve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Hugo Gimbert and Florian Horn

The Complexity of Nash Equilibria in Infinite Multiplayer Games . . . . . . 20
Michael Ummels

Stochastic Games with Lossy Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Parosh Aziz Abdulla, Noomene Ben Henda, Luca de Alfaro,
Richard Mayr, and Sven Sandberg

Simulation Hemi-metrics between Infinite-State Stochastic Games . . . . . 50
Jean Goubault-Larrecq

Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic
Logics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Dirk Pattinson and Lutz Schröder

A Linear-non-Linear Model for a Computational Call-by-Value Lambda
Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Peter Selinger and Benôıt Valiron

The ω-Regular Post Embedding Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
P. Chambart and Ph. Schnoebelen

Complexity of Decision Problems for Mixed and Modal Specifications . . . 112
Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and
Andrzej W ↪asowski

Classes of Tree Homomorphisms with Decidable Preservation of
Regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Guillem Godoy, Sebastian Maneth, and Sophie Tison

A Kleene-Schützenberger Theorem for Weighted Timed Automata . . . . . 142
Manfred Droste and Karin Quaas

Robust Analysis of Timed Automata Via Channel Machines . . . . . . . . . . 157
Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier

The Common Fragment of ACTL and LTL . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Miko�laj Bojańczyk



XIV Table of Contents

The Complexity of CTL∗+ Linear Past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Laura Bozzelli

Footprints in Local Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Mohammad Raza and Philippa Gardner

A Modal Deconstruction of Access Control Logics . . . . . . . . . . . . . . . . . . . . 216
Deepak Garg and Mart́ın Abadi

Coalgebraic Logic and Synthesis of Mealy Machines . . . . . . . . . . . . . . . . . . 231
M.M. Bonsangue, Jan Rutten, and Alexandra Silva

The Microcosm Principle and Concurrency in Coalgebra . . . . . . . . . . . . . . 246
Ichiro Hasuo, Bart Jacobs, and Ana Sokolova

Systems of Equations Satisfied in All Commutative Finite
Semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Pawe�l Parys

Optimal Lower Bounds on Regular Expression Size Using
Communication Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273

Hermann Gruber and Jan Johannsen

On Decision Problems for Probabilistic Büchi Automata . . . . . . . . . . . . . . 287
Christel Baier, Nathalie Bertrand, and Marcus Größer

Model-Checking ω-Regular Properties of Interval Markov Chains . . . . . . . 302
Krishnendu Chatterjee, Koushik Sen, and Thomas A. Henzinger

Prevision Domains and Convex Powercones . . . . . . . . . . . . . . . . . . . . . . . . . 318
Jean Goubault-Larrecq

RPO, Second-Order Contexts, and λ-Calculus . . . . . . . . . . . . . . . . . . . . . . . 334
Pietro Di Gianantonio, Furio Honsell, and Marina Lenisa

Erasure and Polymorphism in Pure Type Systems . . . . . . . . . . . . . . . . . . . . 350
Nathan Mishra-Linger and Tim Sheard

The Implicit Calculus of Constructions as a Programming Language
with Dependent Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365

Bruno Barras and Bruno Bernardo

Strong Normalisation of Cut-Elimination That Simulates
β-Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Kentaro Kikuchi and Stéphane Lengrand

Symbolic Semantics Revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
Filippo Bonchi and Ugo Montanari



Table of Contents XV

Deriving Bisimulation Congruences in the Presence of Negative
Application Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Guilherme Rangel, Barbara König, and Hartmut Ehrig

Structural Operational Semantics for Stochastic Process Calculi . . . . . . . . 428
Bartek Klin and Vladimiro Sassone

Compositional Methods for Information-Hiding . . . . . . . . . . . . . . . . . . . . . . 443
Christelle Braun, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi

Products of Message Sequence Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458
Philippe Darondeau, Blaise Genest, and Löıc Hélouët

What Else Is Decidable about Integer Arrays? . . . . . . . . . . . . . . . . . . . . . . . 474
Peter Habermehl, Radu Iosif, and Tomáš Vojnar

Model Checking Freeze LTL over One-Counter Automata . . . . . . . . . . . . . 490
Stéphane Demri, Ranko Lazić, and Arnaud Sangnier

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505



Finding Your Way in a Forest:

On Different Types of Trees and Their Properties

Igor Walukiewicz�

CNRS LaBRI
Université de Bordeaux

351, Cours de la Libération
33405 Talence, France

We see trees in almost any part of computer science. Traditionally, ranked trees,
that are nothing else but terms, captured most attention, although exceptions
could have been found in graph theory or linguistics [9]. Recently unranked
trees are a subject of renewed interest, mainly because of the developement
of XML [22]. It is also quite comon nowadays to see trees with infinite paths,
especailly in the context of verification. We will omit this aspect, as for the
questions we want to discuss finite trees are sufficiently interesting. We prefer
instead to make distinction between ordered and unordered trees, i.e., distinguish
situations when syblings are ordered or not. Thus we will deal with four types of
trees depending on two parameters: ranked/unranked, and ordered/unordered.

There are even more formalisms to describe tree properties than there are
tree types. Here, the main reference point for us will be monadic second-order
logic which captures recognizable sets of trees. This logic has a binary predi-
cate interpreted as a descendant relation in a tree and a monadic predicate for
every possible node label. If models are ordered trees then the logic may also
have another binary predicate interpreted as the sybling order. Important logics
are obtained by restricting the range of quantification: when quantifying only
over elements we obtain first-order logic (FOL), when quantifying over chians
(sets where every pair of nodes is in a descendant relation) we get chain logic,
finally antichain logic is obtained when quatifiers range over sets where no two
elements are in the descendant relation. Appart from these classical logics we
have important variants of modal and temporal logics over trees: CTL, CTL∗,
PDL, the µ-calculus.

Given this multitude of formalisms, the first question one can ask is to compare
their expressive power, i.e., establish if all properties expressible in a logic A can
be also expressed in a logic B. We know the answers to this kind of questions for
the formalism listed above. Figure 1 presents the case of ranked ordered trees.
Some of the presented inclusions are nontrivial. For insatance, the inclusions
of the MSOL in the µ-calculus [18] or FOL in CTL∗ [14] show that one can
obtain the same expressive power using very different means. For other types of
trees the picture is not the same. For example, if we consider ordered unranked

� Work supported by project DOTS (ANR-06-SETI-003).

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 1–4, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 I. Walukiewicz

CTL CTL∗

μ-calculus

FOL

MSOL

chain logic

antichain logic

=

=

�

=

�

� � �

Fig. 1. Relations between logics over ordered binary trees

trees, all equalities on the left change to strict inclusions, and chain logic becomes
incomparable with antichaing logic.

While diagrams as that on Figure 1 are important, they are far from giving a
complete explanation of the expressive power of the logics in question. Consider
the following situation. Separating FOL from MSOL over ordered binary trees
is easy. We know that over words FOL cannot express counting modulo proper-
ties [20]. For example, “even length” is not first order definable. A short argument
shows that the language of trees with the leftmost path of even length is not FOL
expressible. This observation though, does not tell much about what properties
are expressible in FOL. Take the language of ordered binary trees “the depths
of all leaves are even”. Somehow surprisingly, it turns out that this language is
FOL-expressible [19]. Indeed it is a major open question to find an algorithm de-
ciding if a given regular tree language is experssible in FOL. At present decidable
characterisations are known for very few fragments of MSOL [1,7,4,8].

Apart from the mathematical curiosity, there is a growing number of reasons
for looking closer at tree formalisms. In the context of XML, the aspect of data
(infnite set of labels with some operations on them) is important. It is rather
difficult to come with a decidable nontrivial formalism [6,16]. Understanding well
expressive power in the case without data can help substantially.

Another reason is the study of order invariance. A property is order invariant
if does not distingush two trees that differ only in the order of syblings. It is nat-
ural to ask if such a property can be expressed without referring to this order.
Over unranked trees, order invariant properties are exactly those expressible
in MSOL extended with counting modulo quantifiers [11]. The language “the
depths of all leaves are even” described above cannot be defined in FOL without
a sybling order. So the situation is much less clear for FOL. Curiously enough if
we restrict to FOL[succ] where we allow only successor relation in place of de-
scendant relation then all order invariant FOL[succ] properites can be expressed
in FOL[succ] [2].

Finally, there is a question of automata and grammars for trees. In the lit-
erature one can find many proposals of differen automata on trees. Even for
ordered binary trees we have for example several versions of tree-walking au-
tomata [12,5,13]. For other types of trees the number of variants is even big-
ger [10]. The similar situation is with regular expressions for trees [21,15,17,3].
Better understanding of logical formalisms is indenspensable to classify and clar-
ify all these notions.

In this talk we will survey some recent results in the field. We will start with
a unifying presentation of formalisms discussed above. For this a small detour
to algebra will be useful [8]. We will present dependencies between different



Finding Your Way in a Forest 3

formalisms, and known decidability results. Some less common questions as order
invariance, or existance of a finite base will be also considered. The talk will
present joint work with Mikolaj Bojańczyk.

References

1. Benedikt, M., Segoufin, L.: Regular languages definable in FO. In: Diekert, V.,
Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 327–339. Springer, Heidelberg
(2005)

2. Benedikt, M., Segoufin, L.: Towards a characterization of order-invariant queries
over tame structures. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 276–291.
Springer, Heidelberg (2005)

3. Bojanczyk, M.: Forest expressions. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 146–160. Springer, Heidelberg (2007)

4. Bojanczyk, M.: Two-way unary temporal logic over trees. In: LICS 2007, pp. 121–
130 (2007)

5. Bojanczyk, M., Colcombet, T.: Tree-walking automata do not recognize all regular
languages. In: STOC 2005, pp. 234–243. ACM, New York (2005)

6. Bojanczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data trees and XML reasoning. In: PODS 2006, pp. 10–19. ACM, New
York (2006)

7. Bojanczyk, M., Walukiewicz, I.: Characterizing EF and EX tree logics. Theoretical
Computer Science 358(2–3), 255–272 (2006)

8. Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Flum, J., Grädel, E., Wilke,
T. (eds.) Logic and Automata. Texts in Logic and Games, vol. 2, pp. 107–132.
Amsterdam University Press (2007)

9. Carpenter, B.: The Logic of Typed Future Structures. Cambridge University Press,
Cambridge (1992)

10. Comon, H., Dauchet, M., Gilleron, R., Lugiez, F.J.D., Tison, S., Tommasi, M.:
Tree automata techniques and applications (2002),
http://www.grappa.univ-lille3.fr/tata/

11. Courcelle, B.: The monadic second-order logic of graphs V: On closing the gap
between definability and recognizability. Theor. Comput. Sci. 80(2), 153–202 (1991)

12. Engelfriet, J., Hoogeboom, H.J.: Tree–walking pebble automata. In: Karhumäki, J.,
et al. (eds.) Jewels are forever, pp. 72–83. Springer, Heidelberg (1999)

13. Engelfriet, J., Hoogeboom, H.J., Samwel, B.: XML transformation by tree-walking
transducers with invisible pebbles. In: PODS 2007, pp. 63–72. ACM, New York
(2007)

14. Hafer, T., Thomas, W.: Computation tree logic CTL∗ and path quantifiers in the
monadic theory of the binary tree. In: Ottmann, T. (ed.) ICALP 1987. LNCS,
vol. 267, pp. 269–279. Springer, Heidelberg (1987)

15. Heuter, U.: First-order properties of trees, star-free expressions, and aperiodicity.
In: Cori, R., Wirsing, M. (eds.) STACS 1988. LNCS, vol. 294, pp. 136–148. Springer,
Heidelberg (1988)

16. Jurdzinski, M., Lazic, R.: Alternation-free modal mu-calculus for data trees. In:
LICS 2007, pp. 131–140. IEEE Computer Society Press, Los Alamitos (2007)

17. Martens, W., Neven, F., Schwentick, T., Bex, G.J.: Expressiveness and complexity
of XML schema. ACM Trans. Database Syst. 31(3), 770–813 (2006)

18. Niwiński, D.: Fixed points vs. infinite generation. In: LICS 1988, pp. 402–409 (1988)

http://www.grappa.univ-lille3.fr/tata/


4 I. Walukiewicz

19. Potthoff, A.: First-order logic on finite trees. In: Mosses, P.D., Schwartzbach, M.I.,
Nielsen, M. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 125–139. Springer, Heidel-
berg (1995)

20. Schützenberger, M.P.: On finite monoids having only trivial subgroups. Information
and Control 8, 190–194 (1965)

21. Thomas, W.: Logical aspects in the study of tree languages. In: Paredaens, J. (ed.)
ICALP 1984. LNCS, vol. 172, pp. 31–50. Springer, Heidelberg (1984)

22. Vianu, V.: A web odyssey: From CODD to XML. In: PODS 2001, ACM, New York
(2001)



Simple Stochastic Games with

Few Random Vertices
Are Easy to Solve�

Hugo Gimbert1 and Florian Horn2

1 LaBRI, Université Bordeaux 1, France
hugo.gimbert@labri.fr

2 LIAFA, Université Paris 7, France
florian.horn@liafa.jussieu.fr

Abstract. We present a new algorithm for solving Simple Stochastic
Games (SSGs). This algorithm is based on an exhaustive search of a
special kind of positional optimal strategies, the f-strategies. The run-
ning time is O( |VR|! · (|V ||E| + |p|) ), where |V |, |VR|, |E| and |p| are
respectively the number of vertices, random vertices and edges, and the
maximum bit-length of a transition probability.

Our algorithm improves existing algorithms for solving SSGs in three
aspects. First, our algorithm performs well on SSGs with few random
vertices, second it does not rely on linear or quadratic programming,
third it applies to all SSGs, not only stopping SSGs.

1 Introduction

Simple Stochastic Games (SSGs for short) are played by two players Max and
Min in a sequence of steps. Players move a pebble along edges of a directed
graph (V, E). There are three type of vertices: VMax is the set of vertices of
player Max, VMin the set of vertices of player Min and VR the set of random
vertices. When the pebble is on a vertex of VMax or VMin, the corresponding
player chooses an outgoing edge and moves the pebble along it. When the pebble
is on a random vertex, the successor is chosen randomly according to some fixed
probability distribution: from vertex v ∈ VR the pebble moves towards vertex
w ∈ V with some probability p(w|v) and the probability that the game stops
is 0, i.e.

∑
w∈V p(w|v) = 1. An SSG is depicted on Figure 1, with vertices of

VMax represented as �, vertices of VMin represented as �, and vertices of VR

represented as ♦.
Player Max and Min have opposite goals, indeed player Max wants the pebble

to reach a special vertex t ∈ V called the target vertex, if this happens the play
is won by player Max. In the opposite case, the play proceeds forever without
reaching t and is won by player Min. For technical reasons, we assume that t is
a vertex of player Max and is absorbing. Strategies are used by players to choose
� This research was partially supported by french project ANR ”DOTS”.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 5–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



6 H. Gimbert and F. Horn

α

β

γ

δ ε

ζ

a

b

c

d

1 2 3 4 5 t

.3

.7 .4
.6

.3

.1
.4 .1

.1

.2
.8

.2
.6

.2

Fig. 1. A Simple Stochastic Game

their moves, a strategy tells where to move the pebble depending on the sequence
of previous vertices, i.e. the finite path followed by the pebble from the begin-
ning of the play. The value of a vertex v is the maximal probability with which
player Max can enforce the play to reach the target vertex. When player Max,
respectively player Min, uses an optimal strategy he ensures reaching the tar-
get with a probability greater, respectively smaller, than the value of the initial
vertex. Notions of value and optimal strategies are formally defined in Section 2.

We are interesting in solving SSGs, that is computing values and optimal
strategies.

Applications. SSGs are a natural model of reactive systems, and algorithms
for solving SSGs may be used for synthesizing controllers of such systems. For
example an hardware component may be modelled as an SSG whose vertices
are the global states of the component, the target is some error state to avoid,
random states are used to model failure probabilities and stochastic behaviours
of the environment, choices of player Min corresponds to actions available to
the software driver and player Max corresponds to non-deterministic behaviour
of the environment. Then an optimal strategy for player Min in the SSG will
correspond to a software driver minimizing the probability to enter the error
state, whatever be the behaviour of the environment.

Existing algorithms for solving SSGs. The complexity of solving SSGs was first
considered by Condon [Con92], who proved that deciding whether the value of
an SSG is greater than 1

2 is in NP ∩ co-NP. The algorithm provided in [Con92]
consists in first transforming the input SSG in a stopping SSG where the prob-
ability to reach a sink vertex is 1. The transformation keeps unchanged the fact
that the initial vertex has value strictly greater than 1

2 but induces a quadratic
blowup of the size of the SSG. The algorithm then non-deterministically guesses
the values of vertices, which are rational numbers of linear size, and checks that
these values are the unique solutions of some local optimality equations.

Three other kinds of algorithms for solving SSGs are presented in [Con93].
These algorithms require transformation of the initial SSG into an equivalent



Simple Stochastic Games with Few Random Vertices Are Easy to Solve 7

stopping SSG and are based on local optimality equations. First algorithm com-
putes values of vertices using a quadratic program with linear constraints. Second
algorithm computes iteratively from below the values of the SSGs, and the third
is a strategy improvement algorithm à la Hoffman-Karp. These two last algo-
rithms require solving an exponential number of linear programs, as it is the
case for the algorithm recently proposed in [Som05].

Finally, these four algorithms suffer three main drawbacks.
First, these algorithms rely on solving either an exponential number of linear

programs or a quadratic program, which may have prohibitive algorithmic cost
and makes the implementation tedious.

Second, these algorithms only apply to the special class of stopping SSGs.
Although it is possible to transform any SSG into a stopping SSG with arbitrar-
ily small change of values, computing exact values this way requires to modify
drastically the original SSG, introducing either |V |2 new random vertices or new
transition probabilities of bit-length quadratic in the original bit-length. This
also makes the implementation tedious.

Third, the running time of these algorithms may a priori be exponential
whatever be the number of random vertices of the input SSG, including the case
of SSGs with no random vertices at all, also known as reachability games on
graphs. However it is well-known that reachability games on graphs are solvable
in quadratic time.

Notice that randomized algorithms do not perform much better since the
best randomized algorithms [Lud95, Hal07] known so far run in sub-exponential
expected time eO(

√
n).

Our results. In this paper we present an algorithm that computes values and
optimal strategies of an SSG in time O( |VR|! · (|V ||E| + |p|) ), where |VR| is the
number of random vertices, |V | is the number of vertices and |p| is the maximal
bit-length of transition probabilities.

The key point of our algorithm is the fact that optimal strategies may be
looked for in a strict subset of positional strategies, called the class of f -strategies.
The f -strategies are in correspondence with permutations of random vertices.
Our algorithm does an exhaustive search of optimal f -strategies among the |VR|!
available ones and check their optimality. Optimality is easy to check, it consists
in computing a reachability probability in a Markov Chain with VR states, which
amounts to solving a linear system with at most |VR| equations.

Comparison with existing work. We improve existing results by three aspects: our
algorithm performs better on SSGs with few random vertices, it is arguably much
simpler, and we provide new insight about the structure of optimal strategies.

Our algorithm performs much better on SSGs with few random vertices than
previously known algorithms. Indeed, its complexity is O( |VR|! · (|V ||E|+ |p|) ),
hence when there are no random vertices at all, our algorithm matches the
usual quadratic complexity for solving reachability games on graphs. When the
number of random vertices is fixed, our algorithm performs in polynomial time,
and on the class of SSGs such that |VR| ≤

√
|VMax| + |VMin| our algorithm is

sub-exponential.



8 H. Gimbert and F. Horn

Our algorithm is arguably simpler than previously known algorithms. Indeed,
it does not require use of linear or quadratic programming. Although linear
programs can be solved in polynomial time [Kac79, Ren88], this requires high-
precision arithmetic. By contrast, our algorithm is very elementary: it enumer-
ates permutations of the random vertices and for each permutation, it solves a
linear system of equations.

Our algorithm is also simpler because it applies directly to any kind of SSGs,
whereas previously known algorithms require the transformation of the input
SSG into a stopping SSG of quadratic size.
Plan. The paper is organised as follows. In the first section, we introduce formally
SSGs, values and optimal strategies. In the second section, we present the notion
of f -strategies. In the third section, we focus on two properties of f -strategies:
self-consistency and progressiveness. We prove that f -strategies that are both
self-consistent and progressive are also optimal, and we prove the existence of
such strategies. In the fourth section we describe our algorithm for solving SSGs.

Omitted proofs can be found in the full version of the paper [GH07].

2 Simple Stochastic Games

In this section we give formal definitions of an SSG, values and optimal strategies.
An SSG is a tuple (V, VMax, VMin, VR, E, t, p), where (V, E) is a graph,

(VMax, VMin, VR) is partition of V , t ∈ V is the target vertex and for every
v ∈ VR and w ∈ V , p(w|v) is the transition probability from v to w, with the
property

∑
w∈V p(w|v) = 1.

A play is an infinite sequence v0v1 · · · ∈ V ω of vertices such that if vn ∈
(VMax ∪ VMin) then (vn, vn+1) ∈ E and if vn ∈ VR then p(vn+1|vn) > 0. A play
is won by Max if it visits the target vertex; otherwise the play is won by Min. A
finite play is a finite prefix of a play.

A strategy for player Max is a mapping σ : V ∗VMax → V such that for each
finite play h = v0 . . . vn such that vn ∈ VMax, we have (vn, σ(h)) ∈ E. A play
v0v1 · · · is consistent with σ if for every n, if vn ∈ VMax then vn+1 is σ(v0 · · · vn).
A strategy for player Min is defined similarly, and is generally denoted τ .

Once the initial vertex v and two strategies σ, τ for player Max and Min are
fixed, we can measure the probability that a given set of plays occurs. This prob-
ability measure is denoted Pσ,τ

v . For every n ∈ N, we denote by Vn the random
variable defined by Vn(v0v1 · · · ) = vn, the set of plays is equipped with the σ-
algebra generated by random variables (Vn)n∈N. Then there exists a probability
measure Pσ,τ

v with the following properties:

Pσ,τ
v (V0 = v) = 1 (1)

Pσ,τ
v (Vn+1 = σ(V0 · · · Vn) | Vn ∈ VMax) = 1, (2)

Pσ,τ
v (Vn+1 = τ(V0 · · ·Vn) | Vn ∈ VMin) = 1, (3)

Pσ,τ
v (Vn+1 | Vn ∈ VR) = p(Vn+1|Vn). (4)

Expectation of a real-valued, measurable and bounded function φ under
Pσ,τ

v is denoted Eσ,τ
v [φ]. We will often use implicitly the following formula, which



Simple Stochastic Games with Few Random Vertices Are Easy to Solve 9

gives the expectation of φ once a finite prefix h = v0v1 · · · vn of the play is
fixed:

Eσ,τ
v [ φ | V0 · · · Vn = h] = Eσ[h],τ [h]

vn
[ φ[h] ] , (5)

where σ[h](w0w1w2 · · · ) = σ(v0 · · · vnw1w2 · · · ) and τ [h] and φ[h] are defined
similarly.

Values and positional optimal strategies. The goal of player Max is to reach the
target vertex t with the highest probability possible, whereas player Min has
the opposite goal. Given a starting vertex v and a strategy σ for player Max,
whatever strategy τ is chosen by Min, the target vertex t will be reached with
probability at least:

inf
τ

Pσ,τ
v (Reach(t)) ,

where Reach(t) is the event {∃n ∈ N, Vn = t}. Thus, starting from v, player Max
can ensure to win the game with probability arbitrarily close to:

val∗(v) = sup
σ

inf
τ

Pσ,τ
v (Reach(t)) ,

and symmetrically, player Min can ensure that player Max cannot win with a
probability much higher than:

val∗(v) = inf
τ

sup
σ

Pσ,τ
v (Reach(t)) .

Clearly val∗(v) ≤ val∗(v). In fact these values are equal, and this common value
is called the value of vertex v and denoted val(v). A much stronger result is
known about SSGs: the infimum and supremum used in the definition of val(v)
are attained for some strategies called optimal strategies. Moreover, there exists
optimal strategies of a simple kind, called positional strategies. A strategy σ is
said to be positional if it depends only on the current vertex, i.e. for every finite
play v0 · · · vn σ(v0 · · · vn) = σ(vn). The following results are well-known [Sha53,
Con92].

Theorem 1. In any SSG, for every vertex v ∈ V , the values val∗(v) and val∗(v)
are equal. This common value is called the value of vertex v and denoted val(v).
There exists strategies σ# and τ# that are optimal i.e. for every vertex v and
every strategies σ, τ :

Pσ,τ#

v (Reach(t)) ≤ val(v) ≤ Pσ#,τ
v (Reach(t)) .

Moreover there exists strategies that are both optimal and positional.

3 Playing with f-Strategies

Existence of positional optimal strategies is a key property of SSGs, used for
designing all known algorithms solving SSGs. The algorithm we propose relies
on a refinement of this result, we will prove that optimal strategies can be looked
for in a strict subset of positional strategies called the set of f -strategies.

In this section, we describe what are f -strategies.



10 H. Gimbert and F. Horn

3.1 Informal Description of f-Strategies

With every permutation f = (r0, . . . , rm) of random vertices VR, we associate
a couple σf , τf of positional strategies, called the f -strategies. We give intuition
about what are f -strategies, before giving their formal construction.

A permutation f = (r0, . . . , rm) of VR intuitively represents preferences of
Max and Min over the random vertices: player Max prefers the play to start
from a random vertex of index as high as possible, i.e. starting from vertex rl+1

is better for player Max than starting from vertex rl, whereas the opposite holds
for player Min.

When both players agree on the preferences given by f , the f -strategies σf , τf
are natural behaviours of player Max and Min. Indeed, strategy σf for player
Max consists in attracting the pebble either in the target vertex or in a random
vertex of index as high as possible in f . By opposite, strategy τf for player Min
consists in keeping the pebble away from the target and from random vertices
of high index in f .

The f -strategies can be described more precisely, introducing a non-stochastic
game. In this non-stochastic game, plays can be either of finite or infinite du-
ration, and after a play, players Max and Min have to give coins to each other.
This game is played on the game graph (V, VMax, VMin, E), where all random
vertices are terminal vertices. When the play reaches a random vertex rl ∈ VR,
the play immediately stops and player Min has to give l coins to Max, where
l is the index of the random vertex rl in the permutation f = (r0, . . . , rm). Of
course player Min wants to give as few coins as possible to player Max, whereas
the goal of player Max is the opposite. The worst for player Min is when the play
does not reach a random vertex but reaches the target vertex instead, in that
case player Min has to give m + 1 coins to Max. The best for player Min is the
remaining case, when the play never reaches any random vertex nor the target,

b

c

a

1 2 3 4 5 t

Fig. 2. The permutation is f = (1, 2, 3, 4, 5). Edges consistent with f -strategies are
black, other edges are dotted. For example from vertex a, player Min prefers moving
the pebble on vertex b than on the target vertex t. Indeed in the former case player
Min has to pay 5 coins to Max whereas in the latter case he would have to pay 6 coins.



Simple Stochastic Games with Few Random Vertices Are Easy to Solve 11

then instead of giving coins to Max player Min receives 1 coin from player Max.
In this game there exist positional optimal strategies σf and τf for both players.
These strategies are precisely the f -strategies. This intuitive interpretation of
f -strategies is depicted on Figure 2, for the permutation (1, 2, 3, 4, 5).

In the rest of this section, we define formally the notion of f -strategies. For
this we need to introduce in the next subsection the notion of deterministic
attractor.

3.2 Deterministic Attractors

Let W ⊆ V be a subset of vertices. The deterministic attractor in W is the
set of vertices Att(W ) ⊆ V from which Max has a strategy for attracting the
play in W and avoiding at the same time any visit to a random vertex before
the first visit to W . An attraction strategy in W is a positional strategy σ# for
Max which guarantees that every play starting from Att(W ) has this property.
A trapping strategy out of W is a positional strategy τ# for player Min which
guarantees than any play starting outside Att(W ) will avoid a visit to W before
the first visit to a random vertex. These notions are formalized in the following
proposition.

Proposition 1. Let W ⊆ V be a subset of vertices. There exists a subset
Att(W ) called the deterministic attractor in W , a positional strategy σ# for
Max called the attraction strategy in W and a positional strategy τ# for Min
called the trapping strategy out of W such that:

1. For every v0 ∈ Att(W ), for every play v0v1 · · · ∈ V ω consistent with σ#,
there exists n ∈ N such that vn ∈ W and for every 0 ≤ k < n, vk 	∈ VR.

2. For every v0 	∈ Att(W ), for every play v0v1 · · · ∈ V ω consistent with τ#, for
every n ∈ N, if vn ∈ Att(W ) then there exists 0 ≤ k < n such that vk ∈ VR.

There exists an algorithm that computes Att(W ), σ# and τ# in time O(|E|·|V |).

3.3 Computing the f-Strategies

We now describe formally how to compute the f -strategies σf , τf associated with
a permutation f = (r0, . . . , rm) of random vertices. Intuitively, the strategy σf
for Max consists in attracting the play in the target vertex t or in a random
vertex whose index is as high as possible in f , while the strategy τf for Min aims
at the opposite.

We start with defining a sequence W−, W0, . . . , Wm+1 of subsets of V :

Wm+1 = Att({t}),
for all 0 ≤ l ≤ m, Wl = Att({rl, rl+1, . . . , rm, t}), (6)

W− = V \ W0.

An example is given on Figure 2, where relative frontiers of the sets
W−, W0, . . . , Wm+1 are delimited by gray lines. On this example, the set Wm+1



12 H. Gimbert and F. Horn

only contains the target vertex t, the set W5 is {a, b, 5, t}, the set W− is the
singleton {c}.

The f -strategies are constructed by combining different positional strategies
together. Let σm+1 be the attraction strategy in {t}, then on Wm+1 σf coincides
with σm+1 and τf is any positional strategy. For 0 ≤ l ≤ m, let σl be the
attraction strategy in {rl, rl+1, . . . , rm, t} and let τl be the trapping strategy out
of {rl+1, . . . , t}, then on Wl \Wl+1 σf coincides with σl and τf coincides with τl.
Let τ− be the trapping strategy out of {r0, . . . , rm, t}, then on W− = V \ W0, τf
coincides with τ− and σf is any positional strategy.

We will use the following properties of f -strategies:

Lemma 1. Let f = (r0, . . . , rm) a permutation of random vertices. Every play
consistent with σf and starting from Wm+1 stays in Wm+1 and reaches the target
vertex t. Every play consistent with τf and starting from W− stays in W− and
never reaches t. Let φ : V → R defined by φ(v) = Pσf ,τf

v (Reach(t)). For every
0 ≤ l ≤ m, for every v ∈ Wl \ Wl+1, φ(v) = φ(rl).

4 Optimality of f-Strategies

A key property of f -strategies is given in the following theorem.

Theorem 2. In every SSG, there exists a permutation f of random vertices such
that the f-strategies σf and τf are optimal.

This theorem suggests the following algorithm for solving SSGs. It consists in
testing, for each possible permutation f of random vertices, whether the f -
strategies are optimal. Since f -strategies are positional, their optimality can be
tested in polynomial time using linear programming [Der72, Con92]. Finally, the
corresponding algorithm can find values and optimal strategies solving at most
|VR|! linear programs.

Testing optimality of f -strategies can be done in a more elegant and efficient
way, without making use of linear programming. Indeed, Theorem 3 shows that
it is sufficient to test whether the f -strategies are self-consistent and progressive,
in the following sense.

Definition 1 (Self-consistent and progressive permutations). Let f =
(r0, . . . , rm) be a permutation of random vertices and σf and τf the f-strategies.
For v ∈ V , let φ(v) = Pσf ,τf

v (Reach(t)).
Permutation f is self-consistent if

φ(r0) ≤ φ(r1) ≤ . . . ≤ φ(rm). (7)

Permutation f is progressive if for every 0 ≤ i ≤ j ≤ m, if φ(ri) > 0 then there
exists w ∈ Att({rj+1, . . . , rm, t}) such that p(w|rj) > 0.

Both properties can be reformulated in term of the Markov chain induced by σf

and τf , see Proposition 2.



Simple Stochastic Games with Few Random Vertices Are Easy to Solve 13

Intuitively, both players use their f -strategies when they both agree on the
preference order given by f and play consistently with this preference order.
Self-consistency states that plays starting from random vertices of higher rank
in f have greater probabilities of reaching the target. The progressive property
states that if some random vertex ri gives non-zero probability to reach the
target, then, from every random vertex rj of higher rank in f , also with non-zero
probability either the target vertex or a random vertex of higher rank than rj

will be reached prior to any visit to a random vertex.
Next theorem states that together with self-consistency, the progressive prop-

erty ensures optimality of the f -strategies.

Theorem 3. Let f be a permutation of random vertices. If f is self-consistent
and progressive then the f-strategies σf and τf are optimal. Moreover there exists
a permutation f of random vertices which is self-consistent and progressive.

Notice that self-consistency alone is not sufficient for ensuring that f -strategies
are optimal, a counter-example is given on Figure 3.

The progressive property forces any wrong guess about preferences of the
players to propagate among random vertices and to lead to a violation of self-
consistency. Somehow, the progressive property plays a role similar to the halting
hypothesis used in [Con92]. The halting hypothesis states that any play of the
SSG should reach a sink vertex, which ensures uniqueness of a solution to the
local optimality equations, see [Con92] for more details.

An algorithm for solving SSGs and based on Theorem 3 is described in the
next section. The rest of this section is dedicated to the proof of Theorem 3,
which relies on a few preliminary lemmas.

r2

v r1

t

−

r2

r1

t

1
2

1
2

1
2

1
2

1

1

1
2

1
2

1
2

1
2

Fig. 3. On the left is depicted an SSG with two random vertices {r1, r2}, a Min vertex
v and the target vertex t. Player Min has only one optimal strategy: moving the pebble
to vertex r1 whenever it is on v, this way the play never reaches the target vertex t.
This is exactly the f -strategy τf associated with the permutation f = (r1, r2). Suppose
now the permutation is f = (r2, r1), then following its f -strategy τf , player Min will
go to vertex r2 from v. In that case, t is reached from both r1 and r2 with probability
1, hence permutation (r2, r1) is self-consistent, although strategy τf is not optimal.
However f is not progressive since from r1 the play reaches r2 before reaching t. On
the right is depicted the Markov chain Mf associated with f = (r2, r1).



14 H. Gimbert and F. Horn

Under the hypothesis that f is self-consistent, first lemma states that during
a play consistent with σf , the values of vertices relatively to f -strategies is a
super-martingale, and symmetrically for player Min.

Lemma 2. Let f a permutation of VR and σf , τf the f-strategies. Let φ : V → R

defined by φ(v) = Pσf ,τf
v (Reach(t)). Suppose f is self-consistent. Then for every

strategies σ, τ for Max and Min, for every v ∈ V and n ∈ N,

Eσf ,τ
v [ φ(Vn+1) | V0 · · · Vn] ≥ φ(Vn), (8)

Eσ,τf
v [ φ(Vn+1) | V0 · · ·Vn] ≤ φ(Vn). (9)

Under the hypothesis that f is progressive, next lemma gives a necessary and
sufficient condition for a play consistent with σf to reach the target vertex.

Lemma 3. Let f be a permutation of VR and σf , τf the f-strategies. Let φ : V →
R defined by φ(v) = Pσf ,τf

v (Reach(t)). Suppose f is progressive. Then for every
vertex v ∈ V and every strategy τ for Min:

Pσf ,τ
v

(
Reach(t)

⏐
⏐
⏐φ(Vn) > 0 for infinitely many n ∈ N

)
= 1. (10)

Next lemma is the main ingredient for constructing iteratively a self-consistent
and progressive permutation.

Lemma 4. Let X ⊆ V be a subset of vertices of an SSG and let W = Att(X).
Suppose W contains the target vertex. Then either all vertices v ∈ V \ W have
value 0 in the SSG or there exists a random vertex r ∈ VR ∩ (V \ W ) such that
val(r) = max{val(v) | v ∈ V \ W} and

∑
v∈W p(v|r) > 0.

We now give a proof of Theorem 3.

Proof (of Theorem 3)
We start with proving that if f is self-consistent and progressive then σf and τf
are optimal. Let v ∈ V and σ, τ be some strategies for Max and Min.

We first prove that starting from v, σf ensures to reach t with probability at
least Pσf ,τf

v (Reach(t)):

Pσf ,τ
v (Reach(t)) ≥ Pσf ,τ

v (φ(Vn) > 0 for infinitely many n ∈ N)

≥ Eσf ,τ
v

[

lim sup
n∈N

φ(Vn)
]

≥ lim sup
n∈N

Eσf ,τ
v [φ(Vn)]

≥ Eσf ,τ
v [φ(V0)] = φ(v) = Pσf ,τf

v (Reach(t)) , (11)

where the first inequality comes from Lemma 3, the second because values of φ
are between 0 and 1, the third is a property of expectations, the fourth comes
from Lemma 2 and the last two equalities hold because V0 is equal to the starting
vertex v and by definition of φ.



Simple Stochastic Games with Few Random Vertices Are Easy to Solve 15

We now prove that starting from v, τf ensures to reach t with probability no
more than Pσf ,τf

v (Reach(t)):

Pσ,τf
v (Reach(t)) ≤ Pσ,τf

v

((

lim inf
n∈N

φ(Vn)
)

= 1
)

≤ Eσ,τf
v

[

lim inf
n∈N

φ(Vn)
]

≤ lim inf
n∈N

Eσ,τf
v [φ(Vn)] ≤ Eσ,τf

v [φ(V0)]

= φ(v) = Pσf ,τf
v (Reach(t)) , (12)

where the first inequality holds because t is an absorbing state and φ(t) = 1, the
second holds because values of φ are between 0 and 1, the third is a property of
expectations, the fourth comes from Lemma 2 and the two last equalities hold
because V0 is equal to the starting vertex v and by definition of φ.

Finally, (11) and (12) together prove that σf and τf are optimal.
We now prove the existence of a permutation f which is self-consistent and

progressive. For a set W and a random vertex r ∈ VR we denote p(W |r) =∑
w∈W p(w|r) the probability of going to W from r.
We build a self-consistent and progressive permutation f = (r0, r1, . . . , rm) by

iteration of the following iterative step.
Let 0 ≤ l ≤ m, suppose that vertices (rl+1, . . . , rm) have already been chosen,

let Xl+1 = {rl+1, . . . , rm, t} and let Wl+1 = Att(Xl+1). If l > 0 and all vertices
in V \ Wl+1 have value 0, choose rl to be any random vertex in VR \ Xl+1.
Otherwise, according to Lemma 4, there exists a random vertex rl in V \ Wl+1

whose value is maximal in V \ Wl+1 and such that

p(Wl+1|rl) > 0. (13)

This achieves the inductive step.
Let f = (r0, r1, . . . , rm) be a permutation built according to this iterative

procedure, we now prove that f is self-consistent and progressive.
By construction of f ,

val(r0) ≤ . . . ≤ val(rn). (14)

By definition of the f -strategies, for any 0 ≤ l ≤ m:

(A) σf coincides on Wl \ Wl+1 with an attraction strategy in {rl, . . . , rm, t},
(B) τf coincides on Wl \ Wl+1 with a trapping strategy out of {rl+1, . . . , rm, t},
(C) σf coincides on Wm+1 with an attraction strategy in {t},
(D) τf coincides on W− = V \ W0 with a trapping strategy out of W0,
(E) any play consistent with τf starting form a vertex of value 0 stays in the set
of vertices of value 0.

We start with proving that f is progressive. Let 0 ≤ k ≤ m such that
Pσf ,τf

rk
(Reach(t)) > 0. According to (E), val(rk) > 0, hence according to (14), for

every k ≤ l ≤ m, val(rl) > 0. Hence, for every k ≤ l ≤ m, eq. (13) holds, which
proves that f is progressive.

Now we prove that f is self-consistent. According to (14), for proving that f
is self-consistent it is enough to prove that for any 0 ≤ l ≤ m,

Pσf ,τf
rl

(Reach(t)) = val(rl). (15)



16 H. Gimbert and F. Horn

We start with proving for every 0 ≤ l ≤ m,

val is constant equal to val(rl) on Wl \ Wl+1. (16)

Let 0 ≤ l ≤ m and v ∈ Wl\Wl+1. According to (A), σf guarantees any play start-
ing from v to reach set {rl, . . . , rm, t} hence val(v) ≥ min{val(rl), . . . , val(rm),
val(t)}, and together with (14) we get val(v) ≥ val(rl). The converse inequality
holds because according to (B), strategy τf guarantees any play starting from v
to either stay forever in V \Wl+1 and never reach t or to reach a random vertex
in {r0, . . . , rl}, hence val(v) ≤ max{val(r0), . . . , val(rl)} = val(rl). This achieves
to prove (16).

Now we prove that for every v, w ∈ V ,

Eσf ,τf
v [val(Vn+1) | Vn = w] = val(w). (17)

According to (C), val is constant equal to 1 on Wm+1 and Wm+1 is stable under
σf and τf hence (17) holds for w ∈ Wm+1. According to (D), val is constant equal
to 0 on W− and W− is stable under σf and τf hence (17) holds for w ∈ W−. Let
0 ≤ l ≤ m and w ∈ Wl \ Wl+1. According to (16), val is constant on Wl \ Wl+1

and according to (A) and (B), Wl \ Wl+1 is stable under σf and τf , hence (17)
holds if w ∈ VMax ∪ VMin. If w ∈ VR then (17) also holds because w 	= t hence
according to (5), val(w) =

∑
v∈V p(v|w) · val(v).

Now we prove that for any v ∈ V ,

(Pσf ,τf
v (Reach(t)) = 0) =⇒ (val(v) = 0). (18)

For every v ∈ V let φ(v) = Pσf ,τf
v (Reach(t)). Let Z = {v ∈ V | φ(v) = 0}.

We start with proving that Z = V \ Wl for some l. According to Lemma 1, for
each 0 ≤ l ≤ m, the value of φ is constant equal to φ(wl) on the set Wl \ Wl+1.
Since φ has value 0 on V \ W0, and since W0 ⊆ W1 ⊆ . . . ⊆ Wm+1, there exists
0 ≤ l ≤ m such that Z = V \ Wl. Now we prove that Z is stable under random
moves. Indeed, let r ∈ VR ∩ Z then since φ(r) =

∑
v∈V p(v|r)φ(v) and since

r ∈ Z, φ(r) = 0, hence all successors of r have value 0 and are in Z. Now we
prove that τf guarantees that every play starting from Z never leaves Z. Indeed
according to (B), strategy τf traps the play in V \ Wl+1 = Z until it reaches a
random vertex, but Z is stable under random moves. Finally, since Z does not
contain the target, any play consistent with strategy τf and starting from Z will
never reach the target. This proves that vertices in Z have value 0 and achieves
the proof of (18).

Now we can achieve the proof that f is self-consistent. We already proved
that f is progressive hence according to Lemma 3, there are two types of play
consistent with σf : those reaching the target and those staying ultimately in the
set where φ has value 0. In the former case, since t is absorbing, limn val(Vn) = 1
and in the latter case according to (18), limn val(Vn) = 0. Hence:

Pσf ,τf
v (Reach(t)) = Eσf ,τf

v

[
lim
n

val(Vn)
]

= lim
n

Eσf ,τf
v [val(Vn)] = val(v),

where the second equality holds because val is bounded and the third comes
from (17). This proves (15) and achieves the proof that f is self-consistent.



Simple Stochastic Games with Few Random Vertices Are Easy to Solve 17

5 An Algorithm for Computing Values of SSGs

In this section, we give an algorithm that computes values and optimal strategies
of an SSG. This algorithm, based on Theorem 3, looks for a permutation f which
is self-consistent and progressive.

5.1 Testing Whether a Permutation Is Self-consistent and
Progressive

For testing whether a permutation f is self-consistent and progressive, it is
enough to compute some reachability probabilities in the following Markov chain.

Definition 2 (Markov chain associated with f). Let f = (r0, . . . , rm) a
permutation of VR, and W−, W0, . . . , Wm+1 the subsets of V defined by (6). Let
Mf be the Markov chain with states S = {−, 0, . . . , m, m + 1} such that both
states − and m + 1 are absorbing and for every i ∈ {0, . . . , m} and j ∈ S, the
transition probability from i to j in Mf is given by:

xi,j =
∑

v∈Wj

p(v|ri).

The Markov chain Mf is designed to mimic behaviour of the play when the
players use their f -strategies: it is obtained by removing edges which are not
consistent with f -strategies and shrinking each set Wl to the vertex rl.

The following proposition gives an effective procedure for testing
self-consistency and progressiveness of a permutation.

Proposition 2. Let f = (r0, . . . , rm) be a permutation of random vertices, with
|VR| = m + 1. Let Mf the Markov chain associated with f , with transition prob-
abilities (xi,j)i,j∈S . For 0 ≤ i ≤ m, let x∗i the probability of eventually reaching
state m + 1 starting from state i in the Markov chain Mf . Then f is self-
consistent iff for every 0 ≤ i, j ≤ m,

(i ≤ j) =⇒ (x∗i ≤ x∗j ), (19)

and f is progressive iff for every 0 ≤ i ≤ j ≤ m,

(x∗i > 0) =⇒ (there exists j < k ≤ m + 1 such that xj,k > 0). (20)

Let I ⊆ S the set of states from which m+1 is reachable in Mf i.e. such that
x∗i > 0. Then (x∗i )i∈I is the unique solution of the following linear system:

{
x∗i =

∑
j∈I xi,j · x∗j , (i ∈ I \ {m + 1})

x∗m+1 = 1.
(21)

Proof. Uniqueness of a solution of the linear system (21) is proved for example
in [Con92], Lemma 1.



18 H. Gimbert and F. Horn

5.2 Solving SSGs in Time O( |VR|! · (|V ||E| + |p|) )

Bringing together results about optimality of f -strategies and characterization of
self-consistent and progressive permutations given by Proposition 2, we obtain
an algorithm for solving SSG:

Theorem 4. Values and optimal strategies of a simple stochastic game G =
(V, VMax, VMin, VR, E, t, p) are computable in time O( |VR|!·(|V ||E|+|p|) ), where
|p| is the maximal bit-length of a transition probability in p.

This algorithm enumerates all possible permutations f of VR. For each permu-
tation, the algorithm tests whether f is self-consistent and progressive. This is
done by computing the sets W−, W0, . . . , Wm, Wm+1 defined by (6), computing
the transition probabilities (xi,j)i,j∈S of the Markov chain Mf associated with
f , solving the linear system (21) and testing conditions (19) and (20). If the
permutation fails the test then the algorithm proceeds to the next permutation.
If the permutation passes the test, then the algorithm outputs the f -strategies
and the mapping val : V → [0, 1] which associates 0 to the vertices in W−, 1 to
the vertices in Wm+1 and x∗l to the vertices in Wl, 0 ≤ l ≤ m.

Correctness of this algorithm comes from Theorem 3, which ensures the ex-
istence of a self-consistent and progressive permutation f and the optimality of
f -strategies associated with any such permutation. Proposition 2 validates the
procedure used for testing self-consistency and progressiveness.

The complexity of the algorithm is O( |VR|! · (|V ||E| + |p|) ). Indeed, there
are exactly |VR|! permutations of random vertices. For each permutation f , the
algorithm builds the Markov chain Mf . This is done by computing the deter-
ministic attractors Wm+1, . . . , W−, which according to Proposition 1 takes time
O(|E||V |). Then the algorithms solves the linear system (21), which can be done
in time |VR|3|p|, see [Dix82]. The two tests (19) and (20) can be performed in
time O(|VR|).

6 Conclusion

We presented an algorithm computing values and optimal strategies of an SSG in
time O( |VR|!·(|V ||E|+ |p|) ). Our algorithm is particularly efficient for the SSGs
with few random vertices and does not rely on quadratic or linear programming
solvers.

A natural way of improving our algorithm would be to design a smart way of
updating a permutation f in case it is not self-consistent or progressive, this way
one would obtain a new kind of strategy improvement algorithm for solving SSGs.

References

[Con92] Condon, A.: The complexity of stochastic games. Information and Compu-
tation 96, 203–224 (1992)

[Con93] Condon, A.: On algorithms for simple stochastic games. In: Advances in
computational complexity theory. DIMACS series in discrete mathematics
and theoretical computer science, vol. 13, pp. 51–73 (1993)



Simple Stochastic Games with Few Random Vertices Are Easy to Solve 19

[Der72] Derman, C.: Finite State Markov Decision Processes. Academic Press, Lon-
don (1972)

[Dix82] Dixon, J.D.: Exact solution of linear equations using p-adic expansions.
Numerische Mathematik 40, 137–141 (1982)

[GH07] Gimbert, H., Horn, F.: Solving simple stochastic games with few random
vertices, http://hal.archives-ouvertes.fr/hal-00195914/fr/

[Hal07] Halman, N.: Simple stochastic games, parity games, mean payoff games and
discounted payoff games are all LP-type problems. Algorithmica 49, 37–50
(2007)

[Kac79] Kachiyan, L.G.: A polynomial time algorithm for linear programming. So-
viet Math. Dokl. 20, 191–194 (1979)

[Lud95] Ludwig, W.: A subexponential randomized algorithm for the simple stochas-
tic game problem. Information and Computation 117, 151–155 (1995)

[Ren88] Renegar, J.: A polynomial-time algorithm, based on newton’s method, for
linear programming. Mathematical Programming 40, 59–93 (1988)

[Sha53] Shapley, L.S.: Stochastic games. In: Proceedings of the National Academy
of Science USA, vol. 39, pp. 1095–1100 (1953)

[Som05] Somla, R.: New algorithms for solving simple stochastic games. Electr. Notes
Theor. Comput. Sci. 119(1), 51–65 (2005)

http://hal.archives-ouvertes.fr/hal-00195914/fr/


The Complexity of Nash Equilibria in Infinite

Multiplayer Games�

Michael Ummels

Mathematische Grundlagen der Informatik, RWTH Aachen, Germany
ummels@logic.rwth-aachen.de

Abstract. We study the complexity of Nash equilibria in infinite (turn-
based, qualitative) multiplayer games. Chatterjee & al. showed the ex-
istence of a Nash equilibrium in any such game with ω-regular winning
conditions, and they devised an algorithm for computing one. We argue
that in applications it is often insufficient to compute just some Nash
equilibrium. Instead, we enrich the problem by allowing to put (quali-
tative) constraints on the payoff of the desired equilibrium. Our main
result is that the resulting decision problem is NP-complete for games
with co-Büchi, parity or Streett winning conditions but fixed-parameter
tractable for many natural restricted classes of games with parity win-
ning conditions. For games with Büchi winning conditions we show that
the problem is, in fact, decidable in polynomial time.

We also analyse the complexity of strategies realising a Nash equilib-
rium. In particular, we show that pure finite-state strategies as opposed
to arbitrary mixed strategies suffice to realise any Nash equilibrium of a
game with ω-regular winning conditions with a qualitative constraint on
the payoff.

1 Introduction

We study infinite games of perfect information [10] played by multiple players
on a finite directed graph. Intuitively, a play of such a game evolves by moving
a token along edges of the graph. Every vertex of the graph is controlled by
precisely one player. Whenever the token arrives at some vertex, the player who
controls this vertex must move the token to a successor vertex. Thus a play of
such a game is an infinite path through the graph. Plays are mapped to payoffs,
one for each player. In the simplest case, which we discuss here, payoffs are just 0
and 1, i.e. each player either wins or loses a given play of the game. In this case,
the payoff function of each player can be described by the set of plays where she
receives payoff 1, her winning condition.

Infinite games have been successfully applied in the verification and synthesis
of reactive systems. Such a system is usually modelled as a game between the
system and its environment where the environment’s objective is the complement

� This research has been supported by the DFG Research Training Group “Algorith-
mic Synthesis of Reactive and Discrete-Continuous Systems” (AlgoSyn).

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 20–34, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Complexity of Nash Equilibria in Infinite Multiplayer Games 21

of the system’s objective, so the environment is considered hostile. Therefore,
traditionally, the research in this area has mostly looked at two-player games
where each play is won by precisely one of the two players, so-called two-player
zero-sum games. However, motivated by the modelling of distributed systems,
interest in the general case has increased in recent years [3,4].

The most common interpretation of rational behaviour in multiplayer games
is captured by the notion of a Nash equilibrium. In a Nash equilibrium, no
player can improve her payoff by unilaterally switching to a different strategy.
Chatterjee & al. [4] showed that any infinite multiplayer game with ω-regular
winning conditions has a Nash equilibrium in pure strategies, and they also gave
an algorithm for computing one. We argue that this is not satisfactory. Indeed, it
can be shown that their algorithm may compute an equilibrium where all player
lose when there exist other equilibria where all players win.

In applications, one might look for an equilibrium where as many players win
as possible or where it is guaranteed that certain players win while certain others
lose. Formulated as a decision problem, we want to know, given a k-player game
G with initial vertex v0 and two payoff thresholds x, y ∈ {0, 1}k, whether (G, v0)
has a Nash equilibrium with a payoff ≥ x and ≤ y.

When restricted to two-player zero-sum games, this problem, which we call
NE for short, is nothing else than the classical game problem of deciding the
winner. For parity games, the latter problem is known to be in UP∩ co-UP [12]
and therefore unlikely to be NP-hard. Moreover, if e.g. the number of priorities
is bounded (as it is the case for Büchi and co-Büchi winning conditions), the
problem is known to be decidable in polynomial time.

Our main result is that NE is NP-complete for games with Streett, parity
or co-Büchi winning conditions. However, if each player has a Büchi winning
condition, the problem becomes decidable in polynomial time.

For the proof of NP-hardness, it is essential that the number of players is
unbounded. In applications, the number of players may be much smaller than
the size of the game graph. So it is interesting to know the complexity of the
problem if the number of players is small. A more fine-grained parameter is the
Hamming distance of the two thresholds, i.e. the number of non-matching bits.
Clearly, if the number of players is bounded, then the Hamming distance of the
thresholds can be bounded as well, but even if the number of players is not
bounded, the distance of the thresholds may be.

We show that, for games with parity winning conditions, NE retains the com-
plexity of the classical parity game problem when restricted to payoff thresh-
olds of bounded Hamming distance: In general, the complexity goes down to
UP ∩ co-UP, but for restricted classes of games we get membership in P. It fol-
lows that there exists an FPT algorithm for NE on these restricted classes if one
considers the Hamming distance of the payoff thresholds as the parameter.

Another interesting question is about the complexity of strategies realising a
Nash equilibrium. We show that not only pure strategies (as opposed to mixed
strategies, which allow for randomisation between actions) suffice, but also ones
that require only a finite amount of memory. In particular, we show that in a



22 M. Ummels

multiplayer Streett game if there exists an arbitrary Nash equilibrium with a
payoff between two (qualitative) thresholds, then there exists one that can be
implemented by a finite automaton with O(kdn) states, where k is the number
of players, d is the maximal number of Streett pairs for each player and n is the
size of the arena.

Related Work

Determining the complexity of Nash Equilibria has attracted much interest in
recent years. Daskalakis & al. [7] showed that the problem of computing some
Nash equilibrium of a game in strategic form is complete for the complexity
class PPAD (a class of function problems which lies between FP and TFNP),
and Chen and Deng [5] showed that this remains true for two-player games.
More in the spirit of our work, Conitzer and Sandholm [6] showed that deciding
whether there exists a Nash equilibrium in a two-player game in strategic form
where player 1 receives payoff at least x and related decision problems are all
NP-hard.

For infinite games, not much is known. Chatterjee & al. [4] showed that one
can compute a Nash equilibrium of a multiplayer parity game in nondeterministic
polynomial time. They also showed that it is NP-hard to determine whether a
multiplayer game with reachability conditions has a Nash equilibrium where all
players win.1 However, translating a multiplayer reachability game into a game
with (co-)Büchi or parity conditions typically entails an exponential blowup, so
their results do not transfer to games with these winning conditions. In fact, it
follows from our results that the problem is unlikely to be NP-hard in the case
of multiplayer parity games, since we show that the problem is in UP ∩ co-UP
for multiplayer parity games and even in P for multiplayer Büchi or co-Büchi
games.

2 Preliminaries

The definition of an infinite (two-player zero-sum) game played on a finite di-
rected graph easily generalises to the multiplayer setting. Formally, we define an
infinite multiplayer game as a tuple G = (Π,V, (Vi)i∈Π , E, (Wini)i∈Π) where

– Π is a finite set of players;
– (V,E) is a finite directed graph;
– (Vi)i∈Π is a partition of V ;
– Wini is a Borel set over V ω for all i ∈ Π .

The structure G = (V, (Vi)i∈Π , E) is called the arena of G, and Wini is called
the winning condition of player i ∈ Π . For the sake of simplicity, we assume that
vE := {w ∈ V : (v, w) ∈ E} �= ∅ for all v ∈ V , i.e. each vertex of G has at least
one outgoing edge. We call G a zero-sum game if the sets Wini define a partition
1 In fact, they consider concurrent games, but it is easy to see that their reduction

can be modified to work for the kind of games we consider here.



The Complexity of Nash Equilibria in Infinite Multiplayer Games 23

of V ω. Thus if G is an infinite two-player zero-sum game with players 0 and 1 it
suffices to define V0 and Win0, and we just write G = (V, V0, E,Win0).

A play or history of G is an infinite or finite path in G, respectively. We say
that a play π is won by player i ∈ Π if π ∈Wini. The payoff of a play π of G is
the vector pay(π) ∈ {0, 1}Π defined by pay(π)(i) = 1 if π is won by player i.

A (mixed) strategy of player i in G is a total function σ : V ∗Vi → D(V )
assigning to each nonempty sequence xv of vertices ending in a vertex v of
player i a (discrete) probability distribution over V such that σ(xv)(w) > 0 only
if (v, w) ∈ E. We say that a play π of G is consistent with a strategy σ of player i
if σ(π(0) . . . π(k))(π(k+ 1)) > 0 for all k < ω with π(k) ∈ Vi. A (mixed) strategy
profile of G is a tuple σ = (σi)i∈Π where σi is a strategy of player i in G. Note
that a strategy profile can be identified with a function V + → D(V ). Given a
strategy profile σ = (σj)j∈Π and a strategy τ of player i, we denote by (σ−i, τ)
the strategy profile resulting from σ by replacing σi with τ .

A strategy σ of player i is called pure if for each xv ∈ V ∗Vi there exists w ∈ vE
with σ(xv)(w) = 1. Note that a pure strategy of player i can be identified with
a function σ : V ∗Vi → V . Finally, a strategy profile σ is called pure if each one
of the strategies σi is pure. A strategy σ of player i in G is called positional if
σ depends only on the current vertex, i.e. if σ(xv) = σ(v) for all xv ∈ V ∗Vi. A
strategy profile σ of G is called positional if each σi is positional.

It is sometimes convenient to designate an initial vertex v0 ∈ V of the game.
We call the tuple (G, v0) an initialised game. A play (history) of (G, v0) is a play
(history) of G starting with v0. A strategy (strategy profile) of (G, v0) is just a
strategy (strategy profile) of G. Note that if σ is a pure strategy profile then
there is a unique play of (G, v0) consistent with each σi, which we denote by 〈σ〉.

Given a strategy profile σ and an initial vertex v0, the probability of a basic
open set v0v1 . . . vk · V ω is defined as the product of the probabilities
σ(v0 . . . vj−1)(vj) for j = 1, . . . , k. It is a classical result of measure theory that
this extends to a unique probability measure over Borel sets, which we denote
by Prσ. The payoff of a strategy profile σ is the vector pay(σ) ∈ [0, 1]Π defined
by pay(σ)(i) = Prσ(Wini).

A strategy profile σ is called a Nash equilibrium of (G, v0) if Pr(σ−i,τ)(Wini) ≤
Prσ(Wini) for each player i and each strategy τ of player i. Thus, in a Nash
equilibrium no player can improve her payoff by (unilaterally) switching to a
different strategy. The following proposition rephrases the condition for the case
that σ is pure. In this case, it suffices to check that no player can gain from
switching to another pure strategy. This follows from the fact that pure strategy
suffice to win one-player games.

Proposition 1. Let σ be a pure strategy profile of a game (G, v0). The profile σ
is Nash equilibrium iff 〈σ−i, τ〉 ∈Wini ⇒ 〈σ〉 ∈Wini for each player i and each
pure strategy τ of player i.

A strategy σ of player i is called winning if Pr(τ−i,σ)(Wini) = 1 for any strategy
profile τ . For a game G we call the set of all vertices v ∈ V such that player i
has a winning strategy for (G, v) the winning region of player i, and a strategy



24 M. Ummels

of player i that is winning in (G, v) for each vertex v in the winning region of
player i an optimal strategy.

A celebrated theorem due to Martin [14] states that any two-player zero-
sum game G with a Borel set as its winning condition is determined by pure
strategies, i.e. both players have pure optimal strategies, and the union of the
winning regions is the set of all vertices.

Winning Conditions

We have introduced winning conditions as abstract Borel sets of infinite se-
quences of vertices. In verification winning conditions are usually ω-regular sets.
Special cases are the following well-studied winning conditions:

– Büchi (given by F ⊆ V ): the set of all α ∈ V ω such that α(k) ∈ F for
infinitely many k < ω.

– co-Büchi (given by F ⊆ V ): the set of all α ∈ V ω such that α(k) ∈ F for all
but finitely many k < ω.

– Parity (given by a priority function Ω : V → ω): the set of all α ∈ V ω such
that the least number occurring infinitely often in Ω(α) is even.

– Streett (given by a set Ω of pairs (L,R) where L,R ⊆ V ): the set of all
α ∈ V ω such that for all pairs (L,R) ∈ Ω with α(k) ∈ L for infinitely many
k < ω it is the case that α(k) ∈ R for infinitely many k < ω.

Note that any Büchi condition is a parity conditions with two priorities and
that any parity condition is a Streett condition. In fact, the intersection of any
two parity conditions is a Streett condition. Moreover, the complement of a
Büchi condition is a co-Büchi condition and vice versa, whereas the class of
parity conditions is closed under complementation. Finally, note that any Streett
condition is prefix independent, i.e. for every α ∈ V ω and x ∈ V ∗ it is the case
that α satisfies the condition if and only if xα does.

We call a game G a multiplayer ω-regular, (co-)Büchi, parity or Streett game if
the winning condition of each player is of the respective type. This differs some-
how from the usual convention for two-player zero-sum games where a Büchi,
co-Büchi or Streett game is a game where the winning condition of the first
player is a Büchi, co-Büchi or Streett condition, respectively.

3 Characterising Nash Equilibria

In this section we aim to characterise the existence of a Nash equilibrium with a
qualitative constraint on the payoff. The characterisation works for any prefix-
independent Borel winning condition, though we will only use it for games with
(co-)Büchi, parity or Streett winning conditions in the following sections.

For the rest of this section, let (G, v0) be any k-player game with prefix-
independent Borel winning conditions Wini; let Wi be the winning region of
player i in G, and let τi be a pure optimal strategy of player i. For each player
i ∈ Π , we define Hiti := V ∗ ·Wi ·V ω . Moreover, for x, y ∈ {0, 1}k let Plays(x, y)
be the set of all plays π such that x ≤ pay(π) ≤ y.



The Complexity of Nash Equilibria in Infinite Multiplayer Games 25

Lemma 2. Let σ be a strategy profile such that x ≤ pay(σ) ≤ y for x, y ∈
{0, 1}k. Then Prσ(Plays(x, y)) = 1.

For each strategy σ of player i, we define a new strategy σ∗ of player i by

σ∗(v1 . . . vk) =

{
σ(v1 . . . vk) if vj �∈Wi for all 0 < j ≤ k,
τi(vjvj+1 . . . vk) if vj ∈Wi and vl �∈ Wi for all 0 < l < j.

Intuitively, σ∗ is at least as good as σ, since σ∗ behaves like σ as long as Wi

is not visited and switches to τi after the first visit to Wi, which guarantees a
win with probability 1. The exact gain in probability is given by the following
lemma.

Lemma 3. For any strategy profile σ and each player i ∈ Π, Pr(σ−i,σ∗
i )(Wini) =

Prσ(Wini) + Prσ(Wini ∩Hiti).

The next lemma allows to infer the existence of a Nash equilibrium from the
existence of a certain play. The proof uses so-called threat strategies (also known
as trigger strategies), which are the basis of the folk theorems in the theory of
repeated games (cf. [1] and [17, Chapter 8]).

Lemma 4. If there exists a play π such that π ∈Wini ∪Hiti for each player i ∈
Π, then there exists a pure Nash equilibrium σ with π = 〈σ〉.

Proof. Let π be a play of (G, v0) such that π ∈Wini ∪Hiti for each player i ∈ Π .
Moreover, let τΠ\{j} be an optimal pure strategy of the coalition Π \ {j} in the
two-player zero-sum game Gj where player j plays with her winning condition
against all other players in G; let τi,j be the corresponding strategy of player i �= j
in G (i.e. τi,j(xv) = τΠ\{j}(xv) for each v ∈ Vi), and for each player i let τi,i be
an arbitrary pure strategy. For each player i, we define a new pure strategy σi
in G as follows:

σi(xv) =

{
π(k + 1) if xv = π(0) . . . π(k) ≺ π,
τi,j(x2v) otherwise,

where, in the latter case, x = x1x2 such that x1 is the longest prefix of x still
being a prefix of π, and j is the player whose turn it was after that prefix (i.e.
x1 ends in Vj), where j = i if x1 = ε.

Clearly, we have π = 〈σ〉. We claim that σ is a Nash equilibrium. Towards
a contradiction, assume that some player i ∈ Π with π �∈ Wini can improve
her payoff by playing according to some (w.l.o.g. pure) strategy τ instead of σi.
Then there exists k < ω such that τ(π(k)) �= σi(π(k)), and consequently from
this point onwards 〈σ−i, τ〉 is consistent with τ−i, the optimal strategy of the
coalition Π \ {i} in Gi. Hence, it must be the case that τ−i is not winning from
π(k). By determinacy, this implies that π(k) ∈ Wi, so π ∈ Hiti, a contradiction
to the assumption that π ∈Wini ∪Hiti. ��



26 M. Ummels

Now we have all the ingredients to prove the following proposition, which charac-
terises the existence of a Nash equilibrium with a payoff between two thresholds
x, y ∈ {0, 1}k.
Proposition 5. Let x, y ∈ {0, 1}k. The following statements are equivalent:

1. There exists a Nash equilibrium σ with payoff x ≤ pay(σ) ≤ y;
2. There exists a strategy profile σ with payoff x ≤ pay(σ) ≤ y such that

Prσ(Wini ∪Hiti) = 1 for each player i ∈ Π;
3. There exists a play π with x ≤ pay(π) ≤ y such that π ∈ Wini ∪ Hiti for

each player i ∈ Π;
4. There exists a pure Nash equilibrium σ with payoff x ≤ pay(σ) ≤ y.

Proof. (1. ⇒ 2.) Let σ be a Nash equilibrium with x ≤ pay(σ) ≤ y. We
claim that we have Prσ(Wini ∪ Hiti) = 1 for each player i ∈ Π . Otherwise,
Prσ(Wini ∩ Hiti) > 0 for some player i ∈ Π , and by Lemma 3 we would have
Pr(σ−i,σ∗

i )(Wini) > Prσ(Wini), so player i could improve her payoff by switching
from σ to σ∗, a contradiction to the fact that σ is a Nash equilibrium.

(2. ⇒ 3.) Assume that there exists a strategy profile σ with x ≤ pay(σ) ≤ y
such that Prσ(Wini ∪ Hiti) = 1 for each player i ∈ Π . Moreover, by Lemma 2
we have Prσ(Plays(x, y)) = 1. Hence, by elementary probability theory, also
Prσ(Plays(x, y) ∩ ⋂

i∈Π(Wini ∪ Hiti)) = 1. But then, in particular, there must
exist a play π ∈ Plays(x, y) such that π ∈Wini ∪Hiti for each player i.

(3.⇒ 4.) The claim follows from Lemma 4.
(4.⇒ 1.) Trivial. ��

As a corollary we can infer that randomised strategies are not more powerful
than pure ones as far as the existence of a Nash equilibrium with a qualitative
constraint on the payoff is concerned.

Corollary 6. Let x, y ∈ {0, 1}k. There exists a Nash equilibrium σ with x ≤
pay(σ) ≤ y iff there exists a pure Nash equilibrium σ with x ≤ pay(σ) ≤ y.
Remark 7. Corollary 6 fails if the thresholds x and y are not bitvectors: One
can easily construct an example of a two-player game where there is a Nash
equilibrium with payoff (1, x) for each real number x ∈ [0, 1], whereas any pure
Nash equilibrium has payoff (1, 0) or (1, 1).

4 Computational Complexity

Previous research on algorithms for finding Nash equilibria in infinite games has
focused on computing some Nash equilibrium [4]. However, a game may have
several Nash equilibria with different payoffs, so one might not be interested in
any Nash equilibrium but in one that fulfils certain requirements. For example,
one might look for a Nash equilibrium where certain players win while certain
other players lose. Or one might look for a maximal Nash equilibrium, i.e. a
Nash equilibrium such that there is no Nash equilibrium with a higher payoff.
This idea is captured by the following decision problem, which we call NE:



The Complexity of Nash Equilibria in Infinite Multiplayer Games 27

Given a multiplayer game (G, v0) with ω-regular winning conditions and
thresholds x, y ∈ {0, 1}Π, decide whether there exists a Nash equilibrium
of (G, v0) with a payoff ≥ x and ≤ y.

4.1 Upper Bounds

Our first result on the complexity of NE is that there is a nondeterministic
polynomial-time algorithm to decide NE for multiplayer Streett games. This
may surprise the reader, since the problem of deciding whether player 0 has a
winning strategy in a two-player zero-sum game with a Streett winning condition
is, in fact, co-NP-complete [8]. However, recall that, according to our definition,
a two-player zero-sum game where one player has a Streett winning condition is,
in general, not a Streett game, since we require both players to have the same
type of winning condition.

Theorem 8. For multiplayer Strett games, NE is in NP.

Proof. To decide whether there exists a Nash equilibrium of a multiplayer Strett
game (G, v0) with payoff ≥ x and ≤ y, a nondeterministic algorithm can guess
a payoff z ∈ {0, 1}Π with x ≤ z ≤ y and, for each player i ∈ Π with zi = 0,
a set Zi together with a pure positional strategy τ−i for the coalition Π \ {i}.
Finally, the algorithm guesses a strongly connected set U ⊆ ⋂

zi=0(V \ Zi) that
is reachable from v0 inside

⋂
zi=0(V \ Zi). If there is no such set, the algorithm

rejects immediately. In the next step, the algorithm checks for each i with zi = 0
whether τ−i is winning on V \Zi as well as whether U fulfils the winning condition
(i.e. U ∩ L �= ∅ ⇒ U ∩R �= ∅ for each Streett pair (L,R)) of each player i with
zi = 1 and whether U does not fulfil the winning condition of each player i with
zi = 0. If all checks are successful, the algorithm accepts; otherwise it rejects.

The correctness of the algorithm follows from Proposition 5: If there is a
positional winning strategy of the coalition Π \ {i} on V \ Zi, then Zi must be
a superset of the winning region of player i. So we can build a play with payoff
z staying outside of the winning region of each player i with zi = 0 by going
from v0 to U and visiting each vertex of U again and again, which is possible
because U is strongly connected. On the other hand, if there is a play π with
payoff z and staying inside V \Wi for each player i with zi = 0, then the checks
will succeed for the guesses Zi = Wi, τi an optimal pure positional strategy of
the coalition Π \ {i} in G and U = Inf(π), since pure positional strategies suffice
for player 1 to win a two-player zero-sum game with a Streett winning condition
for player 0 [13].

It remains to show that the algorithm runs in polynomial time. The only
critical steps are the checks whether a pure positional strategy of the coalition
Π \ {i} is winning on V \Zi. In order to check this, the algorithm can construct
the one-player Strett game that arises from fixing the transitions taken by the
positional strategy and check whether there exists a winning play for the re-
maining player from a vertex outside Zi. Emerson and Lei [9] showed that there
exists a polynomial-time algorithm for the latter problem. ��



28 M. Ummels

As an immediate consequence of Theorem 8, we get that for multiplayer parity
games the problem NE is in NP, as well. However, in many cases, we can do
better: For two payoff vectors x, y ∈ {0, 1}Π, let dist(x, y) be the Hamming
distance of x and y, i.e. the number

∑
i∈Π |yi − xi| of nonmatching bits. We

show that if dist(x, y) is bounded then NE retains the complexity of the parity
game problem, which is known to be in UP ∩ co-UP [12].

Theorem 9. For multiplayer parity games and bounded dist(x, y), NE is in
UP ∩ co-UP.

Proof. In the following, let us assume that dist(x, y) is bounded. A UP algorithm
for NE works as follows: On input (G, v0) the algorithm starts by guessing the
winning region Wi of each player. Then, for each vertex v and each player i,
the guess whether v ∈ Wi or v �∈Wi is verified by running the UP algorithm for
the respective problem. If one guess was incorrect, the algorithm rejects immedi-
ately. Otherwise, the algorithm checks for each payoff z ∈ {0, 1}Π with x ≤ z ≤ y
whether there exists a winning play from v0 in the one-player Streett game with
winning condition

⋂
zi=1 Wini ∩

⋂
zi=0 Wini on the arenaG �

⋂
zi=0(V \Wi). The

algorithm accepts if this is the case for at least one such payoff. Analogously, a
UP algorithm for the complement of NE accepts if there is no winning play in
the same game from v0 for each x ≤ z ≤ y.

It is easy to see that both algorithms are indeed UP algorithm. The correctness
of the two algorithms follows again from Proposition 5 with a similar reasoning
as in the proof of Theorem 8. ��

It is a major open problem whether winning regions of two-player zero-sum parity
games can be computed in polynomial time, in general. This would allow us to
decide NE for multiplayer parity games and bounded dist(x, y) in polynomial
time, as well.

Though it could net yet be shown that the parity game problem is in P,
researchers have succeeded in identifying structural subclasses of parity games
that allow to solve the game in polynomial time. First of all, it is well known
that the parity game problem is in polynomial time for games with a bounded
number of priorities (cf. [19]). Other classes of parity games with this prop-
erty were shown to be any class of games played on graphs of bounded DAG-
or Kelly width [2,15,11] (and thus also on graphs of bounded tree width or
bounded entanglement), and on graphs of bounded clique width [16]. We give
a general theorem that alllows to transfer these results to the multiplayer case.
Formally, for any class C of two-player zero-sum parity games, let C∗ be the
class of all multiplayer parity games of the form G = (Π,V, (Vi)i∈Π , E, (Ωi)i∈Π)
where, for each player i ∈ Π , the two-player zero-sum game Gi = (V, Vi, E,Ωi) is
in C.

Theorem 10. Let C be a class of two-player zero-sum parity games such that
the parity game problem is decidable in P for games in C. Then NE is in P for
games in C∗ and bounded dist(x, y).



The Complexity of Nash Equilibria in Infinite Multiplayer Games 29

Proof. Consider the algorithm given in the proof of Theorem 9. The winning
region Wi of player i in G is precisely the winning region of player 0 in the game
Gi. So, if Gi ∈ C, we can compute the set Wi in polynomial time, and there is no
need to guess this set. So we can make the algorithm deterministic while keeping
its running time polynomial. ��
As a corollary, we can deduce that there exists an FPT algorithm for NE when
restricted to games in one of the aforementioned classes w.r.t. the parameter
dist(x, y). In particular, if the general parity game problem is in P, then NE for
multiplayer parity games is fixed-parameter tractable.

Corollary 11. Let C be a class of two-player zero-sum parity games such that
the parity game problem is decidable in P for games in C. Then NE for games
in C∗ admits an FPT algorithm w.r.t. the parameter dist(x, y).

Proof. To decide whethere there is a Nash equilibrium with a payoff ≥ x and
≤ y, it suffices to check for each of the 2dist(x,y) many payoffs z ∈ {0, 1}Π with
x ≤ z ≤ y whether there exists a Nash equilibrium with payoff z. By Theorem 10,
each of these checks can be done in polynomial time for games in C∗.
The natural question at this point is whether NE is actually decidable in poly-
nomial time. In the next section, we will see that this is probably not the case.
However, we claim that there exists a polynomial-time algorithm for NE if all
winning conditions are Büchi winning conditions. Towards this, we describe a
polynomial-time algorithm that computes, given a multiplayer Büchi game G
and payoff thresholds x, y ∈ {0, 1}Π, the set of vertices from where there exists
a Nash equilibrium with a payoff ≥ x and ≤ y.

The algorithm is similar to the algorithm by Emerson and Lei [9] for deciding
one-player Streett games and works as follows: By Proposition 5, the game (G, v)
has a Nash equilibrium with a payoff ≥ x and ≤ y if and only if there exists a
play staying outside the winning region Wi of each player i with pay(π)(i) = 0.
Clearly, this is the case if and only if there exists a payoff z ∈ {0, 1}Π and a
strongly connected set U ⊆ ⋂

zi=0(V \Wi) reachable from v inside
⋂
zi=0(V \Wi)

such that U∩Fi �= ∅ iff zi = 1. The essential part of the algorithm is the procedure
SolveSubgame. On input X its task is to find any such set contained in X .

As we are only interested in strongly connected sets that do not intersect
with Fi for each player i such that yi = 0, SolveSubgame is firstly called for the
subgraph of G that results from G by removing all these sets Fi.

Theorem 12. NE is decidable in polynomial time for multiplayer Büchi games.

Proof. We claim that Algorithm 1 computes precisely the set of vertices from
where there is a Nash equilibrium with a payoff ≥ x and ≤ y. Note that the
procedure SolveSubgame calls itself at most |X | − 1 times on input X . So the
procedure is called at most |V | times in total. As furthermore any graph can be
decomposed into its SCCs in linear time and winning regions of Büchi games
can be computed in polynomial time, this implies that the algorithm runs in
polynomial time. ��



30 M. Ummels

Algorithm 1. Computing the set of vertices from where there is a Nash equilibrium
in a multiplayer Büchi game with a payoff ≥ x and ≤ y.

input multiplayer Büchi game G = (Π,V, (Vi)i∈Π , E, (Fi)i∈Π), x, y ∈ {0, 1}Π

for each i ∈ Π do
Compute the winning region Wi of player i in G

end for
X :=

�
yi=0(V \ Fi)

return SolveSubgame(X)

procedure SolveSubgame(X)
Z := ∅
Decompose G � X into strongly connected components (SCC’s)
for each non-trivial SCC C of G � X do
L := {i ∈ Π : C ∩ Fi = ∅}
if i �∈ L for all i with xi = 1 then
Y := C ∩

�
i∈L(V \Wi)

if Y = C then
Z := Z ∪ {v ∈ V : C reachable from v in G �

�
i∈L(V \Wi)}

else
Z := Z ∪ SolveSubgame(Y )

end if
end if

end for
return Z

end procedure

Remark 13. In fact, by combining the proofs of Theorem 12 and Theorem 10,
one can show that NE is decidable in polynomial time for games with an arbi-
trary number of Büchi winning conditions and a bounded number of co-Büchi
winning conditions (or even a bounded number of parity winning conditions with
a bounded number of priorities).

4.2 Lower Bounds

The question remains whether, in general, NE is NP-hard. We answer this ques-
tion affirmatively by showing that NE is not only NP-hard for two-player Streett
games, but also for multiplayer co-Büchi games with an unbounded number of
players even if we only want to know whether there is an equilibrium where a
certain player wins. Note that, in the light of Theorem 9, it is very unlikely that
NE is NP-hard for parity games when restricted to a bounded number of players.

Theorem 14. NE is NP-hard for two-player Streett games.

Proof. The proof is a variant of the proof for NP-hardness of the problem of
deciding whether player 1 has a winning strategy in a two-player zero-sum game
with a Streett winning condition [8] and by a reduction from SAT.

Given a Boolean formula ϕ in conjunctive normal form, we construct a two-
player Streett game Gϕ as follows: For each clause C the game Gϕ has a vertex



The Complexity of Nash Equilibria in Infinite Multiplayer Games 31

C, which is controlled by player 1, and for each literal X or ¬X occurring in ϕ
there is a vertexX or ¬X , respectively, which is controlled by player 0. There are
edges from a clause to each literal that occurs in this clause, and from a literal
to each clause occurring in ϕ. Player 1 wins every play of the game whereas
player 2 wins if for each variable X either neither X nor ¬X or both X and ¬X
have been visited infinitely often (clearly a Streett condition).

Obviously, Gϕ can be constructed from ϕ in polynomial time. We claim that
ϕ is satisfiable if and only if (Gϕ, C) has a Nash equilibrium where player 2 loses
(with C being an arbitrary clause). ��
Since dist(x, y) is always bounded by the number of players, it follows from
Theorem 14 that NE is not fixed-parameter tractable for Streett games w.r.t.
this parameter.

Theorem 15. NE is NP-hard for multiplayer co-Büchi games, even with the
thresholds x = (1, 0, . . . , 0) and y = (1, . . . , 1).

Proof. Again, the proof is by a reduction from SAT. Given a Boolean formula
ϕ = C1 ∧ . . . ∧ Cm in CNF over variables X1, . . . , Xn, we build a game Gϕ
played by players 0, 1, . . . , n as follows. Gϕ has vertices C1, . . . , Cm controlled by
player 0, and for each clause C and each literal Xi or ¬Xi that occurs in C,
a vertex (C,Xi) or (C,¬Xi), respectively, controlled by player i. Additionally,
there is a sink vertex ⊥. There are edges from a clause Cj to each vertex (Cj , L)
such that L occurs as a literal in Cj and from there to C(j mod m)+1. Additionally,
there is an edge from each vertex (C,¬Xi) to the sink vertex ⊥. As ⊥ is a sink
vertex, the only edge leaving ⊥ leads to ⊥ itself. The arena of Gϕ is schematically
depicted in Fig. 1. The co-Büchi winning conditions are as follows:

– Player 0 wins if the sink vertex is visited only finitely often (i.e. never);
– Player i ∈ {1 . . . , n} wins if each vertex (C,Xi) is visited only finitely often.

Clearly, Gϕ can be constructed from ϕ in polynomial time. We claim that ϕ is
satisfiable if and only if (Gϕ, C1) has a Nash equilibrium where player 0 wins. ��

5 Strategy Complexity

Recall that we have already shown that pure strategies suffice to realise any
Nash equilibrium with a qualitative constraint on the payoff (Corollary 6). In
this section we aim to analyse the memory requirements of these pure strategies.

A finite-state transducer is a tuple A = (Q,Σ, Γ, q0, δ, τ) where Q is a finite
set of states, Σ and Γ finite sets of letters, q0 ∈ Q the initial state, δ : Q×Σ → Q
the transition function, and τ : Q × Σ → Γ the output function. The function
δ is naturally extended to a function δ∗ : Σ∗ → Q by setting δ∗(ε) = q0 and
δ∗(xa) = δ(δ∗(x), a). The transducer A computes the function f : Σ+ → Γ
defined by f(xa) = τ(δ∗(x), a). So, if Σ = Γ = V and τ(q, v) ∈ vE for each
q ∈ Q and v ∈ V we can interpret f as a pure strategy profile of a game played
on G = (V, (Vi)i∈Π , E). We call a pure strategy profile σ a finite-state strategy
profile if there exists a finite-state transducer that computes σ.



32 M. Ummels

C1

L11

...

L1n

C2 . . . Cm

Lm1

...

Lmn

⊥

Fig. 1. The arena of the game Gϕ

Theorem 16. Let (G, v0) be a multiplayer Streett game with k players, at most
d Streett pairs for each player and n vertices, and let x, y ∈ {0, 1}k. If there
exists a Nash equilibrium with a payoff ≥ x and ≤ y, then there exists a pure
Nash equilibrium with a payoff ≥ x and ≤ y that can be computed by a finite
automaton with O(kdn) (or, alternatively, O(n2)) states.

Proof. Assume that there exists a Nash equilibrium with a payoff ≥ x and ≤ y.
By Proposition 5, this implies that there exists a play π with payoff x ≤ pay(π) ≤
y such that π avoids the winning region Wi of each player i with π �∈Wini. Now
consider the set U of vertices visited infinitely often in π. In fact, it suffices to
attract the token to U (and thereby avoiding each Wi with π �∈Wini) and then,
while staying inside U , to visit again and again for each player i and for each
Streett pair (L,R) in the condition for player i a vertex u ∈ U ∩ L if U ∩ L �= ∅
and a vertex u′ ∈ U ∩R if U ∩R �= ∅. The resulting play π′ has the same payoff
as π and will still satisfy the requirement that π′ avoids each Wi with π′ �∈Wini.
It is easy to see that there exists a pure strategy profile τ with π′ = 〈τ 〉 that
can be computed by an automaton with O(kd) states. Alternatively, using O(n)
states, one can guarantee to visit every vertex in U (and only vertices in U)
again and again.

Now consider the equilibrium σ constructed from π′ in the proof of Lemma 4.
Since player 1 has an optimal pure positional strategy in any two-player zero-sum
game where player 0 has a Streett winning condition [13], the strategies τΠ\{j}
defined there can be assumed to be positional. For each one of the states needed
to realise τ , an automaton that implements σ needs one state for each vertex
to detect a deviation. Additionally, it needs min(k, n) more states to remember
which one of the strategies τΠ\{j} it executes after a deviation. So σ can be
computed by an automaton with O(kdn) (or, alternatively, O(n2)) states. ��



The Complexity of Nash Equilibria in Infinite Multiplayer Games 33

With a small modification in the proof, one can show that for multiplayer par-
ity games one can get rid of the factor d, so in this case O(kn) states suffice.
Finally, since any game with ω-regular winning conditions can be reduced to
a multiplayer parity game using finite memory [18], we can conclude that pure
finite-state strategies suffice to realise any Nash equilibrium with a qualitative
constraint on the payoff in these games.

Corollary 17. Let (G, v0) be a game with ω-regular winning conditions, and let
x, y ∈ {0, 1}Π. If there exists a Nash equilibrium with a payoff ≥ x and ≤ y,
then there exists a pure finite-state Nash equilibrium with a payoff ≥ x and ≤ y.

6 Conclusion

We have analysed the complexity of Nash equilibria in infinite multiplayer games
with (co-)Büchi, parity and Streett objectives. We remark that with the same
idea as in the proof of Theorem 8 one can show that NE is in PNP (in fact
PNP[log]) for games with only Rabin or mixed Rabin and Streett winning condi-
tions and in PSpace for games with Muller winning conditions.

Apart from studying other winning conditions, three obvious directions for
further research come to mind: Firstly, it would be interesting to know the com-
plexity of other solution concepts in the context of infinite games. For subgame
perfect equilibria, preliminary results were obtained in [18]. Secondly, one could
consider more general game models like stochastic or concurrent games. Thirdly,
there is the quantitative version of NE, where the thresholds contain arbitrary
probabilities rather than just 0 and 1. In fact, this problem arises naturally in
the context of stochastic games.

Acknowledgements. I would like to thank an anonymous reviewer for clari-
fying the notion of a threat/trigger strategy and for pointing out [1].

References

1. Aumann, R.J.: Survey of repeated games. In: Essays in Game Theory and Math-
ematical Economics in Honor of Oskar Morgenstern. Bibliographisches Institut
Mannheim/Wien/Zürich, pp. 11–42 (1981)

2. Berwanger, D., Dawar, A., Hunter, P., Kreutzer, S.: DAG-width and parity games.
In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 436–524.
Springer, Heidelberg (2006)

3. Chatterjee, K., Henzinger, T.A., Jurdziński, M.: Games with secure equilibria. In:
Proceedings of the 19th Annual Symposium on Logic in Computer Science, LICS
2004, pp. 160–169. IEEE Computer Society Press, Los Alamitos (2004)

4. Chatterjee, K., Jurdziński, M., Majumdar, R.: On Nash equilibria in stochastic
games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp.
26–40. Springer, Heidelberg (2004)



34 M. Ummels

5. Chen, X., Deng, X.: Settling the complexity of two-player Nash equilibrium. In:
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2006, pp. 261–272. IEEE Computer Society Press, Los Alamitos
(2006)

6. Conitzer, V., Sandholm, T.: Complexity results about Nash equilibria. In: Proceed-
ings of the 18th International Joint Conference on Artificial Intelligence, IJCAI
2003, pp. 765–771. Morgan Kaufmann, San Francisco (2003)

7. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of comput-
ing a Nash equilibrium. In: Proceedings of the 38th Annual ACM Symposium on
Theory of Computing, STOC 2006, pp. 71–78. ACM Press, New York (2006)

8. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs
(extended abstract). In: Proceedings of the 29th Annual Symposium on Founda-
tions of Computer Science, FoCS 1988, pp. 328–337. IEEE Computer Society Press,
Los Alamitos (1988)

9. Emerson, E.A., Lei, C.-L.: Modalities for model checking: Branching time strikes
back. In: Conference Record of the 12th Annual ACM Symposium on Principles of
Programming Languages, POPL 1985, pp. 84–96. ACM Press, New York (1985)

10. Gale, D., Stewart, F.M.: Infinite games with perfect information. In: Contributions
to the Theory of Games II. Annals of Mathematical Studies, vol. 28, pp. 245–266.
Princeton University Press, Princeton (1953)

11. Hunter, P., Kreutzer, S.: Digraph measures: Kelly decompositions, games, and
orderings. In: Proceedings of the 18th ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2007, pp. 637–644. ACM Press, New York (2007)

12. Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Information
Processing Letters 68(3), 119–124 (1998)

13. Klarlund, N.: Progress measures, immediate determinacy, and a subset construc-
tion for tree automata. In: Proceedings of the 7th Annual IEEE Symposium on
Logic in Computer Science, LICS 1992, pp. 382–393. IEEE Computer Society Press,
Los Alamitos (1992)

14. Martin, D.A.: Borel determinacy. Annals of Mathematics 102, 363–371 (1975)
15. Obdržálek, J.: DAG-width – connectivity measure for directed graphs. In: Proceed-

ings of the 17th ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, pp.
814–821. ACM Press, New York (2006)

16. Obdržálek, J.: Clique-width and parity games. In: Duparc, J., Henzinger, T.A.
(eds.) CSL 2007. LNCS, vol. 4646, pp. 54–68. Springer, Heidelberg (2007)

17. Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge
(1994)

18. Ummels, M.: Rational behaviour and strategy construction in infinite multiplayer
games. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp.
212–223. Springer, Heidelberg (2006)

19. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200(1–2), 135–183 (1998)



Stochastic Games with Lossy Channels

Parosh Aziz Abdulla1, Noomene Ben Henda1, Luca de Alfaro2,
Richard Mayr3, and Sven Sandberg1

1 Uppsala University, Sweden
2 University of California, Santa Cruz, USA

3 NC State University, USA

Abstract. We consider turn-based stochastic games on infinite graphs
induced by game probabilistic lossy channel systems (GPLCS), the game
version of probabilistic lossy channel systems (PLCS). We study games
with Büchi (repeated reachability) objectives and almost-sure winning
conditions. These games are pure memoryless determined and, under the
assumption that the target set is regular, a symbolic representation of
the set of winning states for each player can be effectively constructed.
Thus, turn-based stochastic games on GPLCS are decidable. This gener-
alizes the decidability result for PLCS-induced Markov decision processes
in [10].

1 Introduction

Background. It is natural to model a reactive system as a 2-player game between
the “controller” or player 0, who makes nondeterministic choices of the system,
and the “environment” or player 1, who provides malicious inputs to the system.
In this model, each state belongs to one of the players, who selects an outgoing
transition that determines the next state. Starting in some initial state, the
players jointly construct an infinite sequence of states called a run. The winning
condition is specified as a predicate on runs. Verifying properties of the system
corresponds to finding the winner of the game, where the winning condition
depends on the property to check.

Systems that have a probabilistic component give rise to stochastic games.
These are games where some states belong to “player random”, who selects the
next state according to a pre-defined probability distribution. Randomness is
useful to model stochastic loss of information such as unreliable communication,
as well as randomized algorithms.

Previous work on algorithms for stochastic games has mostly focused on finite-
state systems (see, e.g., [26,14,16,12]). However, many systems can only be faith-
fully modeled using infinitely many states. A lot of recent research has therefore
been concerned with probabilistic infinite-state models. Probabilistic versions
of lossy channel systems [11,7] and pushdown automata [18,19] use unbounded
queues and stacks, respectively. Probabilistic Petri nets [4] model systems with
an unbounded number of processes which run in parallel. The recently intro-
duced Noisy Turing machines [8] model computer memories subject to stochastic
errors.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 35–49, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



36 P.A. Abdulla et al.

We consider infinite-state stochastic games induced by lossy channel systems
(LCS) [1,10,24]. LCS consist of finite-state control parts and unbounded chan-
nels (queues), i.e., automata where transitions are labeled by send and receive
operations. They can model communication protocols such as the sliding window
protocol and HDLC [6], where the communication medium is unreliable. In this
paper, we introduce game probabilistic LCS (GPLCS). GPLCS are probabilistic
in the sense that the channels may randomly lose messages; and they are games
in the sense that the next transition in the control part is selected by one of the
players, depending on the current state. We can use player 0 to model nondeter-
minism in a communication protocol and player 1 to model a malicious cracker
trying to break the protocol.

We consider Büchi (repeated reachability) objectives with almost-sure win-
ning conditions. In other words, the goal for player 0 is to guarantee that with
probability one, a given set of target states is visited infinitely many times. In the
example of the malicious cracker, this corresponds to checking that the system
can respond in such a way that it always eventually returns to a “ready state”
with probability 1, no matter how the cracker acts.

Related Work. The work closest to ours is [9] where the authors consider the
same model. They study GPLCS with simple reachability objectives and differ-
ent winning conditions; i.e., almost-sure, with positive probability, etc. However,
they do not consider GPLCS with Büchi objectives. Previous work on LCS con-
siders several types of nondeterministic [20,6] and probabilistic systems (Markov
chains) [22,1,24], as well as Markov decision processes [10] and non-stochastic
games [3]. Of these, the work most closely related to ours is [10], which concerns
LCS where messages are lost probabilistically and control transitions are taken
nondeterministically (i.e., PLCS-induced Markov decision processes). This is a
special case of our model in the sense that the game is restricted to only one
player. It was shown in [10] that such 1-player Büchi-games are decidable (while
coBüchi-games are undecidable). We generalize the decidability result of [10]
for PLCS-induced Markov decision processes to 2-player stochastic games. The
scheme presented in [10] also differs from ours in the fact that the target set is
defined by control-states, while we consider more general regular sets. Thus our
result is not a direct generalization of [10].

Stochastic games on infinite-state probabilistic recursive systems were studied
in [18,19]. However, recursive systems are incomparable to the GPLCS model
considered in this paper.

In [3], a model similar to ours is studied. It differs in that the system is not
probabilistic, and instead one of the players controls message losses. For this
model, [3] proves that safety games are decidable and parity games (which gen-
eralize Büchi games) are undecidable.

Two-player concurrent (but non-stochastic) games with infinite state spaces
are studied in [17]. Concurrency means that the two players independently and
simultaneously select actions, and the next state is determined by the combina-
tion of the actions and the current state. [17] describes schemes for computing
winning sets and strategies for Büchi games (as well as reachability games and



Stochastic Games with Lossy Channels 37

some more general games). The article characterizes classes of games where the
schemes terminate, based on properties of certain equivalence relations on states.
However, this approach does not work for GPLCS (not even for non-probabilistic
LCS), since LCS do not satisfy the necessary preconditions. Unlike the process
classes studied in [17], LCS do not have a finite index w.r.t. the equivalences
considered in [17].

In [28], a scheme is given to solve non-stochastic parity games on infinite state
spaces of arbitrary cardinality. The parity condition is more general than the
Büchi condition, so the scheme applies to Büchi games too. However, stochastic
games are not considered. In fact, if our scheme is instantiated on the special
case of non-stochastic Büchi games, it will coincide with the scheme in [28].
Furthermore, [28] does not suggest any class of infinite-state systems for which
termination is guaranteed.

Our algorithms are related to the algorithms presented in [16,15] for solving
concurrent games with respect to probability-1 ω-regular properties. However,
the proofs in [16,15] apply only to finite-state games; we will need to develop
entirely new arguments to prove the correctness of our approach for GPLCS.

Contribution. We prove that the almost-sure Büchi-GPLCS problem is decid-
able: we can compute symbolic representations of the winning sets and winning
strategies for both players. The symbolic representations are based on regular
expressions, and the result holds under the assumption that the set of target
states is also regular. The winning strategies are pure memoryless, i.e., the next
state depends only on the current state and is not selected probabilistically.
Our result generalizes the decidability result for PLCS-induced Markov decision
processes (i.e., 1-player games) in [10].

We now give an overview of our method. First, we give a scheme to compute
the winning sets in simple reachability games, where the goal of player 0 is to
reach a regular set of target states with a positive probability. Next, we give
a scheme to construct the winning sets in almost-sure Büchi-games, using the
scheme for reachability games as a subroutine. We prove that for GPLCS, both
schemes terminate and we show how to instantiate them using regular state
languages to effectively represent the infinite sets.

Outline. In Section 2, we define stochastic games. In Section 3, we describe
GPLCS and show how they induce an infinite-state stochastic game. In Section 4,
we show how to construct the winning sets in simple reachability games on
GPLCS. In Section 5, we show how to construct the winning sets in Büchi
games on GPLCS. Due to space limitations, some proofs are omitted and can
be found in [2]; however, the intuitions are given in the main text.

2 Preliminaries

We use R,N for the real and natural numbers. If X is a set then X∗ and Xω

denote the sets of finite and infinite sequences over X , respectively. The empty
word is denoted by ε. For partial functions f, g : X ⇀ Y which have the same



38 P.A. Abdulla et al.

value when both are defined, we use f ∪ g to denote the smallest function that
extends both f and g.

A probability distribution on a countable set X is a function f : X → [0, 1]
such that

∑
x∈X f(x) = 1. We will sometimes need to pick an arbitrary element

from a set. To simplify the exposition, we let select(X) denote an arbitrary but
fixed element of the nonempty set X .

Turn-Based Stochastic Games. A turn-based stochastic game (or a game for
short) is a tuple G = (S, S0, S1, SR,−→, P ) where:

– S is a countable set of states, partitioned into the pairwise disjoint sets of
random states SR, states S0 of player 0, and states S1 of player 1.

– −→ ⊆ S × S is the transition relation. We write s−→s′ to denote that
(s, s′) ∈ −→. Let Post(s) := {s′ : s−→s′} denote the set of successors
of s and extend it to sets Q ⊆ S of states by Post(Q) :=

⋃
s∈Q Post(s).

We assume that games are deadlock-free, i.e., each state has at least one
successor (∀s ∈ S.Post(s) �= ∅).

– The probability function P : SR × S → [0, 1] satisfies both ∀s ∈ SR.∀s′ ∈
S.(P (s, s′) > 0 ⇐⇒ s−→s′) and ∀s ∈ SR.∑s′∈S P (s, s′) = 1. Note that for
any given state s ∈ SR, P (s, ·) is a probability distribution over Post(s).

For any set Q ⊆ S of states, we let Q := S−Q denote its complement. We define
[Q]R := Q ∩ SR, [Q]0 := Q ∩ S0, [Q]1 := Q ∩ S1, and [Q]01 := Q ∩ (S0 ∪ S1).

A run ρ in a game is an infinite sequence s0s1 · · · of states s.t. si−→si+1 for
all i ≥ 0. We use ρ(i) to denote si. A path π is a finite sequence s0 · · · sn of states
s.t. si−→si+1 for all i : 0 ≤ i < n. For any Q ⊆ S, we use ΠQ to denote the set
of paths that end in some state in Q.

Informally, the two players 0 and 1 construct an infinite run s0s1 · · · , starting
in some initial state s0 ∈ S. Player 0 chooses the successor si+1 if si ∈ S0,
player 1 chooses si+1 if si ∈ S1, and the successor si+1 is chosen randomly
according to the probability distribution P (si, ·) if si ∈ SR.

Strategies. For σ ∈ {0, 1}, a strategy of player σ is a partial function fσ : ΠSσ ⇀
S s.t. sn−→fσ(s0 · · · sn) if fσ is defined. The strategy fσ prescribes for player σ
the next move, given the current prefix of the run. We say that fσ is total if it
is defined for every π ∈ ΠSσ .

A strategy fσ of player σ is memoryless if the next state only depends on
the current state and not on the previous history of the game, i.e., for any
path s0 · · · sk ∈ ΠSσ , we have fσ(s0 · · · sk) = fσ(sk). A memoryless strategy of
player σ can be regarded simply as a function fσ : Sσ ⇀ S, such that s−→fσ(s)
whenever fσ is defined.

Consider two total strategies f0 and f1 of player 0 and 1. A path π = s0 · · · sn
in G is said to be consistent with f0 and f1 if the following holds. For all 0 ≤
i ≤ n− 1, si ∈ S0 implies f0(s0 · · · si) = si+1 and si ∈ S1 implies f1(s0 · · · si) =
si+1. We define similarly consistent runs. In the sequel, whenever the strategies
are known from the context, we assume that all mentioned paths and runs are
consistent with them.



Stochastic Games with Lossy Channels 39

Probability Measures. We use the standard definition of the probability mea-
sure for a set of runs [23]. First, we define the measure for total strategies,
and then extend it to general (partial) strategies. We let Ωs = sSω denote
the set of all infinite sequences of states starting from s. Consider a game
G = (S, S0, S1, SR,−→, P ), an initial state s, and total strategies f0 and f1

of player 0 and 1. For a measurable set R ⊆ Ωs, we define Psf0,f1(R) to be
the probability measure of R under the strategies f0, f1. It is well-known that
this measure is well-defined [23]. When the state s is known from context, we
drop the superscript and write Pf0,f1(R). For (partial) strategies f0 and f1 of
player 0 and 1, ∼ ∈ {<,≤,=,≥, >}, and any measurable set R ⊆ Ωs, we define
Psf0,f1(R) ∼ x iff Psg0,g1(R) ∼ x for all total strategies g0 and g1 which are exten-
sions of f0 resp. f1. For a single strategy fσ of player σ, we define Psfσ (R) ∼ x
iff Psf0,f1(R) ∼ x for all strategies f1−σ of player (1− σ). If Pf0,f1(R) = 1, then
we say that R happens almost surely under the strategies f0, f1.

We assume familiarity with the syntax and semantics of the temporal logic
CTL* (see, e.g., [13]). We use (s |= ϕ) to denote the set of runs starting in s that
satisfy the CTL* path-formula ϕ. We use Pf0,f1(s |= ϕ) to denote the measure
of (s |= ϕ) under strategies f0, f1, i.e., we measure the probability of those runs
which start in s, are consistent with f0, f1 and satisfy the path-formula ϕ. This
set is measurable by [27].

Traps. For a player σ ∈ {0, 1} and a set Q ⊆ S of states, we say that Q is
a σ-trap if player (1− σ) has a strategy that forces all runs to stay inside Q.
Formally, all successors of states in [Q]σ∪[Q]R are in Q and every state in [Q]1−σ

has some successor in Q.

Winning Conditions. Our main result considers Büchi objectives: player 0 wants
to visit a given set F ⊆ S infinitely many times. We consider games with almost-
sure winning condition. More precisely, given an initial state s ∈ S, we want to
check whether player 0 has a strategy f0 such that for all strategies f1 of player 1,
it is the case that Pf0,f1(s |= ��F ) = 1.

Determinacy and Solvability. A game is said to be determined if, from every
state, one of the players has a strategy that wins against all strategies of the
opponent. Notice that determinacy implies that there is a partitioning W 0,W 1

of S, such that players 0 and 1 have winning strategies from W 0 and W 1, re-
spectively. A game is memoryless determined if it is determined and there are
memoryless winning strategies. By solving a determined game, we mean giving
an algorithm to check, for any state s ∈ S, whether s ∈ W 0 or s ∈ W 1.

3 Game Probabilistic Lossy Channel Systems (GPLCS)

A lossy channel system (LCS) [6] is a finite-state automaton equipped with a
finite number of unbounded FIFO channels (queues). The system is lossy in the
sense that, before and after a transition, an arbitrary number of messages may



40 P.A. Abdulla et al.

be lost from the channels. Probabilistic lossy channel system (PLCS) [11,7,4] de-
fine a probabilistic model for message losses. The standard model assumes that
each individual message is lost independently with probability λ in every step,
where λ > 0 is a parameter of the system.

We consider game probabilistic LCS (GPLCS), the 2-player game extension of
PLCS. The set of states is partitioned into states belonging to player 0 and 1, and
the transitions are controlled by the players. The player who owns the current
control-state chooses an enabled outgoing transition. However, message losses
occur randomly. While our definition of GPLCS (see below) assumes the same
model of independent message loss as in [11,7,4], this is not necessary for our re-
sults. We only require the existence of a finite attractor, in the sense described in
Section 5. In fact, many other probabilistic message loss models (e.g., burst dis-
turbances, where groups of messages in close proximity are more often affected)
satisfy this attractor condition [5].

The players have conflicting goals: player 0 wants to reach a given set of states
infinitely often, and player 1 wants to visit it at most finitely many times. This
is called a Büchi objective.

Formally, a GPLCS is a tuple L =
(
S, S0, S1, C, M, T, λ

)
where S is a finite set

of control-states partitioned into states S0, S1 of player 0 and 1; C is a finite set
of channels, M is a finite set called the message alphabet, T is a set of transitions,
and 0 < λ < 1 is the loss rate. Each transition t ∈ T is of the form s

op−→ s′,
where s, s′ ∈ S and op is one of c!m (send message m ∈ M in channel c ∈ C), c?m
(receive message m from channel c), or nop (do not modify the channels).

A GPLCS L =
(
S, S0, S1, C, M, T, λ

)
induces a game G = (S, S0, S1, SR,−→, P ),

where S = S×(M∗)C×{0, 1}. That is, each state in the game consists of a control-
state, a function that assigns a finite word over the message alphabet to each
channel, and one of the symbols 0 or 1. States where the last symbol is 0 are
random: SR = S× (M∗)C ×{0}. The other states belong to a player according to
the control-state: Sσ = Sσ × (M∗)C × {1}. Transitions out of states of the form
s = (s, x, 1) model transitions in T leaving state s. On the other hand, transitions
leaving states of the form s = (s, x, 0) model message losses.

If s = (s, x, 1), s′ = (s′, x′, 0) ∈ S, then there is a transition s−→s′ in the
game iff one of the following holds:

– s
nop−→ s′ and x = x′;

– s
c!m−→ s′, x′(c) = x(c)m, and for all c′ ∈ C− {c}, x′(c′) = x(c′);

– s
c?m−→ s′, x(c) = mx′(c), and for all c′ ∈ C− {c}, x′(c′) = x(c′).

To model message losses, we introduce the subword ordering� on words: x � y iff
x is a word obtained by removing zero or more messages from arbitrary positions
of y. This is extended to channel states x, x′ : C → M∗ by x � x′ iff x(c) � x′(c)
for all channels c ∈ C, and to game states s = (s, x, i), s′ = (s′, x′, i′) ∈ S by
s � s′ iff s = s′, x � x′, and i = i′. For any s = (s, x, 0) and any x′ such that
x′ � x, there is a transition s−→(s, x′, 1). The probability of random transitions
is given by P ((s, x, 0), (s, x′, 1)) = a ·λb · (1−λ)c, where a is the number of ways



Stochastic Games with Lossy Channels 41

to obtain x′ by losing messages in x, b is the total number of messages lost in all
channels, and c is the total number of messages in all channels of x′.

Every state on the form (s, x, 0) has at least one successor, namely (s, x, 1). If
a state (s, x, 1) does not have successors according to the rules above, then we
add a transition (s, x, 1)−→(s, x, 0), to avoid deadlocks. Intuitively, this means
that the run stays in the same control state and only loses messages.

Observe that the game is bipartite: every transition goes from a player state
to a probabilistic state or the other way around, i.e., −→ ⊆ ((S0 ∪ S1)× SR) ∪
(SR × (S0 ∪ S1)).

Problem Statement. We study the problem Büchi-GPLCS, defined as follows.
The game graph is induced by a GPLCS; and we consider the almost-sure Büchi
objective: player 0 wants to ensure that a given target set is visited infinitely
often with probability one.

4 Reachability Games on GPLCS

We consider the reachability game where the winning condition is to reach a
given target set with positive probability. Reachability games on GPLCS (with
this and various other winning conditions) have been studied in [9], where the
winning sets are expressed in terms of the target set in a variant of the μ-calculus.

Nevertheless, we give below a more ad-hoc scheme for computing the winning
set, in order to keep the article self-contained. Furthermore, many definitions and
some more detailed results on the structure of the winning sets and strategies
will be needed in the following section on Büchi-games.

We give a scheme for characterizing sets of states from which a player can,
with a positive probability, force the game into a given set of target states, while
preserving a given invariant. We show that the scheme always terminates for
GPLCS, and then give a symbolic representation of the winning sets, based on
regular languages. The symbolic representation is valid under the assumption
that the set of target states is also regular. Finally, we show correctness of the
construction by describing the winning strategies. In fact, we show that if a
player can win, then a memoryless strategy is sufficient to win.

Scheme. Fix a game G = (S, S0, S1, SR,−→, P ) and two sets of states F, I ⊆ S,
called the target and invariant sets, respectively. For a player σ ∈ {0, 1}, we give
a scheme for constructing the set Forceσ(I, F ) of states where player σ can, with
a positive probability, force the run to eventually reach F , while also preserving
the property that the run will always remain within I (i.e., states outside I are
not visited before F ).

The idea of the scheme is to perform backward reachability analysis using the
basic operations Preσ and P̃re

σ
, defined as follows. Given σ ∈ {0, 1, R} and a

set Q ⊆ S of states, let Preσ(Q) := {s ∈ Sσ : ∃s′ ∈ Q.s−→s′} denote the set
of states of player σ where it is possible to go to Q in the next step. Define
P̃re

σ
(Q) := Sσ − Preσ(Q) to be the set of states where player σ cannot avoid

going to Q in the next step.



42 P.A. Abdulla et al.

The construction is inductive. For σ ∈ {0, 1}, we define two sequences
{Di}i∈N : D0 ⊆ D1 ⊆ · · · and {Ei}i∈N : E0 ⊆ E1 ⊆ · · · of sets of states
as follows:

D0 := [F ]R ∩ I E0 := [F ]01 ∩ I
Di+1 :=

(
Di ∪ PreR(Ei)

) ∩ I Ei+1 :=
(
Ei ∪ Preσ(Di) ∪ P̃re

1−σ
(Di)

)
∩ I.

We let Forceσ(I, F ) :=
⋃
i≥0Di ∪ Ei. Intuitively, the set Di contains those

states in SR from which player σ can force the game to F with positive prob-
ability (while remaining in I) within i steps. The set Ei contains the states in
S0 ∪ S1 satisfying the same property1.

Below, we instantiate the above described scheme for GPLCS. In the rest
of this section, we consider the game G = (S, S0, S1, SR,−→, P ) induced by a
GPLCS L =

(
S, S0, S1, C, M, T, λ

)
.

Termination. We recall from [21] that the relation � is a well quasi-ordering,
i.e., for each infinite sequence w0, w1, w2, . . . of words over M, there are j < k such
that wj � wk. A set U ⊆ M∗ is said to be upward closed if w ∈ U implies that
w′ ∈ U for each w′ � w. A channel language L is a mapping from C to 2M

∗
. In

other words, L maps each channel to a language over M. We say that L is upward
closed resp. regular if L(c) is upward closed resp. regular for each c ∈ C. A state
language L is of the form (s, L′) where s ∈ S and L′ is a channel language. We say
that L is upward closed (regular) if L′ is upward closed (regular). We generalize
the definitions above to finite sets M of state languages by M upward closed
(regular) if each L ∈ M is upward closed (regular). The well quasi-ordering
property carries directly over from words (mentioned earlier) to our finite sets
of state languages (when required to hold for every control-state).

To prove termination of the scheme, we show that setsDi are “almost” upward
closed in the sense that they are closely related to other sets which are upward
closed. More precisely, we consider the sequence D′0 ⊆ D′1 ⊆ · · · of sets of states
where D′0 := [F ]R and D′i+1 := PreR(Ei). Since PreR(Q) is upward closed for
any set Q of states, it follows that D′i is upward closed for each i > 0. Upward
closedness, together with the well quasi-ordering of �, implies that there is a j
such that D′j = D′j+1 = · · · . We also observe that Di = (D′0 ∪D′1 ∪ · · · ∪D′i)∩ I.
This means that Dj+1 = Dj and consequently Ej+2 = Ej+1. Hence, we have
the following lemma.

Lemma 1. For any GPLCS and sets F, I ⊆ S of states, the sequences {Di}i∈N

and {Ei}i∈N converge.

Forms of Winning Sets. The above termination argument relied on upward
closedness of the sets D′i. In fact, we can derive more information about the
structure of the winning sets for games induced by GPLCS. Assuming that the
1 It is possible to define only one sequence, not separating player states from random

states. In later proofs, it will be technically convenient to have the sequence {Di}i∈N

defined, since {Di}i∈N has properties not shared by {Ei}i∈N.



Stochastic Games with Lossy Channels 43

sets F and I are regular state languages, it follows that each set Di or Ei is also
a regular state language. This follows from the fact that regular state languages
are closed under the application of Preσ and the Boolean operations. Since the
scheme terminates (by Lemma 1), the winning set Q := Forceσ(I, F ) is also
regular. Furthermore, if I and F are upward closed then [Q]R is also upward
closed. This follows from the fact that PreR(Q) is upward closed for any set Q
and that the class of upward closed sets is closed under intersection and union.
We summarize these properties as properties (1)–(2) of the following lemma.
(Properties (2)–(5) are not needed until the next section).

Lemma 2. Let Q = Forceσ(I, F ). Then:

(1) If F and I are regular then Q is regular.
(2) If F and I are upward closed then [Q]R is upward closed.
(3) Let s ∈ I − Q. If s ∈ Sσ ∪ SR, then Post(s) ⊆ Q. If s ∈ S1−σ, then

Post(s) ∩Q �= ∅.
(4) Forceσ(Q,F ) = Q.
(5) Forceσ(S, F ) is a σ-trap.

Correctness. First, we describe a partial memoryless winning strategy
forceσ(I, F ) for player σ from the states in [Forceσ(I, F )]σ. Recall that a memo-
ryless strategy can simply be described as a function that assigns one successor
to each state. We define a sequence e0 ⊆ e1 ⊆ e2 ⊆ · · · of strategies for player σ.
Let e0 := ∅ and define ei+1 as follows:

– If ei(s) is defined then ei+1(s) := ei(s).
– If ei(s) is undefined and s∈ [Ei+1 − Ei]σ then ei+1(s) :=select(Post(s) ∩Di).

Let forceσ(I, F ) :=
⋃
i≥0 ei. From the definitions, we derive the following lemma.

Lemma 3. In any GPLCS, for any I, F ⊆ S, σ ∈ {0, 1}, and s ∈ Forceσ(I, F ),
there exists an εs > 0 such that Pforceσ(I,F )(s |= �F ) ≥ εs.2

Proof. We recall the construction of the force sets and use induction on i to prove
that ∀i ∈ N and for any state s ∈ (Di ∪Ei) the following holds: There exists an
εs > 0 such that for any extension fσ of the forceσ(I, F ) and any strategy f1−σ

of the opponent, Pforceσ(I,F ),f1−σ (s |= �Q) ≥ εs. Observe that ∀i.Di ∩Ei = ∅.
The base case s ∈ (D0 ∪ E0) ⊆ F holds trivially (take εs := 1).
Now assume that the claim holds for i ∈ N. Consider s to be in Di+1 ∪Ei+1.

In the case s ∈ (Di ∪ Ei) the claim already holds by induction hypothesis. The
remaining cases are described below.

Case s ∈ Di+1 −Di: This implies that s ∈ PreR(Ei). Thus there is a state
s′ ∈ Ei such that s−→s′ and εs′ > 0 by induction hypothesis. We define
εs := P (s, s′) ∗ εs′ > 0.

2 The weaker statement, i.e., Pforceσ(I,F )(s |= �F ) > 0, suffices for correctness. How-
ever, this stronger version is needed in the sequel.



44 P.A. Abdulla et al.

Case s ∈ Ei+1 − Ei: This implies one of the following two cases.
– If s ∈ [S]σ then s ∈ Preσ(Di). Thus there is a state s′ ∈ Di which is

chosen as successor state to s by the forceσ(I, F ) strategy, i.e., s−→s′
and s′ = forceσ(I, F )(s). By induction hypothesis εs′ > 0. So we obtain
εs := εforceσ(I,Q)(s) = εs′ > 0.

– If s ∈ [S]1−σ then s ∈ P̃re
1−σ

(Di). It follows that Post(s) ⊆ Di. The
set Post(s) is finite, since the system is finitely branching. Furthermore,
by induction hypothesis, εs′ > 0 for all s′ ∈ Di. Thus we obtain εs :=
mins′∈Post(s)(εs′) > 0.

The main result follows since for any s ∈ Forceσ(I,Q), there exists a finite
minimal i ∈ N such that s ∈ (Di ∪ Ei). ��
In the sequel, we use Forceσ(F ) to denote Forceσ(S, F ), i.e., we do not mention
I in case it is equal to S. We define forceσ(F ) analogously.

5 Büchi-Games on GPLCS

In this section we consider the Büchi-GPLCS problem. We give a scheme for
characterizing the winning sets in almost-sure Büchi games, and then instanti-
ate the scheme for GPLCS. In a similar manner to Section 4, we first show that
the scheme always terminates for GPLCS, and then describe the winning sets
using a symbolic representation based on regular languages. Again, the symbolic
representation is valid under the assumption that the set of final states is also reg-
ular. We show the correctness of the construction by describing the memoryless
winning strategies. Observe that this implies that Büchi-GPLCS are memo-
ryless determined and solvable. Throughout this section, we fix a GPLCS L =(
S, S0, S1, C, M, T, λ

)
and the induced game G = (S, S0, S1, SR,−→, P ). Take F ⊆

S; we consider the Büchi goal for player 0 consisting in visiting F infinitely often.

Scheme. We define a sequence {Xi}i∈N : X0 ⊆ X1 ⊆ · · · of sets of states which
are winning for player 1 with a positive probability. In the definition of {Xi}i∈N,
we use an auxiliary sequence {Mi}i∈N : M0 ⊇ M1 ⊇ · · · of sets of states. The
construction is inductive where X0 := ∅, M0 := S and

Mi+1 := Force0(Xi, F ) Xi+1 := Force1(Mi+1)

for each i ≥ 0. Intuitively, the set Xi consists of states “already classified as
losing for player 0”. We add states iteratively to these sets. We define Mi+1

such that Mi+1 is the set of states where player 0 cannot reach F with positive
probability while staying always in Xi. Finally, we claim that the winning states
for player 0 are given by W 0 :=

⋂
i≥0Mi, and thus complementarily, the winning

states for player 1 are given by W 1 := W 0 =
⋃
i≥0Xi.

This property holds by the definitions and will be used later in this section.

Lemma 4. X0 ⊆M1 ⊆ X1 ⊆M2 ⊆ X2 ⊆ · · ·
The following lemma shows that this construction terminates.



Stochastic Games with Lossy Channels 45

Lemma 5. The sequence {Xi}i∈N converges for any set F ⊆ S of states.

Proof. (Sketch; details in [2]) Consider the sequence in Lemma 4. We perform
the proof in four steps; namely, we show that (i) there is a K such that [XK ]R =
[XK+1]R; (ii) XK+1 = MK+1; (iii) MK+1 = MK+2; (iv) XK+1 = XK+2.

(i) We show that each [Xi]
R is upward closed, using induction on i. The

base case is trivial since X0 = ∅. For the induction step we let Y :=
[
Mi+1

]01 ∪ [Xi]
R. Using the definitions of Xi, Xi+1, and Mi+1, it can be

shown that Xi+1 = Force1(Y ). Since [Xi]
R is upward closed by the induc-

tion hypothesis it follows by Lemma 2(2) that [Xi+1]R is upward closed.
From this and well quasi-ordering of �, we get ∃K. [XK ]R = [XK+1]R. We
will use K in the rest of the analysis below.

(ii) From Lemma 4 and the fact that [XK ]R = [XK+1]R, we know that [XK ]R =
[
MK+1

]R
=[XK+1]R. This is used to show that PreR(MK+1),Pre1(MK+1),

P̃re
0
(MK+1) ⊆ MK+1 which by the definition of XK+1 implies XK+1 ⊆

MK+1. Hence, XK+1 = MK+1, by Lemma 4.
(iii) Since MK+2 = Force0(XK+1, F ) and XK+1 = MK+1, we have that

MK+2 = Force0(MK+1, F ). From Lemma 2(4) and the fact that MK+1 =
Force0(XK , F ), it follows that MK+2 = MK+1.

(iv) XK+2 = Force1(MK+2) = Force1(MK+1) = XK+1. ��

Forms of Winning Sets. From Lemma 2(1), it follows that if F is regular then
each Xi and Mi is regular. From Lemma 5 we get the following:

Lemma 6. If F is regular then W 0 and W 1 are regular.

Winning Strategy for Player 1. We define a sequence {xi}i∈N of strategies for
player 1, such that x0 ⊆ x1 ⊆ · · · . For each i, the strategy xi : [Xi]

1 → S is
memoryless and winning for player 1 from states in Xi. The sequence {xi}i∈N

converges to a memoryless strategy w1 :=
⋃
i∈N

xi for player 1 which is winning
from states in W 1. We define the sequence using induction on i. We will also
motivate why the strategy is winning for player 1. Define x0 := ∅. For all i ≥ 0, we
define xi+1(s) by case analysis. By Lemma 4, we know that Xi ⊆Mi+1 ⊆ Xi+1.
There are three cases, reflecting the membership of s in these three sets:

(i) If s ∈ Xi then xi+1(s) := xi(s). Here, we know by the induction hypothesis
that a winning strategy xi for player 1 has already been defined in s.

(ii) If s ∈ Mi+1 −Xi then xi+1(s) := select(Post(s) ∩Mi+1). The idea is that
player 1 uses a strategy which guarantees that any run either (A) will stay
in Mi+1 −Xi; or (B) will eventually enter Xi. In (A), player 1 wins since
Mi+1−Xi does not have any states in F by the definition of Mi+1. In (B),
player 1 wins by the induction hypothesis.

More precisely, we observe that player 1 selects a successor of s which
belongs to Mi+1. Such a successor exists by the following argument. First,
observe that (by set operations) Mi+1−Xi = Xi−Mi+1. The result follows



46 P.A. Abdulla et al.

by instantiating Lemma 2(3) with I = Xi and Q = Mi+1. By the same
argument, for each s′ ∈ [

Mi+1

]R ∪ [
Mi+1

]0
, all successors of s′ belong to

Mi+1. This guarantees that either (A) or (B) holds.
(iii) If s ∈ Xi+1 −Mi+1 then xi+1(s) := force1(Mi+1)(s). Since, by definition,

Xi+1 = Force1(Mi+1), player 1 can use force1(Mi+1) to take the game with
a positive probability to Mi+1 (Lemma 3). From there, player 1 wins as
described above.

Now, consider a state s ∈ W 1. By definition, we know that s ∈ Xi for some
i ≥ 0. This means that w1 = xi is winning for player 1 from s according to the
above argument. Hence:

Lemma 7. For each s ∈W 1, Pw1(s |= ¬��F ) > 0.

Winning Strategy for Player 0. In this paragraph, we define a memoryless strat-
egy w0 and we prove that it is winning.

To describe how w0 is defined, we rely on two auxiliary results on games
induced by GPLCS. First, we recall the definition of an attractor. A set A ⊆ S
is called an attractor if P(s |= �A) = 1 for any s ∈ S. In other words, from any
state s ∈ S, A is almost surely visited regardless of the strategies of the players.
The following result was shown in [11,7,4] for probabilistic LCS, where moves in
the control graph are taken probabilistically instead of by two competing players.
The results straightforwardly generalize to GPLCS.

Lemma 8. Let L =
(
S, S0, S1, C, M, T, λ

)
be a GPLCS and let G be the game

induced by L. The set A = (S× εεε× {0, 1}) is a finite attractor in G.
The second result follows from Lemma 8 and Lemma 3 as described below.

Lemma 9. Let G = (S, S0, S1, SR,−→, P ) be a game induced by a GPLCS. For
any Q, I ⊆ S and σ ∈ {0, 1}, the following holds: For any s ∈ Forceσ(I,Q),
Pforceσ(I,Q)(s |= �Forceσ(I,Q) ∧ ¬��Q) = 0.

Proof. Given Q, I ⊆ S, σ ∈ {0, 1}, and s ∈ Forceσ(I,Q). We assume that
player σ uses an extension fσ of the forceσ(I,Q) strategy and player (1− σ) uses
a strategy f1−σ. By Lemma 8, the game has a finite attractor A. By definition
of the attractor, almost all runs must visit A infinitely often. We define A′ :=
A ∩ Forceσ(I,Q).

If A′ = ∅, then Pfσ,f1−σ (s |= �Forceσ(I,Q) ∧ ¬��Q) ≤ Pfσ,f1−σ (s |=
¬�A) = 0, where the inequality follows from the assumption and the equal-
ity from the definition of an attractor.

Consider now the case where A′ �= ∅. By Lemma 3 and finiteness of A (and
thus A′), we obtain that ε := mins′∈A′(ε′s) > 0. Almost every run in (s |=
�Forceσ(I,Q)∧¬��Q) must visit A′ infinitely many times, but Q only finitely
many times (and thus have an infinite suffix which never visits Q). Thus,

Pfσ,f1−σ(s |= �Forceσ(I,Q) ∧ ¬��Q) ≤ (1 − ε)∞ = 0. (1)

Therefore Pforceσ(I,Q)(s |= �Forceσ(I,Q) ∧ ¬��Q) = 0. ��



Stochastic Games with Lossy Channels 47

Remark 1. Observe that the inequality (1) holds for any strategy f1−σ of the
opponent and any extension fσ of the forceσ(I,Q) strategy. In particular, we
do not require that f1−σ is finite-memory. It is possible that f1−σ acts quite
differently after each of the (possibly infinitely many) visits to the same state
in the attractor. The crucial fact is that the quantity εs > 0 in Lemma 3 is
independent of f1−σ.

Now we are ready to describe the winning strategy w0 for player 0. The idea of
the strategy w0 is to keep the run within a force set of F with probability 1. This
implies that F will be visited infinitely often with probability 1, by Lemma 9.
In order to do that, player 0 exploits certain properties of W 0: By Lemmas 5
and 4, there is an i such that Xi = Mi+1 = Xi+1. From this and the defini-
tion of W 0 it follows that W 0 = Xi = Mi+1. From W 0 = Xi and Lemma 2(5)
it follows that W 0 is a 1-trap. From Mi+1 = Force0(Xi, F ), it follows that
W 0 = Force0(W 0, F ). We define w0 on any state s ∈ [

W 0
]0 as follows:

– If s ∈ W 0 − F then w0(s) := force0(W 0, F )(s). This definition is possible
since W 0 = Force0(W 0, F ).

– If s ∈W 0 ∩F then w0(s) := select(Post(s) ∩W 0). This is possible since W 0

is a 1-trap, and therefore s has at least one successor in W 0.

Consider any run ρ starting from a state inside W 0, where player 0 follows w0.
Since W 0 is a 1-trap, ρ will always remain inside W 0 regardless of the strategy
of player 1. This implies that Pw0(s |= �W 0) = 1. Furthermore, by Lemma 9
and the definitions of w0 and W 0, it follows that Pw0(s |= �W 0 ∧ ¬��F ) = 0,
which gives the following lemma:

Lemma 10. For any s∈W 0, Pw0(s |= ��F )=1.

Determinacy and Solvability. Memoryless determinacy of almost-sure Büchi-
GPLCS follows from Lemmas 7 and 10. By Lemma 6, for any state s ∈ S, we
can check whether s ∈ W 0 or s ∈ W 1. This gives the main result:

Theorem 1. Büchi-GPLCS are memoryless determined and solvable, for any
regular target set F .

6 Conclusions and Future Work

We have introduced GPLCS and given a terminating algorithm to compute
symbolic representations of the winning sets in almost-sure Büchi-GPLCS. The
strategies are memoryless, and our construction implies that the games we con-
sider are memoryless determined.

The problem of deciding GPLCS games is not primitive recursive, since it is
harder than the control-state reachability problem for LCS, which was shown to
be non-primitive recursive by Schnoebelen in [25]. (For a given LCS and control-
state q we can construct a GPLCS by defining S0 = ∅, S1 = S, making the
state q absorbing and defining F as all configurations where the control-state is



48 P.A. Abdulla et al.

not q. Then player 1 has a winning strategy in the GPLCS iff control-state q is
reachable in the LCS.)

There are five immediate extensions of our result. (1) Each winning strat-
egy w0, w1 wins against any mixed strategy of the opponent (i.e. the opponent
chooses a probability distribution over the successor states rather than one of
them). (2) Our algorithm is easily adapted to almost-sure reachability-GPLCS.
This is achieved by replacing all outgoing transitions of states in F by self-loops,
or, equivalently, replacing the definition of Xi+1 by Xi+1 := Force1(F ,Mi+1).
(3) Our algorithm can be modified to construct symbolic representations of the
winning strategies. A strategy is represented as a finite set {Li, L′i}ni=0 of pairs of
regular state languages, where all Li are disjoint. Such a finite set represents the
strategy f0 where f0(s) = select(L′i) if s ∈ Li. (4) We can extend the scheme to
concurrent games, where the two players move simultaneously, by an appropri-
ate extension of the Pre operator, as in [15]. (5) The algorithm also works when
there are probabilistic control states in the GPLCS (see, e.g., [1] for definitions),
as well as control states owned by the players and probabilistic message losses.

References

1. Abdulla, P.A., Baier, C., Iyer, P., Jonsson, B.: Reasoning about probabilistic lossy
channel systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp.
320–333. Springer, Heidelberg (2000)

2. Abdulla, P.A., Ben Henda, N., Mayr, R., Sandberg, S., de Alfaro, L.: Stochas-
tic games with lossy channels. Technical Report 2007-005, Dept. of Information
Technology, Uppsala University, Sweden (February 2007)

3. Abdulla, P.A., Bouajjani, A., d’Orso, J.: Deciding monotonic games. In: Baaz, M.,
Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 1–14. Springer, Heidelberg
(2003)

4. Abdulla, P.A., Henda, N.B., Mayr, R.: Verifying infinite Markov chains with a
finite attractor or the global coarseness property. In: Proc. LICS 2005, 21st IEEE
Int. Symp. on Logic in Computer Science, pp. 127–136 (2005)

5. Abdulla, P.A., Henda, N.B., Mayr, R., Sandberg, S.: Eager Markov chains. In: Graf,
S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 24–38. Springer, Heidelberg
(2006)

6. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Informa-
tion and Computation 127(2), 91–101 (1996)

7. Abdulla, P.A., Rabinovich, A.: Verification of probabilistic systems with faulty
communication. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 39–
53. Springer, Heidelberg (2003)

8. Asarin, E., Collins, P.: Noisy Turing machines. In: Caires, L., Italiano, G.F., Mon-
teiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp.
1031–1042. Springer, Heidelberg (2005)

9. Baier, C., Bertrand, N., Schnoebelen, P.: On computing fixpoints in well-structured
regular model checking, with applications to lossy channel systems. In: Hermann,
M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 347–361.
Springer, Heidelberg (2006)

10. Baier, C., Bertrand, N., Schnoebelen, P.: Verifying nondeterministic probabilistic
channel systems against ω-regular linear-time properties. ACM Transactions on
Comp. Logic (to appear, 2006)



Stochastic Games with Lossy Channels 49

11. Bertrand, N., Schnoebelen, P.: Model checking lossy channels systems is probably
decidable. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620, pp. 120–135.
Springer, Heidelberg (2003)

12. Chatterjee, K., Jurdziński, M., Henzinger, T.: Simple stochastic parity games. In:
Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 100–113. Springer,
Heidelberg (2003)

13. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

14. Condon, A.: The complexity of stochastic games. Information and Computa-
tion 96(2), 203–224 (1992)

15. de Alfaro, L., Henzinger, T.: Concurrent omega-regular games. In: Proc. LICS
2000, 16th IEEE Int. Symp. on Logic in Computer Science, pp. 141–156. IEEE
Computer Society Press, Los Alamitos (2000)

16. de Alfaro, L., Henzinger, T., Kupferman, O.: Concurrent reachability games. In:
Proc. 39th Annual Symp. Foundations of Computer Science, pp. 564–575. IEEE
Computer Society Press, Los Alamitos (1998)

17. de Alfaro, L., Henzinger, T., Majumdar, R.: Symbolic algorithms for infinite-state
games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp.
536–550. Springer, Heidelberg (2001)

18. Esparza, J., Kučera, A., Mayr, R.: Model checking probabilistic pushdown au-
tomata. In: Proc. LICS 2004, 20th IEEE Int. Symp. on Logic in Computer Science,
pp. 12–21 (2004)

19. Etessami, K., Yannakakis, M.: Recursive Markov decision processes and recursive
stochastic games. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 891–903. Springer, Heidelberg (2005)

20. Finkel, A.: Decidability of the termination problem for completely specified proto-
cols. Distributed Computing 7(3), 129–135 (1994)

21. Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc.
(3) 2(7), 326–336 (1952)

22. Iyer, P., Narasimha, M.: Probabilistic lossy channel systems. In: Bidoit, M.,
Dauchet, M. (eds.) TAPSOFT 1997. LNCS, vol. 1214, pp. 667–681. Springer, Hei-
delberg (1997)

23. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov Chains. D Van Nostad Co.
(1966)

24. Rabinovich, A.: Quantitative analysis of probabilistic lossy channel systems. In:
Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003.
LNCS, vol. 2719, pp. 1008–1021. Springer, Heidelberg (2003)

25. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive com-
plexity. Information Processing Letters 83(5), 251–261 (2002)

26. Shapley, L.S.: Stochastic games. Proceedings of the National Academy of Sci-
ences 39(10), 1095–1100 (1953)

27. Vardi, M.: Automatic verification of probabilistic concurrent finite-state programs.
In: Proc. FOCS 1985, 26th Annual Symp. Foundations of Computer Science, pp.
327–338 (1985)

28. Zielonka, W.: Infinite games on finitely coloured graphs with applications to au-
tomata on infinite trees. Theoretical Computer Science 200, 135–183 (1998)



Simulation Hemi-metrics between Infinite-State
Stochastic Games�

Jean Goubault-Larrecq

LSV, ENS Cachan, CNRS, INRIA Futurs 61, av. du président-Wilson, 94230 Cachan, France
goubault@lsv.ens-cachan.fr

Abstract. We investigate simulation hemi-metrics between certain forms of
turn-based 2 1

2 -player games played on infinite topological spaces. They have
the desirable property of bounding the difference in payoffs obtained by start-
ing from one state or another. All constructions are described as the special case
of a unique one, which we call the Hutchinson hemi-metric on various spaces of
continuous previsions. We show a directed form of the Kantorovich-Rubinstein
theorem, stating that the Hutchinson hemi-metric on spaces of continuous proba-
bility valuations coincides with a notion of trans-shipment hemi-metric. We also
identify the class of so-called sym-compact spaces as the right class of topologi-
cal spaces, where the theory works out as nicely as possible.

1 Introduction

Given two (stochastic) transition systems, or two states in the same transition system,
we may evaluate whether have the same behavior by testing whether they are bisimilar.
A finer measure of closeness is obtained by computing distances between states, so
that two states are at distance 0 if and only they are bisimilar—so-called bisimulation
distances. This was pioneered for (infinite-state) labeled Markov processes (LMP) by
Desharnais et al. [7]. One may see LMPs as turn-based stochastic 1 1

2 -player games,
where, at each state, one player chooses a probability distribution p on states by its
label, and the half-player picks the next state by drawing at random along p.

In [11] we explored so-called ludic transition systems, which are essentially LMPs,
where the probability p is replaced by a so-called continuous game ν. When ν is a belief
function, this naturally models a form of turn-based 2 1

2 -player games, where player 1
chooses a continuous game ν, then some state is drawn at random along ν—the lat-
ter step being the same thing as a half-player picking at random some set from which
player 2 picks non-deterministically, demonically. In such transition systems, a simple
modal logic (that of Desharnais et al. [5], plus binary disjunction) was shown to char-
acterize similarity. It is a natural question to extend the notion of bisimulation distance
to “simulation metrics”. This is what we do here, in the general case of (infinite-state)
topological spaces and slightly more general prevision transition systems.

Related Work. Bisimulation metrics were explored for LMPs by Desharnais et al. [7],
then extended to (finite state) systems mixing probabilistic and non-deterministic choice

� Partially supported by the INRIA ARC ProNoBis.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 50–65, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

goubault@lsv.ens-cachan.fr


Simulation Hemi-metrics between Infinite-State Stochastic Games 51

[6]. An elegant treatment of such was given by Ferns et al. [8], which also applies to in-
finite (measurable) state spaces. We use the topological (instead of measurable) setting
of [11,12], which, as we hope to demonstrate again here, has a certain elegance. No-
tions of simulation rather than bisimulation are more natural here, and correspondingly,
we shall develop hemi-metrics rather than metrics. Hemi-metrics were also considered
recently by de Alfaro et al. [4]. Their paper is both more general than ours (we only
consider certain forms of turn-based games) and less general (they only consider finite
state spaces). Our last theorem (Theorem 7, non trivial) is that our hemi-metric coin-
cides, in the finite case, with their a posteriori and a priori metrics in the demonic, resp.
angelic case, respectively.

The main object of study of this paper is a hemi-metric we call the Hutchinson hemi-
metric dH. It turns out to have many good properties, including a duality theorem à la
Kantorovich-Rubinstein, and the fact that it generalizes several variants of the Haus-
dorff metric. The closest notion we know of is due to Baddeley [2], whose generalized
Hausdorff metric generalizes the Levy-Prohorov metric on spaces of measures instead
of the Hutchinson (or Kantorovich) metric. Also, Baddeley only considers T2 topolog-
ical spaces, despite admitting that it appears that the T0 case is more interesting (which
this paper should confirm). Our theorems relating dH to variants of the Hausdorff metric
in the case of classical powerdomains (Section 4) confirm those of Bonsangue et al. [3].

Outline. We need quite a lot of preliminaries. Well-known facts are recapped in Sec-
tion 2, while the basic theory of hemi-metric spaces is laid out in Section 3. We de-
velop Hausdorff-like hemi-metrics on classical powerdomains for demonic, angelic,
and chaotic non-determinism in Section 4, so as to appreciate how dH will generalize
them later on. Section 5 introduces prevision transition systems, a natural generaliza-
tion of our ludic transition systems [11], then defines dH, and shows how a hemi-metric
computed from dH bounds errors in payoff evaluations. Section 6 is the core of this
paper, and develops the mathematical theory of dH. We conclude in Section 7.

2 Preliminaries

We work on general topological spacesX , and let O(X) be the lattice of open subsets of
X . The notion of continuous valuation is a natural alternative to the more well-known
notion of measure [16]. Taking the conventions of [11], a game ν on X is a map from
O(X) to R+ such that ν(∅) = 0, and which is monotonic, i.e., such that ν(U) ≤ ν(V )
whenever U ⊆ V ; ν is modular (resp., convex, resp. concave) iff ν(U ∪ V ) + ν(U ∩
V ) = ν(U) + ν(V ) (resp.≥, resp. ≤) for all opens U, V . The terms supermodular and
submodular are sometimes used in lieu of convex, concave. A modular game is called
a valuation. A game ν is continuous iff ν(

⋃
i∈I Ui) = supi∈I ν(Ui) for every directed

family (Ui)i∈I of opens. A (sub)probability valuation ν is additionally such that ν is
(sub)normalized, i.e., that ν(X) = 1 (≤ 1). Continuous valuations extend to measures
on the Borel σ-algebra of the topology, under mild assumptions [19], showing that the
two notions are close.

Each topological space X has a specialization quasi-ordering ≤: x ≤ y iff every
open containing x also contains y. X is T0 iff ≤ is an ordering, i.e., x ≤ y and y ≤ x
imply x = y. X is T2 iff for any two distinct elements x and y, there are disjoint open



52 J. Goubault-Larrecq

subsets containing x and y respectively. A subsetQ ofX is compact iff one may extract
a finite subcover from every open cover of Q, and is saturated iff it is upward-closed.

Each poset can be equipped with the so-called Scott topology, whose opens are the
upward-closed subsets U such that, for every directed family (xi)i∈I that has a least
upper bound (a.k.a., a sup) in U , then xi ∈ U for some i ∈ I already. The specialization
ordering of the Scott topology is always the original ordering ≤. A cpo is a poset in
which every directed family has a sup. A function f from the poset X to the poset Y is
Scott-continuous iff it is continuous for the respective Scott topologies, or equivalently,
iff f is monotonic and for every directed family (xi)i∈I of elements of X with a sup
x ∈ X , the directed family (f(xi))i∈I has f(x) as sup. See [1,10,23] for background
material on domain theory and topology.

Let 〈X → R+〉 be the space of bounded continuous function from X to R+,
with the Scott topology of the pointwise ordering; R+ is equipped with its Scott-
topology, whose non-trivial opens are the open intervals (r,+∞), r ∈ R+. The Cho-
quet integral of f ∈ 〈X → R+〉 along the continuous game ν, which we shall write
C
∫
x∈X f(x)dν, is the Riemann integral

∫ +∞
0 ν(f−1(t,+∞))dt. There is a more com-

plex formula defining the Choquet integral of functions f taking values in R rather than
R+ [11], but we shall only note that this can be alternatively defined by C

∫
x∈X f(x)dν =

−aν(X) + C
∫
x∈X(f(x) + a)dν for some arbitrary a ≥ − infx∈X f(x). The Choquet

integral is Scott-continuous and linear in ν, Scott-continuous and positively homoge-
neous ( C

∫
x∈X af(x)dν = a C

∫
x∈X f(x)dν for every a ∈ R+) in f . It is not in general

additive in f (i.e., C
∫
x∈X(f(x) + g(x))dν is not in general equal to C

∫
x∈X f(x)dν +

C
∫
x∈X g(x)dν), unless ν is a valuation. The Dirac valuation δx maps each open U to 1

if x ∈ U , to 0 otherwise: then C
∫
x′∈X f(x′)dδx = f(x). (See [11].)

For each continuous map f : X → Y , and game ν on X , the image, a.k.a. push-
forward game f [ν] on Y is defined by f [ν](V ) = ν(f−1(V )) for every V ∈ O(Y ).
Then f [ν] is convex, concave, modular, continuous respectively as soon as ν is, and
C
∫
y∈Y g(y)df [ν] = C

∫
x∈X g(f(x))dν. For any game ν on X × Y , call π1[ν] and π2[ν]

the first and second marginals of ν, where π1 and π2 are the first and second projections
onto X , resp. Y .

A continuous previsionF on a topological space (e.g., a cpo)X is a Scott-continuous
map from 〈X → R+〉 to R+ such that F (af) = aF (f) for every a ∈ R+ (posi-
tive homogeneity). (The term “prevision” refers to Walley [32], as explained in [12].)
A prevision F is lower iff F (h + h′) ≥ F (h) + F (h′) for every h, h′, upper iff
F (h + h′) ≤ F (h) + F (h′) for every h, h′, linear iff F (h + h′) = F (h) + F (h′),
normalized iff F (a + h) = a + F (h) for every function h and constant a ∈ R+,
subnormalized iff F (a + h) ≤ a + F (h) for every h and constant a. The integration
functional αC, defined as αC(ν) = λh ∈ 〈X → R+〉 · C

∫
x∈X h(x)dν, maps con-

tinuous (resp., and convex, concave, modular) games to continuous previsions (resp.,
lower, upper, linear). Conversely, define γC(F ) for any prevision F as the game such
that γC(F )(U) = F (χU ) for each open U , where χU is the (continuous) map sending
every x ∈ U to 1, and every x ∈ U to 0. Then αC and γC define an isomorphism be-
tween the space V1(X) (resp., V≤1(X)) of continuous (sub)probability valuations and
the space P�1 (X) (resp., P�≤1(X)) of continuous (sub)normalized linear previsions,
both ordered pointwise. (See [12].) We shall write

�
P1(X), resp.

�
P1(X), the space



Simulation Hemi-metrics between Infinite-State Stochastic Games 53

of all normalized continuous lower (resp., upper) previsions on X . We write F1(X)
the space of all normalized forks, where a fork is a pair (F−, F+) of a continuous
lower prevision F− and a continuous upper prevision F+ satisfying Walley’s condition
F−(h + h′) ≤ F−(h) + F+(h′) ≤ F+(h + h′), for every h, h′ ∈ 〈X → R+〉; a
fork is normalized iff both F− and F+ are. While

�
P1(X) (resp.,

�
P1(X)) is an

adequate model of mixed probabilistic and demonic (resp., angelic) non-deterministic
choice, F1(X) is one of probabilistic and chaotic non-deterministic choice [12,15].

On spaces of previsions, the weak topology plays an important role [12,15]. On
any space of previsions Y over X , this is the least one containing the subbasic opens
[f > r] = {F ∈ Y |F (f) > r}, f ∈ 〈X → R+〉, r ∈ R. Similarly, the weak
topology on spaces Y of games on X [11] has as subbasic open sets [f > r] = {ν ∈
Y | C∫

x∈X f(x)dν > r}. This coincides with the product topology, whose subbasic open
sets are [U > r] = [χU > r] = {ν ∈ Y |ν(U) > r}, for each open subset U of X .

A hemi-metric d on X is a function from X × X to R+ = R+ ∪ {+∞} such
that d(x, x) = 0 for every x ∈ X , and satisfying the triangular inequality: d(x, y) ≤
d(x, z) + d(z, y) for every x, y, z ∈ X . A metric also satisfies d(x, y) = 0 ⇒ x = y,
and enjoys symmetry: d(x, y) = d(y, x). Names vary in the literature: Hemi-metrics
(not taking the value +∞) are called directed metrics by de Alfaro et al. [4], semi-
metrics by Nachbin [25] (although semi-metrics tend to refer nowadays to symmetric
hemi-metrics), generalized metrics by Bonsangue et al. [3], and just metrics by Law-
vere [22]. Quasi-metrics refer to T0 hemi-metrics. Here are a few basic properties [13,
Appendix A]. Every hemi-metric d induces a topology Od, the smallest containing all
open balls Bdx,<ε = {y ∈ X |d(x, y) < ε}. As in the metric case, a subset U is open
in Od iff for every x ∈ U , some open ball Bdx,<ε is contained in U . The specializa-
tion quasi-ordering of Od is such that x ≤ y iff d(x, y) = 0. So Od is a T0 topology
iff d(x, y) = d(y, x) = 0 implies x = y; and if d is a metric, then Od is T2. The
canonical hemi-metric on R, or R+, is dR defined by dR(s, t) = max(s − t, 0) (on
R+, we agree that dR(+∞,+∞) = 0). For any two hemi-metric spaces X , Y with
hemi-metrics d and d′ respectively, and any function f : X → Y , f is continuous at
x ∈ X iff for every ε > 0, there is an η > 0 such that for any x′ ∈ X such that
d(x, x′) < η, d′(f(x), f(x′)) < ε. It is equivalent to require that f is continuous, in
the usual topological sense (the inverse image of every open is open), or to require that
f be continuous at every element x of X . For any c ∈ R+, say that f is c-Lipschitz
iff d(f(x), f(x′)) ≤ cd(x, x′) for all x, x′ ∈ X . 1-Lipschitz functions are sometimes
called non-expansive. We say that f is Lipschitz iff f is c-Lipschitz for some c. Every
Lipschitz function is continuous.

The hemi-metric d is bounded iff there is fixed real a such that d(x, x′) ≤ a for all
x, x′ ∈ X . Every hemi-metric is topologically equivalent to a bounded one, i.e., the two
hemi-metrics generate the same topology. The opposite hemi-metric dop is defined by
dop(x, y) = d(y, x), and the symmetrized hemi-metric dsym is defined by dsym(x, y) =
max(d(x, y), d(y, x)). The specialization quasi-ordering of dop is the opposite ≥ of
that, ≤, of d (x ≥ y iff y ≤ x). We shall write Xop, Xsym the space X equipped with
dop, resp. dsym. The topology of Xsym is finer (has at least as many opens as) those of
X andXop. A hemi-metric spaceX is totally bounded [21] iff for every ε > 0, there are
finitely many elements x1, . . . , xn of X such that X =

⋃n
i=1 B

dsym

xi,<ε. (Beware: dsym,



54 J. Goubault-Larrecq

not d.) We call X sym-compact iff X is T0 and Xsym is compact. Clearly, every sym-
compact space is totally bounded. The converse fails, e.g., X = {1/(n + 1)|n ∈ N}
with the usual metric on the reals is totally bounded but not (sym-)compact.

3 More on Hemi-metric Spaces

There is an obvious duality in hemi-metric spaces: replace d by dop, getting Xop. Then
(Xop)op = X . Another well-known duality, this time at the topological level, is given
by Nachbin’s (1948) theory of stably compact spaces and compact pospaces (see Jung
[17] for an excellent introduction). Theorem 1 below shows that these two dualities
match, in a precise sense, on sym-compact spaces.

First recall the theory of stably compact spaces [17]. A topological space X is stably
compact iffX is T0, well-filtered (for every filtered family (Qi)i∈I of compact saturated
subsets, for every open U , if

⋂
i∈I Qi ⊆ U then Qi ⊆ U already for some i ∈ I),

locally compact (whenever x ∈ U with U open, there is a compact saturated subset Q
such that x ∈ int(Q) ⊆ Q ⊆ U , where int(Q) denotes the interior ofQ), coherent (the
intersection of any two compact saturated subsets is again so) and compact. When X is
stably compact, the de Groot dualXd ofX is justX , only with the so-called cocompact
topology, whose opens are the cocompacts, i.e., subsets of the form X \Q, Q compact
saturated subset of X . Well-filternedness, coherence, and compactness imply that this
is indeed a topology. ThenXd is again stably compact, andXdd = X . The theory relies
on the study of the patch space Xpatch, which is X with the patch topology (the least
collection of opens containing both the topology of X and that of Xd). If X is stably
compact, then Xpatch is compact, T2, and the graph of ≤ is closed in X ×X , where ≤
is the specialization quasi-ordering of X : (Xpatch,≤) is a so-called compact pospace.
Conversely, whenever (X ′,≤) is a compact pospace, the upper space X ofX ′, defined
as X ′ with the topology consisting of just the ≤-upward-closed open subsets of X ′, is
stably compact, has≤ as specialization ordering, andXpatch = X ′. Also,Xd is exactly
the lower space of X ′, i.e., X ′ with the topology consisting of ≤-downward-closed
opens of X ′. This duality extends to the hemi-metric case:

Theorem 1. Let X be a T0 hemi-metric space. Then X is sym-compact iff: (∗)X , qua
topological space, is stably compact, and Xop, qua topological space, coincides with
Xd. In this case, (Xsym,≤) is exactly the patch space of X , where ≤ is the specializa-
tion ordering of X .

Proof. As noticed by an anonymous referee, this is well-known. We quote her/his argu-
ment. Using results by Kopperman [20] (to which we also refer for missing definitions),
a T0 hemi-metric space can be viewed as a special case of a T0-quasi-uniform space X ,
just looking at the entourages determined by the ε > 0. The associated bitopological
space (X, τ, τ∗) is pairwise T2. Kopperman’s Theorem 3.7 then says thatX is compact
with respect to the associated symmetric topology iff (X, τ, τ∗) is joincompact. Join-
compact here means that the τ∗-closed sets are τ -compact and that the τ -closed sets
are τ∗-compact. And in Proposition 3.4(d) it is stated that in this situation τ and τ∗

are mutual de Groot duals. A slightly more elementary proof can also be found in [13,
Theorem 1]. ��



Simulation Hemi-metrics between Infinite-State Stochastic Games 55

We shall also use the function d2 : X × X → R+ defined by d2((x, y), (x′, y′)) =
d(x, x′)+ d(y′, y), where d is a hemi-metric on X . It is easy to check that d2 is a hemi-
metric on X × X . Let X(2) be X × X , equipped with d2. It is also easy to see that
the hemi-metric d is a 1-Lipschitz function from X(2) to R+. However, the topology of
X(2) is not the product topology of X ×X in general [13, Appendix B]:

Lemma 1. Let X be equipped with a bounded hemi-metric d. The topology of X(2) is
that of the topological product X ×Xop. Its specialization ordering is ≤ × ≥.

Let d(x,A), the distance of x to a subsetA ofX be infy∈A d(x, y), taking this to be +∞
when A is empty. The function x �→ d(x,A) is 1-Lipschitz in the sense that d(x,A) ≤
d(x, y) + d(y,A), and d(x,A) = 0 iff x is in the topological closure cl(A) of A [13,
Appendix C]. Using this, we may define the thinningUd,−(ε) = {x ∈ X |d(x,X \U) >
ε} of the open set U by ε: Ud,−(ε) is open, contained in U , grows larger as ε decreases,
and for any family of non-negative reals (εi)i∈I having 0 as inf, Ud,−(εi) is a directed
family of opens whose union is U . We may also define the thickening of a subset A of

X as Ad,+(ε) =
⋃
x∈AB

d
x,<ε. This is always open. Moreover, (Ud,−(ε))

d,+(ε) ⊆ U for
every open U and ε > 0.

4 Hemi-metrics on Powerdomains

It is standard to model non-determinism in domain theory through the use of power-
domains [1, Section 6.2]. The Smyth powerdomain Q(X) is the set of all non-empty
compact saturated subsets Q of X , ordered by reverse inclusion ⊇. This models de-
monic non-determinism,Q ∈ Q(X) denoting the set of all possible choices of elements
x ∈ Q. (The theory of [11] probably enlightens what “demonic” means, in the sense
that the choice of x ∈ Q is resolved by an adversary who picks some x ∈ Q that pleases
you least. Mathematically,Q gives rise to the so-called unanimity game uQ, which maps
each U containing Q to 1, every other to 0; assuming you get f(x) dollars if you pick
x, your expected payoff will be the Choquet integral of f(x) along uQ, which is exactly
minx∈Q f(x)—i.e., you will get the least possible amount of money.) The Hoare pow-
erdomain H(X) is the set of all non-empty closed subsets F of X , ordered by ordinary
inclusion ⊆, and models angelic non-determinism. (Each such F gives rise to the ex-
ample game eF , mapping each open U that meets F to 1, every other open to 0; it is an
easy exercise that the Choquet integral of f(x) along eF equals supx∈F f(x)—i.e., you
get the most money you can.) The Plotkin powerdomain P�(X) is the set of all lenses
L, where a lens is the non-empty intersection of a compact saturated subset Q (which
we can take equal to the upward-closure ↑ L of L) and a closed subset F (which we
can take equal to the topological closure cl(L) of L) of X , ordered by the topological
Egli-Milner ordering�EM, defined by L �EM L′ iff ↑ L ⊇ ↑ L′ and cl(L) ⊆ cl(L′).

These powerdomains are endowed with their Scott topology. More relevant topolo-
gies when X is a general topological space, not just a cpo, are the Vietoris topologies.
Let QV (X) be Q(X) with the smallest topology containing the basic opens �U =
{Q ∈ Q(X)|Q ⊆ U}, U open in X , HV (X) be H(X) with the smallest topology con-
taining the subbasic opens �U = {F ∈ H(X)|F ∩ U = ∅}, and P�V (X) be P�(X)
with the smallest topology containing both �U = {L|L ⊆ U} and �U = {L|L∩U =



56 J. Goubault-Larrecq

∅}. When X is well-filtered and locally compact, QV (X) = Q(X). When X is a con-
tinuous cpo, HV (X) = H(X), and when X is also coherent, then P�V (X) = P�(X).

We observe that, when X is a (nice enough) hemi-metric space, all these spaces can
be equipped with hemi-metrics that generate the Vietoris topology. These hemi-metrics
will be asymmetric variants of the well-known Hausdorff metric on T2 spaces. We shall
see later that these are special cases of the Hutchinson hemi-metric, to be defined later.
Proofs can be found in [13, Appendix D].

Proposition 1. LetX be equipped with the hemi-metric d. The Hausdorff-Smyth hemi-
metric dQ on Q(X) is defined by dQ(Q,Q′) = supx′∈Q′ infx∈Q d(x, x′). The bounds
are attained, i.e., dQ(Q,Q′) = maxx′∈Q′ minx∈Q d(x, x′). This defines a hemi-metric,
whose topology is exactly the Vietoris topology of QV (X).

Observe also that the function ηQ : X → QV (X) mapping x to ↑ x = {y ∈ X |x ≤ y},
is an isometric embedding, namely dQ(ηQ(x), ηQ(x′)) = d(x, x′).

The case of the Hoare powerdomain requires us to assume d to be totally bounded.

Proposition 2. Let X be equipped with the hemi-metric d. The Hausdorff-Hoare hemi-
metric dH on H(X) is defined by dH(F, F ′) = supx∈F infx′∈F ′ d(x, x′). This defines
a hemi-metric, whose topology is finer than the Vietoris topology of HV (X), and coin-
cides with it as soon as d is totally bounded.

Proposition 3. Let X be equipped with the hemi-metric d. The Hausdorff hemi-metric
dP� on P�(X) is defined by dP�(L,L′) = max(supx′∈L′ infx∈L d(x, x′), supx∈L
infx′∈L′ d(x, x′)). Then dP�(L,L′) = max(dQ(↑ L, ↑ L′), dH(cl(L), cl(L′))), dP� is
a hemi-metric, its topology is finer than the Vietoris topology of P�V (X), and coincides
with it as soon as d is totally bounded.

Then ηH : X → HV (X), which sends x to ↓ x = cl({x}) = {y ∈ X |y ≤ x}, and
ηP� : X → P�V (X), which sends x to (↑ x, ↓ x), are isometric embeddings.

5 Prevision Transition Systems

In [11], we defined ludic transition systems on the state spaceX by analogy with LMPs,
as collections σ of maps σ�, where � ranges over a finite set L of labels, where σ� :
X → J≤1 wk(X), and where J≤1 wk(X) is the space of all continuous subnormalized
games over the topological space X , with the weak topology. Intuitively, the system
evolves from state x ∈ X by letting one player P pick a label � ∈ L, then the other
player draws a next state at random along the continuous game σ�(x). When σ�(x)
is a belief function, results from [11] imply that this second player can be thought of
as one half-player picking some Q ∈ Q(X) at random, along some subprobability
distribution (σ�(x))

∗, then the second player C picking the next state in a (demonically)
non-deterministic way out of Q.

Since any continuous game ν can be seen as a continuous prevision, namely αC(ν),
we only define a larger class of transition systems by considering prevision transi-
tion systems (PrTS), which are collections π of maps π� : X → P≤1 wk(X), where
P≤1 wk(X) is the space of all continuous subnormalized previsions on X , with the



Simulation Hemi-metrics between Infinite-State Stochastic Games 57

weak topology. This lends itself to a sleeker mathematical treatment. Call a PrTS lower,
upper, normalized, when π�(x) is so, for every � ∈ L and x ∈ X . When π�(x) is nor-
malized, for every h ∈ 〈X → R〉 (i.e., with values in R, not R+), write π̂�(x)(h) =
π�(x)(h+ a)− a ∈ R, for any constant a ≥ − infx∈X h(x). Then π̂�(x) is monotonic,
positively homogeneous, normalized, Scott-continuous, and lower, resp. upper when
π�(x) is [15]. Note the similarity with the Choquet integral of functions in 〈X → R〉.

As in the theory of Markov decision processes and in [11], we may add rewards and
discounts to PrTSes. Imagine P plays according to a finite-state program Π , i.e., an

automaton with internal states q, q′ and transitions q
�−→q′. Let r

q
�−→q′ : X → R be

a family of bounded continuous reward functions: we may think that r
q

�−→q′(x) is the

amount of money P gains if she fires her internal transition q
�−→q′, drawing the next

state y at random along π�(x). Let γ
q

�−→q′ ∈ (0, 1] be a family of so-called discounts.

Define the average payoff, starting from state x when P is in its internal state q, by:

Vq(x) = sup
�,q′/q �−→q′

[
r
q

�−→q′(x) + γ
q

�−→q′ π̂�(x)(Vq′ )
]

(1)

This is obtained from formula (4) of [11] by replacing the mean C
∫
y∈X Vq′(y)dσ�(x),

i.e., αC(σ�(x))(Vq′ ), by the more general term π̂�(x)(Vq′ ). When π is lower and nor-
malized, by [12, Theorem 5], we obtain π�(x)(h) = minG∈CCoeur1(π�(x))G(h) =
min p∈V1(X)

αC(p)≥π�(x)

C
∫
y∈X h(y)dp for all h ∈ 〈X → R+〉. It follows that π̂�(x)(Vq′ ) =

min p∈V1(X)
αC(p)≥π�(x)

C
∫
y∈X Vq′ (y)dp. Intuitively, P plays first, maximizing her gains, then C

picks a distribution p (from some set) to minimize gains, from which a next state y is
chosen at random. So C plays before random choice is effected, contrarily to the case
of ludic transition systems, but as in other proposals [24,28]. As in [11], we have:

Theorem 2. Assume π is standard, i.e., π�(x)(χX) is always either 0 or 1, and the set
{x ∈ X |π�(x)(χX) = 0} of deadlock states is open; or that r

q
�−→q′ (x) ≥ 0 for all

q, �, q′, x ∈ X . Assume also that the rewards are uniformly bounded, i.e., there are
a, b ∈ R with a ≤ r

q
�−→q′(x), γq �−→q′ ≤ b for all q, �, q′, x ∈ X . Then (1) has a unique

uniformly bounded solution in any of the following two cases:

[Finite Horizon] If all paths in Π have bounded length.
[Discount] If there is a constant γ ∈ (0, 1) such that γ

q
�−→q′ ≤ γ for every q, �, q′.

Proof. (Sketch.) This is by induction on the length of paths in the Finite Horizon case.
In the Discount case, let V be the operator that maps the family V = (Vq)q of functions
to the family of functions of x indexed by q defined as the right-hand side of (1). We
let this operator work on families that are uniformly bounded in q, i.e., such that there
is a unique interval [a′, b′] such that Vq(x) ∈ [a′, b′] for all x ∈ X , and internal state q.
Then V is Scott-continuous, and γ-Lipschitz in the sense that V(V )q(x)−V(V ′)q(x) ≤
γ. sup

�,q′/q �−→q′ supy∈X dR(Vq′(y), V ′q′ (y)) ≤ γ. supq′,y∈X dR(Vq′ (y), V ′q′(y)). Since

γ < 1, this implies that any two uniformly bounded solutions V and V ′ to (1) must
be such that z ≤ γz, where z = supq′,y∈X dR(Vq′ (y), V ′q′ (y)), so z = 0, whence



58 J. Goubault-Larrecq

Vq′ ≤ V ′q′ for all q′, and by symmetry, Vq′ = V ′q′ for all q′. Then start with Vq(x)
defined as some constant α ≤ 0 for all q, sufficiently low that V(V )q(x) ≥ Vq(x) for

all q and x ∈ X , i.e., α ≤ min(a,0)
(1−γ) . Then (Vn(V ))n∈N

is an increasing chain, and
converges to some family, since V is Scott-continuous and γ-Lipschitz. Since rewards
are uniformly bounded, it is easy to see that each iterate, as well as the limit, is, too. ��

It is interesting to check whether two states x, y are close to each other in some metric
that would inform us about the difference between the payoffs Vq(x) and Vq(y). Ferns
et al. [8] introduce a nice bisimulation metric, which is computed as a fixed point.
Probabilistic distributions are compared in the so-called Hutchinson (or Kantorovich)
metric, while sets of non-deterministic choices are compared in the Hausdorff metric.

We introduce a similar construction, with the following differences. First, we work
with hemi-metrics instead of metrics, and this will provide us a measure of simulation,
not bisimulation. Second, we generalize the Hutchinson (hemi-)metric to work not just
on probabilities, but on games and even on previsions. This way, the generalized notion
will actually encompass both the Hutchinson and the Hausdorff (hemi-)metrics, as used
in [8]; this encompassment is the first part of our Theorem 7 (see later).

For any two continuous games ν and ν′ on X , define the Hutchinson hemi-metric
dH(ν, ν′) as supf∈〈X→R+〉1 dR

(
C
∫
x∈X f(x)dν, C

∫
x∈X f(x)dν′

)
, where 〈X → R+〉1 is

the space of all bounded 1-Lipschitz functions fromX to R+. The classical Hutchinson
metric uses dsym

R
instead of dR, i.e., would be the sup of

∣
∣C
∫
x∈X f(x)dν−C

∫
x∈X f(x)dν′

∣
∣.

Note that our definition is valid for general continuous games, not just valuations.
We can, in turn, extend this to continuous previsions by dH(F, F ′) = supf∈〈X→R+〉1

dR(F (f), F ′(f)), so that dH(αC(ν), αC(ν′)) = dH(ν, ν′) for every continuous games ν
and ν′; and to forks by dH((F−, F+),(F ′−, F ′+))=max(dH(F−, F ′−), dH(F+, F ′+)).

Let M(X) be the space of all hemi-metrics on X . This is a complete lattice, ordered
pointwise. Define the operator D : M(X) → M(X) that maps d to D(d) defined as
D(d)(x, y) = sup

q,�,q′/q �−→q′(dR(r
q

�−→q′(x), rq �−→q′(y)) + γ
q

�−→q′dH(π�(x), π�(y))).

Let dπ be the least fixed point of D on M(x). We check that dπ bounds the discrepancy
of payoffs Vq(x), Vq(y), starting from states x and y.

Proposition 4. Under the assumptions of Theorem 2, let V = (Vq)q be the unique
solution of (1). Then Vq(x)− Vq(y) ≤ dπ(x, y) for every x, y ∈ X .

Proof. By induction on the length of paths in the Finite Horizon case. We deal with
the more interesting Discount case. When V consists of constant functions, the in-
equality (∗) Vq(x) − Vq(y) ≤ dπ(x, y) for all x, y is clear. If (∗) holds of V , then
we claim it holds for V(V ). Let V ′ = V(V ). Since by (∗) Vq is 1-Lipschitz wrt.
dπ, by definition of dH we obtain π̂�(x)(Vq) − π̂�(y)(Vq) ≤ (dπ)H(π�(x), π�(y)).
Also, V ′q (x) = sup

�,q′/q �−→q′
[
r
q

�−→q′(x) + γ
q

�−→q′ π̂�(x)(Vq′ )
]
. Now r

q
�−→q′(x) +

γ
q

�−→q′ π̂�(x)(Vq′ ) ≤ r
q

�−→q′(y) + dR(r
q

�−→q′(x), rq �−→q′(y)) + γ
q

�−→q′ π̂�(y)(V
′
q′ ) +

γ
q

�−→q′(dπ)H(π�(x), π�(y)) ≤ r
q

�−→q′(y) + γ
q

�−→q′ π̂�(y)(V
′
q′ ) + D(dπ)(x, y). Taking

sups over � and q′, and since D(dπ) = dπ, (∗) holds for V ′. So it holds of Vn(V ) where
V is constant, by induction on n. Hence it holds for the unique solution of (1). ��



Simulation Hemi-metrics between Infinite-State Stochastic Games 59

In other words, the payoff Vq(x) at q cannot exceed Vq(y) by more than dπ(x, y). The
corresponding symmetrized distance dsymπ measures, as usual, the absolute value of the
difference: |Vq(x) − Vq(y)| ≤ dsymπ (x, y).

6 The Hutchinson Hemi-metric on Games, on Previsions

While our notion of Hutchinson hemi-metric extends a classical notion on measures,
we said earlier that the Hutchinson hemi-metric would also extend hemi-metrics on
powerdomains [13, Appendix E]. for a proof):

Proposition 5. For all Q,Q′ ∈ Q(X), dH(uQ, uQ′) = dQ(Q,Q′). For all F, F ′ ∈
H(X), dH(eF , eF ′) = dH(F, F ′). For every L ∈ P�(X), FL = (αC(u↑L), αC(ecl(L)))
is a normalized fork, and for all L,L′ ∈ P�(X), dH(FL, FL′) = dP�(L,L′).

It follows that the maps Q ∈ Q(X) �→ αC(uQ) ∈ �
P1(X), F ∈ H(X) �→ αC(eF ) ∈�

P1(X), and L ∈ P�(X) �→ FL ∈ F1(X) are isometric embeddings, where the
powerdomains are equipped with their respective variant of the Hausdorff hemi-metric,
and spaces of previsions or forks are equipped with the Hutchinson hemi-metric.

We now note that the Hutchinson hemi-metric defines the weak topology on
spaces of continuous normalized games—including V1(X), the space of all continu-
ous probability valuations. This is similar to a famous theorem in measure theory stating
that the Hutchinson metric on the space of all probability measures over a Polish space
has the weak topology (sometimes called the weak∗ or the narrow topology), defined
as above.

Theorem 3. Let X be equipped with a hemi-metric d, Y a space of continuous games
over X . The topology of dH on Y is finer than the weak topology on Y , and coincides
with it when Y is a space of normalized games and d is bounded and totally bounded.

We omit the proof (see [13, Appendix F]). This requires defining Lipschitz approxima-
tions to the indicator functions χU : for every ε > 0, let χεU (x) = min(ε, d(x,X \ U)).
Then (1

εχ
ε
U )

ε>0
is a directed family of Lipschitz functions with χUd,−(ε) ≤ 1

εχ
ε
U ≤

χU—in particular, has χU as sup. The proof also relies on another hemi-metric, the
Levy-Prohorov hemi-metric dLP (imitated from the classical Levy-Prohorov metric
in measure theory), defined by dLP(ν, ν′) = inf{ε > 0|∀U ∈ O(X) · ν(U) ≤
ν′(Ud,+(ε))+ ε}. That dLP is a hemi-metric depends on the fact that (Ud,+(ε))

d,+(ε′) ⊆
Ud,+(ε+ε′) for every open U . We then show that whenever a is an upper bound of d,
then dH(ν, ν′) ≤ (a+1)dLP(ν, ν′), which implies that the topology of dLP is finer than
that of dH, and finally, that when d is totally bounded, the weak topology is even finer
than dLP. So all topologies coincide when d is bounded and totally bounded.

Note also that the map ηV : X → V1(X) sending x to δx is (again) an isometric
embedding, where V1(X) is equipped with dH.

It is well-known that, on Polish spaces, the Hutchinson metric between two probabil-
ity measures p, p′ coincides with the so-called trans-shipment distance, defined as the
least value of C

∫
(x,y)∈X×X d(x, y)dp

2, where p2 ranges over all probability measures
on X × X having p as first marginal and p′ as second marginal. This is the so-called



60 J. Goubault-Larrecq

Kantorovich-Rubinstein Theorem (on compact metric spaces, this was first proved in
[18]). When X is finite, p can be written

∑
x∈X axδx, p′ can be written

∑
y∈X a

′
yδy ,

and p2 =
∑

x,y∈X bxyδ(x,y). Interpreting ax (resp. a′x) as some mass located at x, say-
ing that p2 should have p and p′ as marginals means that we can distribute the mass ax
at x into small chunks bxy (ax =

∑
y∈X bxy) that will each contribute to give total mass

a′y at y (a′y =
∑

x∈X bxy). Then C
∫
(x,y)∈X×X d(x, y)dp

2 is the total amount of work
∑

x,y∈X bxyd(x, y) needed to move these chunks, where moving one unit of mass from
x to y costs d(x, y). The finite case is an easy case of duality in linear programming
(see e.g., van Breugel and Worrell [31]; the subject has a long history [27]).

We prove a similar theorem for continuous probability valuations, in a non-T2 set-
ting. The main difficulty is that the hemi-metric d is continuous, not from X × X to
R+, but from X(2) = X × Xop to R+, so that the integral C

∫
(x,y)∈X×X d(x, y)dp

2 is

in fact meaningless. So p2 should be a valuation on X ×Xop, but its second marginal
would then be a valuation on Xop, while p′ is on X .

We solve the difficulty in two steps. First, we replace p2 by a linear prevision on
X(2)—or rather something looking like it, but taking Lipschitz functions instead of
continuous functions as arguments, which we call LL-previsions (for Linear, Lipschitz).
Formally, an LL-prevision over X is a map k from the space 〈X → R〉L of bounded
Lipschitz functions from X to R that is additive, positively homogeneous, monotonic,
and positive (i.e., if ϕ(x) ≥ 0 for every x, then k(ϕ) ≥ 0). It is normalized iff
k(χX)=1. Next, we shall observe that, in sym-compact spaces, any normalized LL-
prevision on X(2) actually defines a continuous probability valuation p2 on X ×Xop

with the desired properties. We shall require that the problematic second marginal of p
equal the convex-concave dual p′⊥ of p′, see below.

For the first step, let f � g abbreviate the function mapping (x, y) ∈ X(2) to f(x)−
g(y). If f and g are Lipschitz, then so is f � g (with the hemi-metric d2 on X(2)).
Abusing the concept slightly, we shall say that the first marginal of an LL-prevision k on
X(2) is the valuation p onX iff k(f�0) = C

∫
x∈X f(x)dp for every bounded 1-Lipschitz

function f fromX to R+. (Note that, if k were obtained by integrating along p2, and if
we allowed for more general continuous functions f , this would define p as π1[p2].) We
say that the second marginal of k is the valuation p′ onX iff k(0�g) = − C

∫
y∈X g(y)dp

′

for every bounded 1-Lipschitz function g from X to R+. The minus sign copes for
the problem with d mentioned above. Let K(p, p′) be the set of all normalized LL-
previsions on X(2) whose first marginal is p, and whose second marginal is p′:

Theorem 4. Let X be equipped with a bounded hemi-metric d. For every normalized
probability valuations p and p′ on X , dH(p, p′) = mink∈K(p,p′) k(d).

Proof. (Sketch. See [13, Appendix G].) It is easy to see that dH(p, p′) ≤ k(d) for
every k ∈ K(p, p′). Conversely, we must build some k ∈ K(p, p′) such that k(d) =
dH(p, p′). We use an extension theorem on ordered cones akin to the Hahn-Banach The-
orem on normed vector spaces, and derived from Roth’s Sandwich Theorem [26,30],
to extend the monotonic linear functional f : Z → R+, defined by f(f � g) =
C
∫
x∈X f(x)dp − C

∫
y∈X g(y)dp

′ on the convex subset Z = {f � g|f, g ∈ 〈X →
R+〉L, f � g ≥ 0} of the ordered cone C = 〈X(2) → R+〉, to a monotonic linear



Simulation Hemi-metrics between Infinite-State Stochastic Games 61

functional k0 on the whole of C. Then we let k(ϕ) = k0(b + ϕ) − b for any b ≥
− inf(x,y)∈X(2) ϕ(x, y). ��
For the second step, for any continuous probability valuation p′ on a stably compact
space X , define its dual p′⊥ on Xd by p′⊥(X \ Q) = 1 − p′†(Q), for any cocom-
pact X \ Q of X , where p′†(Q) = infU∈O(X),U⊇Q p′(U). Using a result by Tix

[29, Satz 3.4], p′⊥ is a continuous probability valuation on Xd. By [15, Section 5],
in particular Definition 1 and the fact that αC(p′⊥) = αC(p′)⊥, (see also [14, Sec-
tion 6.2.2]), C

∫
y∈Xop g(y)dp′

⊥ = αC(p′)⊥(g) = − inff step function,f≥−g αC(p′)(f) =
− inff step function,f≥−g C

∫
x∈X f(x)dp′. (Step functions are those continuous maps that

only take finitely many values.) The formula simplifies in the case of Lipschitz maps
and sym-compact spaces, observing that −h is Lipschitz from Xop to R+ whenever h
is Lipschitz from X to R+ [13, Appendix H]:

Lemma 2. LetX be sym-compact, and p′ a continuous probability valuation onX . For
any bounded Lipschitz map h from X to R, − C

∫
x∈X h(x)dp′ = C

∫
x∈Xop −h(x)dp′⊥.

Note that this makes sense: the right-hand side, notably, integrates −f , which is Lip-
schitz from Xop to R, while p′⊥ is defined on Xd. But Xop = Xd by Theorem 1.

Theorem 5. Let X be a sym-compact space, with bounded hemi-metric d. For all con-
tinuous probability valuations p, p′ on X , dH(p, p′) = minp2 C

∫
(x,y)∈X(2) d(x, y)dp2,

where p2 ranges over the elements of V1(X(2)) with π1[p2] = p, π2[p2] = p′⊥.

Proof. (Sketch. See [13, Appendix I].) We find p2 from the k gotten in Theorem 4. It
would be tempting to define p2(W ) = k(χW ) for all opens W of X(2), however χW
is continuous but not Lipschitz. Instead, we approximate it by the directed family of
Lipschitz functions 1

εχ
ε
Ud,−(ε) , ε > 0, i.e., we define p2(W ) as supε>0 k(1

εχ
ε
Wd,−(ε)).

The key to the continuity of p2 is the fact that, not only we can write every open subsetU
as the directed union of all opens V � U , where V � U means that there is a saturated
compact Q such that V ⊆ Q ⊆ U (as in every locally compact space [10]), but in fact
that we can choose V of the special form Ud,−(ε), ε > 0. (That Ud,−(ε) � U relies on
Theorem 1: we letQ = {x ∈ X |d(x,X\U) ≥ ε/2}, and realize this is closed inXop =
Xd.) It is then enough to check that p2(

⋃
ε>0 U

d,−(ε)) = supε>0 p
2(Ud,−(ε)). The

hardest part is to show that p2 is modular. Note that 1
εχ

ε
(U∩V )d,−(ε) = min(1

εχ
ε
Ud,−(ε) ,

1
εχ

ε
V d,−(ε)), so that p2(U ∩ V ) = supε>0 k(min

(
1
εχ

ε
Ud,−(ε) ,

1
εχ

ε
V d,−(ε)

)
). For unions,

the best we can say in general is that 1
εχ

ε
(U∪V )d,−(ε) ≥ max

(
1
εχ

ε
Ud,−(ε) ,

1
εχ

ε
V d,−(ε)

)
.

However, becauseX is sym-compact, we can show that for every ε > 0, there is an ε′ >
0 such that for all ε′′>0, 1

ε′′χ
ε′′

(Ud,−(ε)∪V d,−(ε))d,−(ε′′)≤max
(

1
ε′χ

ε′
Ud,−(ε′) ,

1
ε′χ

ε′
V d,−(ε′)

)
,

from which we conclude that p2(U ∪ V ) = supε>0 k(max(1
εχ

ε
Ud,−(ε) ,

1
εχ

ε
V d,−(ε))).

That p2 is modular then follows from the linearity of k and the fact that min(a, b) +
max(a, b) = a+ b. We use Lemma 2 to show that the second marginal of p2 is p′⊥. ��
To characterize dH over spaces of continuous previsions (including other brands of
continuous games), we need a form of the so-called minimax theorem, whose proof,



62 J. Goubault-Larrecq

inspired from Frenk and Kassay [9], can be found in [13, Appendix J]. Say that f :
X × Y → R is convex in X (in the sense of Ky Fan) iff for every α ∈ (0, 1), for every
x1, x2 inX , there is an x0 ∈ X such that for every y ∈ Y , f(x0, y) ≤ αf(x1, y)+(1−
α)f(x2, y). Say that f is concave in Y iff for every α ∈ (0, 1), for every y1, y2 ∈ Y ,
there is a y0 ∈ Y such that for all x ∈ X , f(x, y0) ≥ αf(x, y1) + (1− α)f(x, y2).

Theorem 6 (Minimax). Let X be a non-empty compact space, Y a set. Let f be any
map from X×Y to R, such that λx ∈ X ·f(x, y) is continuous for every y ∈ Y . If f is
convex inX and concave in Y , then supy∈Y infx∈X f(x, y) = infx∈X supy∈Y f(x, y).
Moreover, the inf on the right is attained.

For disambiguation purposes, write dYH the Hutchinson distance on Y , where Y is any
space of previsions. By [12], each F ∈ �

P1(X) has a heart CCoeur1(F ) = {G ∈
P�1 (X)|G ≥ F} ∈ Q(P�1 wk(X)), where P�1 wk(X) is P�1 (X) with the weak topol-
ogy; each F ∈ �

P1(X) has a skin CPeau1(F ) = {G ∈ P�1 (X)|G ≤ F} ∈
H(P�1 wk(X)); and each F = (F−, F+) ∈ F1(X) has a body CCorps1(F ) =
CCoeur1(F−) ∩CPeau1(F+) ∈ P�(P�1 wk(X)). Then:

Theorem 7. Let X be a sym-compact hemi-metric space, with bounded hemi-metric d.
Then CCoeur1 is an isometric embedding of

�
P1(X) (with d

�
P1(X)

H ) into

Q(P�1 wk(X)) (with (dP
�
1 (X)

H )Q); CPeau1 is an isometric embedding of
�

P1(X)

(with d
�

P1(X)
H ) into Q(P�1 wk(X)) (with (dP

�
1 (X)

H )H); and CCorps1 is an isometric

embedding of F1(X) (with dF1(X)
H ) into P�(P�1 wk(X)) (with (dP

�
1 (X)

H )P�).

Proof. By [12, Theorem 5], for every continuous normalized lower prevision F on
X , F (f) = minG∈P�

1 (X),G≥F G(f). Let now F, F ′ ∈ P�1 (X). For short, we let

f range implicitly over 〈X → R+〉1, G and G′ over P�1 (X). Note that (dP
�
1 (X)

H )Q
(CCoeur1(F ), CCoeur1(F ′)) = maxG′≥F ′ minG≥F supf max(G(f) − G′(f), 0).
If F ≤ F ′, then dH(F, F ′) = 0 (using Theorem 3 and the easy fact that the spe-
cialization ordering of the weak topology is ≤), while every G′ ≥ F ′ is also above

F , so (dP
�
1 (X)

H )Q(CCoeur1(F ), CCoeur1(F ′)) = 0. Otherwise, d
�

P1(X)
H (F, F ′) =

supf (F (f) − F ′(f)) = supf (minG≥F G(f) − minG′≥F ′ G′(f)) =
supG′≥F ′ supf minG≥F (G(f) − G′(f)) = supG′≥F ′ minG≥F supf (G(f) − G′(f))

(by Theorem 6) = (dP
�
1 (X)

H )Q(CCoeur1(F ), CCoeur1(F ′)). To check that Theo-

rem 6 applies, we first realize that P�1 (X) equipped with the Hutchinson hemi-metric
has the weak topology (Theorem 3), which is (stably) compact because X is stably
compact (see Proof of Proposition 4, Appendix, in [12, Long version]), and λG, f ·
G(f) − G′(f) is continuous in G for each f (since the inverse image of (t,+∞) is
the weak open [f > G′(f) + t]), convex in 〈X → R+〉 (i.e., in f ; this is because G
and G′ are in fact linear), and is concave in P�1 (X) (i.e., in G; this is in fact again

linear). The argument is similar for d
�

P1(X)
H and (dP

�
1 (X)

H )H, where by [12, Conclud-
ing remarks], for any continuous normalized upper previsionsF and F ′, when F ≤ F ′,



Simulation Hemi-metrics between Infinite-State Stochastic Games 63

d
�

P1(X)
H (F, F ′) = supf (F (f)−F ′(f)) = supf (supG≤F G(f)−supG′≤F ′ G′(f)) =

supG≤F supf infG′≤F ′(G(f)−G′(f)), and (dP
�
1 (X)

H )H(CPeau1(F ), CPeau1(F ′))
= supG≤F infG′≤F ′ supf max(G(f)−G′(f), 0) and we again conclude by Theorem 6.

Finally, the dF1(X)
H and (dP

�
1 (X)

H )P� case is a consequence of the first two cases, and of
Proposition 3. ��

7 Conclusion

We contend that our Hutchinson hemi-metric dH is not only a natural way of building
simulation hemi-metrics through a fixpoint construction à la Ferns et al. [8], allowing
one to bound the error in payoffs when starting from different states; but also that dH

has an elegant mathematical theory: it generalizes all variants of the Hausdorff hemi-
metric on spaces of demonic, angelic, and chaotic non-determinism, and admits a (di-
rected) Kantorovich-Rubinstein theorem in the probability case. Theorem 7 shows that
dH is actually a composition of a Hausdorff-like hemi-metric with a Kantorovich-like

hemi-metric d
P�

1 (X)
H , as in Ferns et al. [8]. Finally, Theorem 7 exhibits d

�
P1(X)

H as the

sup inf sup formula d
�

P1(X)
H (F, F ′) = supG′≥F ′ minG≥F supf dR(G(f), G′(f ′)).

This is akin to the a posteriori directed metric on the finite-state games of de Alfaro
et al. [4, Equation (5)] in the turn-based case. On the other hand, d

�
P1(X)

H is defined
as the sup sup inf formula supf supG≤F infG′≤F ′ dR(G(f), G′(f ′)), which matches
exactly the definition of the a priori directed metric of de Alfaro et al. [4, Equa-
tion (6)]. So the difference between the two seems to be one between demonic and
angelic choice. Further work should identify whether the corresponding simulation
hemi-metrics can be characterized by logics similar to that of op.cit., in the topolog-
ical setting of PrTSes.

Acknowledgments. Thanks to the anonymous referees for their useful comments.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.
(eds.) Handbook of Logic in Computer Science, OUP, vol. 3, pp. 1–168 (1994)

2. Baddeley, A.J.: Hausdorff metric for capacities. Technical Report BS-R9127, CWI, Dept. of
Operations Research, Statistics, and System Theory (1991)

3. Bonsangue, M.M., van Breugel, F., Rutten, J.: Generalized metric spaces: Completion, topol-
ogy, and powerdomains via the Yoneda embedding. Th. Comp. Sci. 193, 1–51 (1998)

4. de Alfaro, L., Majumdar, R., Raman, V., Stoelinga, M.: Game relations and metrics. In: 22nd
IEEE Symp. Logic in Comp. Sci (LICS 2007), pp. 99–108 (2007)

5. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In-
formation and Computation 179(2), 163–193 (2002)

6. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: The metric analogue of weak
bisimulation for probabilistic processes. In: 17th IEEE Symp. Logic in Comp. Sci. (LICS
2002), pp. 413–422 (2002)



64 J. Goubault-Larrecq

7. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov pro-
cesses. Theoretical Computer Science 318, 323–354 (2004)

8. Ferns, N., Panangaden, P., Precup, D.: Metrics for Markov decision processes with infinite
state spaces. In: 21st Annual Conf. on Uncertainty in Artificial Intelligence, Arlington, VA,
pp. 201–208. AUAI Press (2005)

9. Frenk, J., Kassay, G.: Minimax results and finite dimensional separation. E.I. Report 9845/A,
Econometric Institute, Erasmus University Rotterdam (October 1998)

10. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous
lattices and domains. In: Encycl. Mathematics and its Applications, vol. 93, CUP (2003)

11. Goubault-Larrecq, J.: Continuous capacities on continuous state spaces. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 764–776. Springer,
Heidelberg (2007)

12. Goubault-Larrecq, J.: Continuous previsions. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 542–557. Springer, Heidelberg (2007)

13. Goubault-Larrecq, J.: Simulation hemi-metrics between infinite-state stochastic games. Re-
search Report LSV-07-34, Laboratoire Spécification et Vérification, ENS Cachan, France,
47 pages (October 2007)

14. Goubault-Larrecq, J.: Une introduction aux capacités, aux jeux et aux prévisions (June 2007),
http://www.lsv.ens-cachan.fr/~goubault/ProNobis/pp_1_8.pdf

15. Goubault-Larrecq, J.: Prevision domains and convex powercones. In: FoSSACS 2008.
LNCS, vol. 4962, pp. 318–333. Springer, Heidelberg (2008)

16. Jones, C.: Probabilistic Non-Determinism. PhD thesis, University of Edinburgh, Technical
Report ECS-LFCS-90-105 (1990)

17. Jung, A.: Stably compact spaces and the probabilistic powerspace construction. In: Deshar-
nais, J., Panangaden, P. (eds.) Domain-theoretic Methods in Probabilistic Processes. Elec-
tronic Notes in Theoretical Computer Science, vol. 87, Elsevier, Amsterdam (2004)

18. Kantorovich, L.V.: On the translocation of masses. Comptes Rendus (Doklady) de l’Acad.
Sci. URSS 37, 199–201 (1942); Reprinted in Management Science, vol. 5, pp. 1–4 (1958)

19. Keimel, K., Lawson, J.: Measure extension theorems for T0-spaces. Topology and its Appli-
cations 149(1–3), 57–83 (2005)

20. Kopperman, R.: Asymmetry and duality in topology. Topology and its Applications 66, 1–39
(1995)

21. Künzi, H.P., Schellekens, M.P.: On the Yoneda completion of a quasi-metric space. Theoret-
ical Computer Science 278(1-2), 159–194 (2002)

22. Lawvere, F.W.: Metric spaces, generalized logic, and closed categories. Reprints in Theory
and Applications of Categories (1), 1–27 (originally published in 1973, 2002)

23. Mislove, M.: Topology, domain theory and theoretical computer science. Topology and Its
Applications 89, 3–59 (1998)

24. Mislove, M., Ouaknine, J., Worrell, J.: Axioms for probability and nondeterminism. El. Notes
Th. Comp. Sci. 91(3), 7–28 (2003); 10th Intl. Workshop on Expressiveness in Concurrency
(EXPRESS 2003) (2003)

25. Nachbin, L.: Topology and Order. Van Nostrand Reinhold, New York (1965)
26. Roth, W.: Hahn-Banach type theorems for locally convex cones. J. Australian Math.

Soc. 68(1), 104–125 (2000)
27. Schrijver, A.: On the history of combinatorial optimization (till 1960). In: Aardal, K.,

Nemhauser, G.L., Weismantel, R. (eds.) Handbook of Discrete Optimization, pp. 1–68. El-
sevier, Amsterdam (2005)

28. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. MIT
Press, Cambridge (1996)

http://www.lsv.ens-cachan.fr/~goubault/ProNobis/pp_1_8.pdf


Simulation Hemi-metrics between Infinite-State Stochastic Games 65

29. Tix, R.: Stetige Bewertungen auf topologischen Räumen. Diplom, T.H. Darmstadt (June
1995)

30. Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-
determinism. Electronic Notes in Theor. Comp. Sci. 129, 1–104 (2005)

31. van Breugel, F., Worrell, J.: An algorithm for quantitative verification of probabilistic tran-
sition systems. In: CONCUR 2001. LNCS, vol. 2976, pp. 421–432. Springer, Heidelberg
(2001)

32. Walley, P.: Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London
(1991)



Beyond Rank 1: Algebraic Semantics and Finite Models
for Coalgebraic Logics

Dirk Pattinson1 and Lutz Schröder2

1 Department of Computing, Imperial College London
2 DFKI-Lab Bremen and Department of Computer Science, Universität Bremen

Abstract. Coalgebras provide a uniform framework for the semantics of a large
class of (mostly non-normal) modal logics, including e.g. monotone modal logic,
probabilistic and graded modal logic, and coalition logic, as well as the usual
Kripke semantics of modal logic. In earlier work, the finite model property for
coalgebraic logics has been established w.r.t. the class of all structures appropri-
ate for a given logic at hand; the corresponding modal logics are characterised by
being axiomatised in rank 1, i.e. without nested modalities. Here, we extend the
range of coalgebraic techniques to cover logics that impose global properties on
their models, formulated as frame conditions with possibly nested modalities on
the logical side (in generalisation of frame conditions such as symmetry or tran-
sitivity in the context of Kripke frames). We show that the finite model property
for such logics follows from the finite algebra property of the associated class of
complex algebras, and then investigate sufficient conditions for the finite algebra
property to hold. Example applications include extensions of coalition logic and
logics of uncertainty and knowledge.

1 Introduction

The coalgebraic semantics of modal logic has proved to be useful to establish results
that apply uniformly to a large class of modal logics. For example, [17] provides a finite
model construction and decidability results and [18] derives uniform PSPACE bounds
for coalgebraic modal logics. The class of logics covered by the coalgebraic approach
includes e.g. monotone modal logic and the standard logic K but also less well-studied
specimen such as Pauly’s coalition logic [16], probabilistic modal logic [13,9], and
graded modal logic [8]. Moreover, the coalgebraic approach allows combining logics
modularly [4] while preserving completeness [5] and complexity bounds [19].

However, the range of the coalgebraic techniques is hitherto limited to logics ax-
iomatised in rank 1, i.e. with nesting depth of modal operator uniformly equal to 1, thus
excluding standard logics such as K4 and S5. The reason for this limitation is that in
previous work, only such modal logics have been considered that are interpreted over
the class of all structures of an appropriate type. Indeed it is shown in [17] that the class
of all structures of a given type is always axiomatisable in rank 1. By analogy, rank 1
axioms play the role of the K-axioms for Kripke frames: they ensure completeness
w.r.t. the class of all frames.

However, it is often desirable to have completeness for a subclass of all structures that
satisfy additional properties like transitivity or reflexivity in a relational context. These

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 66–80, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics 67

additional properties are captured as frame conditions on the logical side; e.g. the (4)
axiom �a→ ��a ensures transitivity for Kripke frames. This is our starting point: we
extend a given complete rank-1 axiomatisation of a class of structures (that we formalise
as coalgebras for an endofunctor) by additional frame conditions and establish the finite
model property (and hence completeness) with respect to the class of all structures that
satisfy the additional axioms.

In view of our interest in finite model results, our main technical tool is finite Stone
duality, i.e. the dual equivalence between finite sets and finite boolean algebras. Ac-
cordingly, the finite model property is established in two steps: the first step shows that
the finite model property follows from the finite algebra property of an associated al-
gebraic theory by transporting finite algebraic models to the coalgebraic side via Stone
duality (the converse implication, i.e. that the finite model property implies the finite
algebra property, is trivial). In the second step, we use algebraic filtrations in the style
of Lemmon [14], adapted to a non-normal setting, to obtain the finite algebra property.
In view of the duality between modal algebras and neighbourhood frames [6] this latter
step is equivalent to establishing the finite model property with respect to neighbour-
hood semantics, albeit at the expense of losing the correspondence with the algebraic
semantics.

The versatility of our approach is demonstrated by two extended examples. For log-
ics combining uncertainty and knowledge as described in [7], we show that the finite
model property can be derived purely synthetically. In particular, we derive the finite
model property in the presence of axioms that stipulate interaction between belief and
uncertainty, and our results are modular in the axiomatisation of agent belief. The sec-
ond example uses our techniques to establish the finite model property for various ex-
tensions of Pauly’s coalition logic [16].

2 Preliminaries and Notation

The category of sets and functions is denoted by Set, and we write BA for the category
of boolean algebras. We use Fin to denote the category of finite sets, and FBA is the
category of finite boolean algebras. Stone duality [10] restricts to a dual equivalence
between Fin and FBA given by the contravariant powerset functor 2 : Fin → FBA
and the functor Uf : FBA → Fin that maps a finite boolean algebra to the set of its
ultrafilters. If A ∈ FBA, we write ιA : 2 ◦ Uf(A)→ A for the canonical isomorphism.

Given an endofunctor T : Set → Set, a T -coalgebra is a pair (C, γ) consisting
of a carrier C ∈ Set and a transition function γ : C → TC. A coalgebra morphism
f : (C, γ)→ (D, δ) is a function f : C → D for which δ ◦ f = Tf ◦ γ. We denote the
category of T -coalgebras by Coalg(T ) and write Coalg(T )f for the full subcategory of
Coalg(T ) consisting of all those (C, γ) ∈ C(T ) for which the carrierC is finite. Dually,
if L : BA → BA is a functor, we write Alg(L) for the category of L-algebras, that is
pairs (A,α) where A ∈ BA and α : LA → A is a morphism of boolean algebras. As
for coalgebras, Alg(L)f denotes the full subcategory of those (A,α) ∈ Alg(L) whose
carrier A ∈ FBA is finite. Throughout, we fix a denumerable set V of propositional
variables. The set of propositional formulas over a set X is denoted by Prop(X) and
the set of clauses over X by Cl(X).



68 D. Pattinson and L. Schröder

3 Rank-1 Logics

We start by introducing rank-1 logics that we take as extensions of propositional logic
with unary modal operators. The restriction to unary modalities is purely for conve-
nience; all of our results generalise to polyadic modalities in a straightforward way.
Rank-1 logics are the basic building blocks of our theory, as they provide a sound and
complete axiomatisation of the class Coalg(T ) of all T -coalgebras that we extend with
frame conditions to effect specific properties later.

Definition 1 (Modal signatures, formulas). A modal signature or modal similarity
type is a set Λ consisting of (unary) modal operators. For a set S, we write Λ(S) =
{M(s) | M ∈ Λ, s ∈ S} for the set of formulas that arise by prefixing elements of S
by precisely one modality in Λ. The set F(Λ) of Λ-formulas is inductively given by

F(Λ) � φ, ψ ::= p | ⊥ | φ→ ψ |M(φ)

where p ∈ V is a propositional variable and M ∈ Λ.

We interpret modal logics over T -coalgebras, where T is an endofunctor on Set. Modal
operators are interpreted using predicate liftings [15].

Definition 2 (Structures, Coalgebraic Semantics). If Λ is a modal signature, a Λ-
structure consists of an endofunctor T : Set → Set and a predicate lifting (a natural
transformation)�M� : 2 → 2 ◦ T for every M ∈ Λ. A morphism between two Λ-
structures S and T is a natural transformation μ : S → T such that �M�S = μ−1 ◦
�M�T for all M ∈ Λ. The coalgebraic semantics of φ ∈ F(Λ) w.r.t. a T -coalgebra
C = (C, γ) and a valuation π : V → P(C) is inductively defined by

�p�π
C

= π(p) �Mφ�π
C

= γ−1 ◦ �M�C(�φ�π
C
)

and the standard clauses for propositional connectives. IfΘ ⊆ F(Λ) and C ∈ Coalg(T )
we write C |= Θ if �φ�π

C
= � for all π : V → P(C) and all φ ∈ Θ and denote the

full subcategory of all C ∈ Coalg(T ) that satisfy every formula in Θ by Coalg(T,Θ).
Finally, a formula φ is (finitely) satisfiable in Coalg(T,Θ) if there exists a (finite) coal-
gebra C ∈ Coalg(T,Θ) and a valuation π : V → P(C) with �φ�π 	= ∅.
The axiomatisation of the modal logics considered here consists of two parts: a set
of rank-1 axioms that is (sound and) complete for the class of all T -coalgebras (and
thus accounts for the structure of Coalg(T )) and a set of frame conditions that spec-
ify additional properties. The logic of Coalg(T ) can always be axiomatised by rank-1
axioms [17].

Definition 3. Suppose Λ is a modal similarity type. A rank-1 axiom over Λ is a propo-
sitional formula over Λ(Prop(V )); propositional formulas over Λ(Prop(V )) ∪ V are
called rank-0/1. A rank-1 logic is a pair L = (Λ,A) where A is a set of rank-1 axioms
over Λ. An extended rank-1 logic is a triple L = (Λ,A, Θ) where (Λ,A) is a rank-1
logic and Θ ⊆ F(Λ) is a set of additional axioms. The logic L is rank-0/1 if every
φ ∈ Θ is rank-0/1.

Deduction over (extended) rank-1 logics is standard:



Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics 69

Definition 4 (Derivability). Suppose L = (Λ,A, Θ) is an extended rank-1 logic. We
write L � φ if φ is contained in the least set closed under the rules

φ ∈ A ∪Θ
L � φσ

L � φ→ ψ L � φ
L � ψ

φ ∈ Taut(V )
L � φσ

L � φ↔ ψ

L �Mφ↔Mψ

where Taut(V ) is the set of propositional tautologies over the set V of (propositional)
variables and σ : V → F(Λ) ranges over F(Λ)-substitutions. This is extended to
sets of formulas, and we write Ψ �L φ if there exist ψ1, . . . , ψn ∈ Ψ such that L �
ψ1 ∧ · · · ∧ ψn → φ.

To prove completeness in the presence of frame conditions, we require that the rank-1
axioms are one-step sound and one-step complete; both notions are as in [15,5]. For
the sake of brevity, we (ab)use subsets of a set X as propositional variables with the
obvious interpretation in the boolean algebra P(X).

Definition 5 (One-step Soundness and Completeness). Let L = (Λ,A) be a rank-
1 logic, and let T be a Λ-structure. The one-step semantics �φ�TX ⊆ TX of φ ∈
Prop(Λ(P(X))) at a set X is defined inductively by the standard clauses for proposi-
tional connectives and �MA�TX = �M�X(A) forM ∈ Λ, A ⊆ X . We write TX |= φ
if �φ�TX = TX . The relationA, X � φ of one-step derivability at a set X is generated
by

φ ∈ Taut(Λ(P(X))
A, X � φ

A, X � φ→ ψ A, X � φ
A, X � ψ

φ ∈ A
A, X � φσ ,

where σ : V → P(X) is a P(X)-valuation in the last rule.
The logic L is one-step sound w.r.t. a structure T if, for all sets X and all φ ∈ F(Λ),

A, X � φ implies TX |= φ; L is one-step complete if the converse implication holds.

One-step soundness guarantees soundness in the standard sense:

Proposition 6. Let L = (Λ,A, Θ) be an extended rank-1 logic which is one-step sound
w.r.t. a structure T . Then L is sound w.r.t. Coalg(T,Θ), i.e. if L � φ for φ ∈ F(Λ), then
Coalg(T,Θ) |= φ.

We prove the converse, and simultaneously establish the finite model property, by con-
structing finite algebraic models that we then transport to the coalgebraic side.

4 Algebraic Semantics

We recall the concept of the functorial presentation of a rank-1 logic, due to Kurz and
collaborators [12,1]. Again, this concept is most conveniently introduced by using ele-
ments of a boolean algebra as variables with the obvious interpretation.

Definition 7. Let L = (Λ,A) be a rank-1 logic, let A be a boolean algebra, and let
φ, ψ ∈ Prop(Λ(A)). We write φ =A ψ if φ = ψ can be derived equationally from the
axioms of boolean algebra augmented with the set {ψσ = � | ψ ∈ A, σ : V → A}.
The functorL : BA→ BA defined by L(A) = Prop(Λ(A))/=A is called the functorial
presentation of L.



70 D. Pattinson and L. Schröder

The functorial presentation of a logic allows us to view formulas as terms that are
interpreted over L-algebras.

Definition 8. Let L be the functorial presentation of a rank-1 logic L = (Λ,A), and let
A = (A,α) ∈ Alg(L). The algebraic semantics of φ ∈ F(Λ) w.r.t. A and a valuation
π : V → A is defined inductively by the clauses

�p�πA = π(p) �M(φ)�πA = α ◦ q(M�φ�πA)

where p ∈ V and q : Prop(Λ(A)) → Prop(Λ(A))/=A is the quotient mapping, with
propositional connectives interpreted via the boolean algebra structure of A. If A =
(A,α) ∈ Alg(L) and Θ ⊆ F(Λ), we write A |= Θ if �φ�π

A
= � for all φ ∈ Θ and

all π : V → A. We denote the full subcategory of all A ∈ Alg(L) with A |= Θ
by Alg(L,Θ). Finally, a formula is (finitely) satisfiable in Alg(L,Θ) if there exists a
(finite) A = (A,α) ∈ Alg(L,Θ) such that �φ�π

A
	= ⊥ for some valuation π : V → A.

To capitalise on the duality between Fin and FBA we need to insist that L restricts to
an endofunctor on FBA which is the case if the set of modalities is finite. Despite its
simplicity, we state this fact as a lemma as this will be a recurrent theme later.

Lemma 9. Let L = (Λ,A) be a rank-1 logic with Λ finite, and let L be the functorial
presentation of L. Then LA is finite for all A ∈ FBA.

The functorial presentation of a logic with a finite number of modalities gives rise to a
(dual) functor that we denote by L� = Uf ◦L◦2 : Set→ Set. The equivalence between
FBA and Fin now extends to a dual equivalence between finite L�-coalgebras and finite
L-algebras:

Lemma 10. Let L = (Λ,A) be a rank-1 logic over a finite similarity type Λ, and let L
be the functorial presentation of L. Then the functors A : Coalg(L�)f → Alg(L)f and
C : Alg(L)f → Coalg(L�)f defined by A(C, γ) = (P(A), γ−1 ◦ ιL2C) and C(A,α) =
(Uf(A),Uf ◦ LιA ◦ Ufα) define a dual equivalence between finite L�-coalgebras and
finite L-algebras.

Under this equivalence, the carrier of the L-algebra associated with (C, γ)∈Coalg(L�)f
is the powerset P(C) of C, so that the interpretation of a formula φ in the algebra
A(C, γ) is in fact a subset ofC. This allows us to relate the algebraic and the coalgebraic
semantics conveniently as follows:

Lemma 11. Let (C, γ) ∈ Coalg(L�), and let (A,α) = A(C, γ). Then �φ�π
A

= �φ�π
C

for
all φ ∈ F(Λ) and all π : V → P(C).

In particular, we can reduce satisfiability in Coalg(L�) to satisfiability on Alg(L) also
in the presence of extralogical axioms.

Corollary 12. Let L = (Λ,A, Θ) be a rank-1 logic over a finite similarity typeΛ. Then
the following are equivalent for φ ∈ F (Λ):

1. φ is finitely satisfiable in Alg(L,Θ)
2. φ is finitely satisfiable in Coalg(L�, Θ).



Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics 71

We now describe the functor L� to the extent that that is needed for purposes of this
work. A more complete description can be found in [20].

Definition 13. Let L = (Λ,A) be a rank-1 logic, and let X be a set. A subset Φ ⊆
Prop(Λ(P(X)) is one-stepL-inconsistent atX iff there are finitely many φ1, . . . , φn ∈
Φ such that A, X � φ1 ∧ · · · ∧ φn → ⊥, and one-step L-consistent at X otherwise. Φ
is one-step L-maximally consistent at X if it is maximal (w.r.t. ⊆) among the one-step
L-consistent sets at X .

Lemma 14. Let L = (Λ,A) be a rank-1 logic with Λ finite. Then L�X ∼= {Φ ⊆
Prop(Λ(P(X))) | Φ one-step L-maximally consistent}.
Thus, one can go back and forth between L� and its equivalent description by introduc-
ing and dissolving equivalence classes. In the sequel, we will silently use the description
of L� that is most convenient for our purposes. We note that L� gives rise to a canonical
structure for a rank-1 logic L.

Lemma and Definition 15. Let L be the functorial presentation of a rank-1 logic L =
(Λ,A). Then the natural transformations defined by �M�X(A) = {Φ ∈ L�(X) |
MA ∈ Φ} for M ∈ Λ, A ⊆ X define a Λ-structure for L�; we call this structure the
canonical Λ-structure.

It can be shown that the canonicalΛ-structure is final in the category of all Λ-structures
[20]. For our purposes, the following suffices:

Lemma 16. Let T be a L-structure, and let L be the functorial presentation of L. Then
the family of maps

μ(X) : TX → L�X, t �→ {φ ∈ Prop(Λ(P(X))) | t ∈ �φ�TX}

defines a morphism between T and the canonical L�-structure.

As a consequence, the semantics of modal formulas is preserved if we move between
an arbitrary Λ-structure and the canonical such.

Lemma 17. Let C = (C, γ) ∈ Coalg(T ), and let D = (C, μ(C) ◦ γ). Then �φ�π
C

=
�φ�π

D
for all φ ∈ F(Λ).

In order to exploit the duality between finite sets and finite boolean algebras also in
the presence of infinitely many modalities, we restrict attention to those modalities that
occur either in the frame conditions or in the particular formula that we seek to satisfy.
This cutting out of modalities is effected formally as follows:

Definition 18. Let L = (Λ,A) be a rank-1 logic, and let Γ ⊆ Λ. The Γ -reduct of L is
the rank-1 logic LΓ = (Γ,AΓ ) where AΓ = {φ ∈ Prop(Γ (Prop(V ))) | L � φ}.
Γ -reducts of complete rank-1 logics remain complete:

Lemma 19. Let L = (Λ,A) be a rank-1 logic which is one-step sound and one-step
sound complete w.r.t. a structure T . Then LΓ is one-step sound and one-step complete
for the structure given by T together with the predicate liftings �M� for M ∈ Γ .



72 D. Pattinson and L. Schröder

We have already seen in Lemma 17 that semantics is preserved when moving from an
arbitrary Λ-structure to the canonical structure. The next lemma is the key result as it
provides for a passage in the other direction and thus allows us to reduce satisfiability
over Coalg(T ) to satisfiability over Coalg(L�).

Lemma 20. Let L = (Λ,A) be a rank-1 logic, let Γ ⊆ Λ be finite, and let L be the
functorial presentation of LΓ . If X ∈ Fin is a finite set, then μX : TX → L�X , with μ
as in Lemma 16, is surjective.

The reduction of satisfiability over Coalg(T ) to satisfiability over Coalg(L�) can now
be achieved by picking a one-sided inverse of μ.

Lemma 21. Let L = (Λ,A) be a rank-1 logic, let Γ ⊆ Λ be finite, and let L be the
functorial presentation of LΓ . Then for every C = (C, γ) ∈ Coalg(L�) with C finite,
there exists D = (C, δ) ∈ Coalg(T ) with the same carrier such that �φ�π

C
= �φ�π

D
for

all φ ∈ F(Γ ), π : V → P(C) and c ∈ C.

As the passage from Coalg(L�) to Coalg(T ) provided by Lemmas 17 and 21 in par-
ticular preserves validity of additional frame conditions, we can summarise as follows:

Corollary 22. Let L = (Λ,A, Θ) be an extended rank-1 logic, and let L be the func-
torial presentation of (Λ,A). If Γ ⊆ Λ is finite and Θ ⊆ F(Γ ), then the following are
equivalent for φ ∈ F(Γ ):

1. φ is finitely satisfiable in Coalg(T,Θ)
2. φ is finitely satisfiable in Coalg(L�, Θ)

Together with Corollary 12 this means that we can reduce satisfiability over Coalg(T )
to satisfiability over Alg(L); we pursue this theme in the subsequent sections.

5 The Finite Model Property

We will now exploit Corollary 22 to reduce the question of L having the finite model
property to the question of an associated equational logic having the finite algebra prop-
erty. We begin by associating an algebraic theory to every (extended) rank-1 logic L.

Definition 23. Let L = (Λ,A) be a rank-1 logic. The algebraic theory associated with
L is the pair (Σ,E), where

– Σ = Λ ∪ {⊥,→} is the signature of boolean algebra augmented with a unary
operator for every modality of Λ (silently assuming→,⊥ /∈ Λ)

– E = EBA ∪ {φ = � | φ ∈ A} consists of an equational axiomatisation EBA of
boolean algebra, together with the (equational form of) the axioms of L.

If T = (Σ,E) is the algebraic theory associated with a rank-1 logic, we write Alg(T )
for the category of (Σ,E)-algebras in the sense of universal algebra [21] and adopt
the standard interpretation of terms φ ∈ F (Λ) given a valuation of the (propositional)
variables in V . As every (Σ,E)-algebra in particular carries a boolean algebra structure,
we present (Σ,E)-algebras as (A, (fM )M∈Λ) where A ∈ BA and fM : A→ A for all
M ∈ Λ.



Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics 73

If φ ∈ F(Λ) and A ∈ Alg(T ), we abbreviate A |= φ iff A |= φ = �, i.e. �φ�π
A

= �
for all valuations π : V → A. As previously, if Θ ⊆ F(Λ), we write Alg(T , Θ) for
the full subcategory of all T -algebras A for which A |= φ for all φ ∈ Θ; note that
Alg(T , Θ) = Alg(Σ,E ∪ Θ). If φ, ψ ∈ F(Λ), we write T , Θ � φ = ψ if φ = ψ can
be derived equationally from E ∪ Θ. A formula φ ∈ F(Λ) is (T , Θ)-inconsistent, if
T , Θ � φ = ⊥ and φ is (T , Θ)-consistent, otherwise.

Finally, a formula φ ∈ F(Λ) is (finitely) satisfiable in Alg(T , Θ) if there exists a
(finite) A ∈ Alg(T , Θ) such that A 	|= φ = ⊥.

In essence, if T is the algebraic theory associated with a rank-1 logic, T -algebras are
boolean algebras with operators in the sense of Jónnson and Tarski [11] but without
the requirement that the operators preserve either joins or meets. We now relate the
categories Alg(L) and Alg(T ); this is in essence Theorem 15 of [2].

Lemma 24. Let L be a rank-1 logic with functorial presentation L and algebraic the-
ory T . Then there exists a concrete isomorphism C : Alg(L)→ Alg(T ) that commutes
with the respective forgetful functors, i.e. UL ◦C = UT where UL : Alg(L)→ Set and
UT : Alg(T ) → Set. Moreover, this isomorphism is compatible with the (algebraic)
semantics of modal formulas: If φ ∈ F(Λ), A = (A,α) ∈ Alg(L) and π : V → A is a
valuation, then �φ�πA = �φ�πC(A).

Together with Corollary 22, we obtain:

Corollary 25. Let Γ ⊆ Λ be finite, and let L = (Λ,A, Θ) be an extended rank-1 logic
with Θ ⊆ F(Γ ). Then the following are equivalent for φ ∈ F(Γ ):

1. φ is finitely satisfiable in Coalg(T,Θ)
2. φ is finitely satisfiable in Alg(T , Θ).

We are now in the position to relate the finite model property of a modal logic with the
finite algebra property of the associated algebraic theory.

Definition 26. Let L = (Λ,A, Θ) be an extended rank-1 logic, and let T be the al-
gebraic theory associated with (Λ,A). If T is a structure for L, we say that L has the
finite model property w.r.t. Coalg(T,Θ) if every L-consistent formula is finitely satisfi-
able in Coalg(T,Θ). Dually, T has the finite algebra property w.r.t. Alg(T , Θ) if every
(T , Θ)-consistent formula φ ∈ F(Λ) is finitely satisfiable in Alg(T , Θ).

It is easy to see that the above definition of the finite algebra property is equivalent to
the standard definition (validity over Alg(T , Θ)f implies validity over Alg(T , Θ)) as
we are dealing with extensions of boolean algebras.

The only ingredient that is missing for our first main theorem is the following (stan-
dard) lemma that relates equational and modal deduction.

Lemma 27. Let L = (Λ,A, Θ) be an extended rank-1 logic, and let T be the algebraic
theory associated with (Λ,A). Then

T , Θ � φ = ψ iff L � φ↔ ψ and L � φ iff T , Θ � φ = �
for all φ, ψ ∈ F(Λ).

Our main conceptual contribution can now be formulated as follows:



74 D. Pattinson and L. Schröder

Theorem 28. Let L = (Λ,A, Θ) be a rank-1 logic, let Γ ⊆ Λ be finite, and let Θ ⊆
F(Γ ). For Γ ⊆ Δ ⊆ Λ, let TΔ denote the algebraic theory associated with the Δ-
reduct of (Λ,A). Then L has the finite model property w.r.t. Coalg(T,Θ) if all TΔ, for
Δ finite with Γ ⊆ Δ ⊆ Λ, have the finite algebra property w.r.t Alg(TΔ, Θ). In this
case L is moreover complete w.r.t. Coalg(T,Θ), i.e. L � φ if Coalg(T,Θ) |= φ.

Some remarks are in order: First we can only allow frame conditions Θ over finitely
many modalities, as our techniques rely on the duality between FBA and Fin, cf
Lemma 9. Second, to establish the finite model property for L, we need to establish
the finite algebra property for all TΔ in the terminology of the previous theorem where
Δ ⊆ Γ contains the modalities occurring in the frame conditionsΘ together with those
occurring in a particular consistent formula that we seek to satisfy. This restriction is
however not problematic as we will see in the following two sections.

6 The Finite Algebra Property

Theorem 28 leaves an important question unanswered: which algebraic theories enjoy
the finite algebra property? This question is partially answered in the present section,
where we describe a general mechanism for constructing finite algebras that covers a
large variety of cases and generalises [14] to a non-normal setting and – modulo the du-
ality between neighbourhood frames and modal algebras [6] – also [3] to combinations
of rank 0/1 formulas and the (4) axiom.

For the whole section, suppose that L = (Λ,A, Θ) is an extended rank-1 logic and
T = (Σ,E) is the algebraic theory associated with (Λ,A). Our goal in this section
is to find conditions that ensure that T has the finite algebra property w.r.t Alg(T , Θ),
which we pursue by constructing finite algebras over maximally consistent subsets of
closed sets of formulas.

Definition 29. The normalised negation∼ φ of a formula is the formula ¬φ, if φ is not
of the form ¬ψ, and ∼ φ = ψ if φ = ¬ψ. A set Δ ⊆ F(Λ) is closed, if Δ contains ψ
whenever ψ is a subformula of some φ ∈ Δ and Δ contains ∼ φ if φ ∈ Δ. We write
cl(φ) for closure (the smallest closed set containing φ) of a single formula φ ∈ F(Λ).
If Δ is a closed set and Γ ⊆ Λ is a set of modal operators, the Γ -extension of Δ is the
set

ΔΓ = {Mφ | φ ∈ Δ,M ∈ Γ} ∪ {¬Mφ | φ ∈ Δ,M ∈ Γ} ∪Δ
We writeMΔ for the set of maximally L-consistent subsets of a closed set Δ and drop
the subscript if there is no danger of confusion.

Note that ΔΓ = Δ if Γ = ∅. The construction of a satisfying model for a consistent
formula φ that we describe will be based on the closure cl(φ) or its Γ -extension for a
finite set Γ of modalities. The construction uses the map σ introduced below.

Lemma 30. Let Δ be closed and finite. The assignment

σ : P(MΔ)→ F(Λ), A �→
∨

Φ∈A

∧
Φ

satisfies T , Θ � σ(A ∪B) = σ(A) ∨ σ(B) and T , Θ � σ(¬A) = ¬σ(A).



Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics 75

Conceptually speaking, σ induces a morphism of boolean algebrasP(M)→ F(Λ)/ ∼
where∼ is logical equivalence. We now introduce (algebraic) filtrations that we employ
to witness the finite algebra property.

Definition 31. Let Γ ⊆ Λ, and let Δ be a closed and finite subset of F(Λ). Let M
denote the collection of maximally consistent subsets of ΔΓ . The natural valuation
induced by Δ and Γ is the mapping τ : V → P(M), τ(p) = {Φ ∈ M | p ∈ Φ}. A
Σ-algebra F = (P(M), (fM )M∈Λ) is a Δ(Γ )-filtration if it satisfies

fM ({Φ ∈M | φ ∈ Φ}) = {Φ ∈M |Mφ ∈ Φ}
for all Mφ ∈ Δ. If Γ = ∅ we will simply speak of a Δ-filtration. We call a Δ(Γ )-
filtration safe for a set Φ ⊆ F(Λ) of axioms if F |= φ = � for all φ ∈ Φ.

Informally, a Δ(Γ )-filtration puts a Σ-algebra structure on the set P(M) of sets of
maximally consistent subsets ofΔΓ such that the truth lemma is satisfied for all φ ∈ Δ.
This will be applied to the case where Δ = cl(φ) is the closure of a single formula and
we will usually choose Γ = ∅; however in some cases (notably in presence of the (5)
axiom) we need to rely on the additional structure provided by formulas ψ ∈ ΔΓ \Δ
to prove the truth lemma for formulas of Δ. The structure present in Δ(Γ )-filtrations
clearly suffices to prove the (algebraic) truth lemma and the finite algebra property
follows if all axioms are safe.

Proposition 32. Let Δ ⊆ F(Λ) be closed, let Γ ⊆ Λ, and let F be a Δ(Γ ) filtration.
Then

�φ�τ
F

= {Φ ∈MΔΓ | φ ∈ Φ}
for all φ ∈ Δ. If moreover every closed and finite set Δ admits a Δ(Γ )-filtration for a
finite subset Γ ⊆ Λ that is safe for A ∪Θ, then T has the finite algebra property w.r.t.
Alg(T , Θ).

The remainder of this section is devoted to showing that every modal logicL=(Λ,A, Θ)
whereΘ is rank-0/1 admits a safe Δ-filtration for every closed set Δ ⊆ F(Λ); we refer
the reader to Definition 3 for the notions of rank-0/1 axioms and logics.

Definition 33. Let Δ be closed and finite. A sieve over Δ is a mapping ν : M →
P(F(Λ)) such that Φ ⊆ ν(Φ) for all Φ ∈ M and ν(Φ) is maximally L-consistent. The
Σ-algebra (P(MΔ), (fM )M∈Λ) where

fM : P(M)→ P(M), A �→ {Φ ∈M | ν(Φ) �M(σ(A))}
is called the standard Δ-filtration defined by the sieve ν.

We usually omit the explicit mention of the operators and just use P(M) to refer to the
standard filtration. Note that the standard filtration implicitly depends on a choice of
maximally consistent extension ν(Φ) of Φ ∈M, but the choice of ν(Φ) is immaterial.

Lemma 34. Let P(M) be the standard Δ-filtration for a closed and finite set Δ ⊆
F(Λ) given by a sieve ν. Then fM ({Φ ∈ M | φ ∈ Φ}) = {Φ ∈ M |Mφ ∈ Φ} for all
M ∈ Λ.



76 D. Pattinson and L. Schröder

We are now in the position to prove that the algebraic theory associated to a rank-0/1
logic has the finite algebra property if we can show that the standard filtration is safe
for all rank-0/1 axioms.

Proposition 35. Let L = (Λ,A, Θ) be rank-0/1 and assume thatΔ is closed and finite.
Then the standard Δ-filtration defined by any sieve is safe for A ∪Θ.

Consequently, we have the finite algebra property for all rank 0/1 logics.

Theorem 36. Let L = (Λ,A, Θ) be rank-0/1, and let T be the algebraic theory asso-
ciated with (Λ,A). Then T has the finite algebra property w.r.t. Alg(T , Θ).

The finite model property for L now follows at once from Theorem 28.

Corollary 37. Let L = (Λ,A, Θ) be rank-0/1, and let Θ ⊆ F(Γ ) for a finite subset
Γ ⊆ Λ. Then L has the finite model property w.r.t. Coalg(T,Θ); in particular L is
complete w.r.t. Coalg(T,Θ).

7 Frame Conditions beyond Rank 0/1

We now extend the ideas developed in the previous section to logics beyond rank 0/1.
As the standard filtration does not necessarily satisfy the frame conditions imposed by
axioms beyond rank 0/1, we have to adapt the standard filtration accordingly. We treat
three instances of frame conditions beyond rank-1 in detail: instances of the (4) axiom,
generalised to not necessarily normal operators, and instances of the (B) and (5) axioms
for normal operators, the latter being primarily of interest in the context of logics that
additionally feature non-normal operators.

Definition 38. Let ν be a sieve over a finite closed set Δ. For M ∈ Λ we write M�

for M ’s dual ¬M¬. If Φ, Ψ ∈ MΔ we say that Φ evolves to Ψ along M (Φ �M Ψ )
iff ν(Φ) � M�

∧
Ψ . Similarly Φ zigzags to Ψ along M (Φ �M Ψ ) iff there are

Ω0, . . . , Ωn such that

– Ω0 �M Φ and Ωn �M Ψ
– Ωi �M Ωi−1 or Ωi−1 �M Ωi for all i = 1, . . . , n.

We consider the following operators of type P(M) → P(M) (see Definition 33 for
the definition of fM )

fBM (A) = {Ψ ∈ fM (A) | ∀Φ ∈ M(Φ �M Ψ ⇒ Ψ ∈ A)}
f5
M (A) = {Ψ ∈ fM (A) | ∀Φ ∈ M(Φ �M Ψ ⇒ Φ ∈ A)}
f•4M (A) = gfp(X �→ f•M (A) ∩ f•M (X))

where gfp denotes the greatest fixpoint and in the last line, • stands for nothing or one
of B, 5.

As we will see later, each of the above operators can be used to force the validity of the
corresponding axioms in a filtration so that e.g. f45 forces the validity of the axioms
(4) and (5) if the corresponding axioms are derivable in L.



Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics 77

Definition 39. Every modality M ∈ Λ is of type E. The operator M is normal, if
L �M(p→ q)→Mp→Mq and L �M�. It is monotone if L �M(p ∧ q)→Mp.
MoreoverM is of type

– 4, if M is monotone and L �Mp→MMp

– B, if M is normal and L � p→MM�p

– 5 if M is normal and L �M�p �MM�p

where again M� = ¬M¬ denotes M ’s dual. We say that an operator is of type 4B (of
type 45) if it is both of type 4 and of type B (of type 5).

We now show that the operators defined above give rise to a Δ(Γ ) filtration provided
the types of modalities match the associated operators.

Proposition 40. Let t(M) ∈ {E, 4, 5, B, 4B, 45}, and let M be of type t(M) for all

M ∈ Λ. If Δ ⊆ F(Λ) is closed then the Σ-algebra (P(MΔΓ ), (f t(M)
M )M∈Λ) is a

Δ(Γ )-filtration if Γ ⊇ {M ∈ Λ | t(M) = 5 or t(M) = 45}.
This last proposition needs the extra generality provided by a Δ(Γ ) filtration for Γ 	= ∅
to prove the truth lemma for modalities of type 5, 45 which is not needed to show safety
of axioms:

Proposition 41. Let t(M) ∈ {E, 4, 5, B, 4B, 45}, and let M be of type t(M) for all

M ∈ Λ. If Δ ⊆ F(Λ) is closed then the Σ-algebra (P(MΔ), (f t(M)
M )M∈Λ) satisfies

– Mp→MMp if t(M) is one of 4, 4B, 45
– M�p→MM�p if t(M) = 5 or t(M) = 45
– p→MM�p if t(M) = B or t(M) = 4B.

where again M� is the dual of M .

The next proposition collects additional safe axioms:

Proposition 42. Let t(M) ∈ {E,B, 5, 4, 4B, 45}, and let M be of type t(M) for all

M ∈ Λ. Then the following axioms are valid in the filtration (P(M), (f t(M)
M )M∈Λ)

1. any clause whose right side only mentions operators of type E, that is all clauses∧
iMiφi ∧

∧
j pj →

∨
jMkφk ∨

∨
l pl where t(Mk) = E for all k

2. truth and falsity preservation, i.e. the axiomsM� and ¬M⊥ for all M ∈ Λ
3. preservation of conjunctions, i.e. the axiom M(p ∧ q) = Mp ∧Mq

4. the (S)-axiom p→Mp

As T -coalgebras are just Kripke frames for T = P , the preceding proposition immedi-
ately gives the finite algebra property (and hence the finite model property) for a large
number of well-studied systems, includingK,KT,KB,KB4, S4, S5. We discuss two
examples that apply our techniques outside the realm of normal logics in the next
section.



78 D. Pattinson and L. Schröder

8 Reasoning about Uncertainty and Knowledge

This section shows how the theory developed in the preceding sections can be instanti-
ated to obtain synthetic proofs of completeness and the finite model property for logics
of uncertainty and belief discussed in [7]. We fix a finite set N of agents and the modal
signature Λ = {Kn | n ∈ N} ∪ {Lip | p ∈ [0, 1] ∩ Q, i ∈ N}. We read the for-
mula Kiφ as “agent i knows phi” and Lipφ as “according to agent i, the formula φ
hods with probability at least p”. Formulas of F(Λ) are interpreted over T -coalgebras
where TX =

∏
i∈N D(X) × P(X) and D(X) is the probability distributions functor

D(X) = {μ : X → [0, 1] | {x ∈ X | μ(x) > 0} is finite and
∑

x∈X μ(x) = 1}. That
is, a T -coalgebra consists of a carrier set C and additionally, for each agent i ∈ N , a
relationRi ⊆ C×C and a function fi : C → D(C) that assigns probabilities to events
in C. We turn T into a structure for Λ by virtue of the predicate liftings

�Ki�X(A) = {(μi, Si)i∈N | Si ⊆ A}
�Lip�X(A) = {(μi, Si)i∈N |

∑
x∈A μi(x) ≥ p}.

The semantics of F(Λ) differs slightly from the semantics discussed in [7] as probabil-
ity distributions are supposed to have finite support; however this difference is immate-
rial in the light of the finite model property.

It follows from [5] that a one-step complete axiomatisation of each Ki together with
a one-step complete axiomatisation of the Lip is one-step complete for T ; we denote the
full set of axioms byA. We refer to [5] for the precise form of the axioms and note that
the one-step rule in loc.cit. can be equivalently presented as a rank-1 axiom by virtue of
Proposition 15 in [17]. However note that any such one-step complete axiomatisation
only prescribes the K-axioms Ki� = � and Ki(a∧ b)↔ Kia∧Kib for the knowledge
operators Ki, and no interaction of knowledge and quantitative uncertainty on the log-
ical level. On top of the basic (one-step complete) axiomatisation A, we consider the
axioms (K�i = ¬Ki¬)

(4) KiKip→ Kip (C) Kip→ Li1p

(5) K�i p→ KiK
�
i p (U) p→ Li1p

(B) p→ KiK
�
i p (S) p→ Kip

where the names of the axioms on the right abbreviate the corresponding frame prop-
erties of [7]. Theorems 28 together with Propositions 40 and 42 now show that any
extension of A with one or more of the above axioms has the finite model property.
We can even equip different agents with different reasoning facilities, i.e. allow positive
introspection for some but not for others. This generalises the corresponding result in
[7] in that we establish the finite model property for all logics L = (Λ,A, Θ), where Θ
is a sub-collection of the above frame conditions. By understanding every axiom (A)
as the collection of instances of (A) for all agents i ∈ N we can restrict the validity of
axioms to specific sets of agents in the next theorem.

Theorem 43. Let L = (Λ,A, Θ) and suppose that Θ ⊆ {(4), (5), (B), (C), (U), (S)}
not containing both (B) and (5) for the same agent. Then L has the finite model prop-
erty w.r.t. Coalg(T,Θ).



Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics 79

9 A Logic for Coalitions and Filibusters

As a second example, we apply our techniques to prove completeness and the finite
model property for an extension of Pauly’s coalition logic [16]. We consider a fixed
set N = {1, . . . , n} of agents. Subsets of N are called coalitions. The signature Λ of
coalition logic consists of modal operators [C], where C ranges over coalitions, read
‘coalitionC has a collaborative strategy to ensure that . . . ’. A coalgebraic semantics for
coalition logic is based on the class-valued signature functor T defined by

TX = {(S1, . . . , Sn, f) | ∅ 	= Si ∈ Set, f :
∏
i∈N Si → X}.

The elements of TX are understood as strategic games with set X of states, i.e. tuples
consisting of nonempty sets Si of strategies for all agents i, and an outcome function
(
∏
Si)→ X . A T -coalgebra is a game frame [16]. We denote the set

∏
i∈C Si by SC ,

and for σC ∈ SC , σC̄ ∈ SC̄ , where C̄ = N −C, (σC , σC̄) denotes the obvious element
of

∏
i∈N Si. A ΛC-structure over T is defined by

�[C]�X(A) = {(S1, . . . , Sn, f) ∈ TX | ∃σC ∈ SC . ∀σC̄ ∈ SC̄ . f(σC , σC̄) ∈ A}.
A one-step complete axiomatisation A of coalition logic consists of the axioms (�),
(⊥), (N) and (S) below

(⊥) ¬[C]⊥ (C) [C]φ→ φ

(�) [C]� (F ) [C][C]φ→ [C]φ
(N) [∅]φ ∨ [N ]¬φ (P ) φ→ [C]φ
(S) [C1]φ ∧ [C2]φ→ [C1 ∪ C2](φ ∧ ψ)

where C1 ∩ C2 = ∅ in the superadditivity axiom (S). One-step completeness of A is
proved in [18] using the rule format of the axioms above. Additionally, we consider
a subset Θ ⊆ {(C), (F ), (P )}, again with axioms in Θ possibly restricted to specific
coalitions.

The (C) axiom expresses that the power of a coalition is limited to forcing things
that are already valid; we think of such coalitions as conservative. In a similar vein, if
φ expresses the act of blocking a motion and a coalition (of senators) has the power to
achieve φ, then the (F )-axiom (together with monotonicity) expresses that C can block
this motion indefinitely. Accordingly we refer to (F ) as the filibuster axiom. Finally,
by virtue of axiom (P ), a coalition can perpetuate properties of a strategic game. Using
the same convention as in the previous example, we understand each axiom (A) as the
collection of instances of (A) for all coalitions. Hence a subset of {(C), (F ), (P )} in
general only contains instances of each axiom for a specific set of coalitions. Again, the
combination of Theorem 28 and Propositions 40 and 42 shows:

Theorem 44. Let L = (Λ,A, Θ) where Θ ⊆ {(C), (F ), (P )}. Then L has the finite
model property w.r.t Coalg(T,Θ); in particular L is complete w.r.t. Coalg(T,Θ).

Acknowledgements. The first author would like to thank Tomasz Kowalski for discus-
sions on algebraic filtrations during the conference TANCL 2007.



80 D. Pattinson and L. Schröder

References

1. Bonsangue, M., Kurz, A.: Duality logics for transition systems. In: Sassone, V. (ed.) FOS-
SACS 2005. LNCS, vol. 3441, pp. 455–469. Springer, Heidelberg (2005)

2. Bonsangue, M., Kurz, A.: Presenting functors by operations and equations. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 172–186. Springer, Heidelberg
(2006)

3. Chellas, B.: Modal Logic, Cambridge (1980)
4. Cı̂rstea, C.: A compositional approach to defining logics for coalgebras. Theoret. Comput.

Sci. 327, 45–69 (2004)
5. Cı̂rstea, C., Pattinson, D.: Modular construction of modal logics. Theoret. Comput. Sci. (to

appear). In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 258–275.
Springer, Heidelberg (2004)

6. Dǒsen, K.: Duality between modal algebras and neighbourhood frames. Studia Logica 48(2),
219–234 (1989)

7. Fagin, R., Halpern, J.: Reasoning about knowledge and probability. J. ACM 41, 340–367
(1994)

8. Fine, K.: In so many possible worlds. Notre Dame J. Formal Logic 13, 516–520 (1972)
9. Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behav-

ior 35, 31–53 (2001)
10. Johnstone, P.: Stone spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge

University Press, Cambridge (1993)
11. Jónnson, B., Tarski, A.: Boolean algebras with operators I. Amer. J. Math. 73, 891–939

(1951)
12. Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras. Theor. Comput. Sci. 327(1–2), 109–134

(2004)
13. Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94(1), 1–

28 (1991)
14. Lemmon, E.: Algebraic semantics for modal logics I. Journal of Symbolic Logic 31(1), 46–

65 (1966)
15. Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local

consequence. Theoret. Comput. Sci. 309, 177–193 (2003)
16. Pauly, M.: A modal logic for coalitional power in games. J. Logic Comput. 12(1), 149–166

(2002)
17. Schröder, L.: A finite model construction for coalgebraic modal logic. In: Aceto, L.,

Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 157–171. Springer, Heidel-
berg (2006)

18. Schröder, L., Pattinson, D.: PSPACE reasoning for rank-1 modal logics. In: Logic in Com-
puter Science, LICS 2006, pp. 231–240. IEEE, Los Alamitos (2006)

19. Schröder, L., Pattinson, D.: Compositional algorithms for heterogeneous modal logics. In:
Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596,
Springer, Heidelberg (2007)

20. Schröder, L., Pattinson, D.: Rank-1 modal logics are coalgebraic. In: Thomas, W., Weil, P.
(eds.) STACS 2007. LNCS, vol. 4393, pp. 573–585. Springer, Heidelberg (2007)

21. Wechler, W.: Universal Algebra for Computer Scientists. EATCS Monographs on Theoretical
Computer Science, vol. 25. Springer, Heidelberg (1992)



A Linear-non-Linear Model for a Computational

Call-by-Value Lambda Calculus
(Extended Abstract)

Peter Selinger1 and Benôıt Valiron2

1 Dalhousie University
selinger@mathstat.dal.ca

2 University of Ottawa
bvali087@uottawa.ca

Abstract. We give a categorical semantics for a call-by-value linear
lambda calculus. Such a lambda calculus was used by Selinger and Val-
iron as the backbone of a functional programming language for quantum
computation. One feature of this lambda calculus is its linear type sys-
tem, which includes a duplicability operator “!” as in linear logic. An-
other main feature is its call-by-value reduction strategy, together with a
side-effect to model probabilistic measurements. The “!” operator gives
rise to a comonad, as in the linear logic models of Seely, Bierman, and
Benton. The side-effects give rise to a monad, as in Moggi’s computa-
tional lambda calculus. It is this combination of a monad and a comonad
that makes the present paper interesting. We show that our categorical
semantics is sound and complete.

1 Introduction

In the last few years, there has been some interest in the semantics of quantum
programming languages. [18] gave a denotational semantics for a flow-chart lan-
guage, but this language did not include higher-order types. Several authors de-
fined quantum lambda calculi [21,19] as well as quantum process algebras [11,12],
which had higher-order features and a well-defined operational semantics, but
lacked denotational semantics. [20] gave a categorical model for a higher-order
quantum lambda calculus, but omitted all the non-linear features (i.e., classical
data). Meanwhile, Abramsky and Coecke [2,9] developed categorical axiomat-
ics for Hilbert spaces, but there is no particular language associated with these
models.

In this paper, we give the first categorical semantics of an unabridged quantum
lambda calculus, which is a version of the language studied in [19].

For the purposes of the present paper, an understanding of the precise me-
chanics of quantum computation is not required. We will focus primarily on
the type system and language, and not on the structure of the actual “built-
in” quantum operations (such as unitary operators and measurements). In this
sense, this paper is about the semantics of a generic call-by-value linear lambda
calculus, which is parametric on some primitive operations that are not further

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 81–96, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



82 P. Selinger and B. Valiron

explained. It should be understood, however, that the need to support primitive
quantum operations motivates particular features of the type system, which we
briefly explain now.

The first important language feature is linearity. This arises from the well-
known no-cloning property of quantum computation, which asserts that quan-
tum data cannot be duplicated [23]. So if x : qbit is a variable representing a
quantum bit, and y : bit is a variable representing a classical bit, then it is legal
to write f(y, y), but not g(x, x). In order to keep track of duplicability at higher-
order types we use a type system based on linear logic. We use the duplicability
operator “!” to mark classical types. In the categorical semantics, this operator
gives rise to a comonad as in the work of [16] and [6]. Another account of mix-
ing copyable and non-copyable data is [10], where the copyability is internal to
objects.

A second feature of quantum computation is its probabilistic nature. Quantum
physics has an operation called measurement, which converts quantum data to
classical data, and whose outcome is inherently probabilistic. Given a quantum
state α|0〉 + β|1〉, a measurement will yield output 0 with probability |α|2 and
1 with probability |β|2. To model this probabilistic effect in our call-by-value
setting, our semantics requires a computational monad in the sense of [14]. The
coexistence of the computational monad T and the duplicability comonad ! in
the same category is what makes our semantics interesting and novel. It differs
from the work of [7], who considered a monad and a comonad one two different
categories, arising from a single adjunction.

The computational aspects of linear logic have been extensively explored
by many authors, including [8,6,5,1,22]. However, these works contain explicit
lambda terms to witness the structural rules of linear logic, for example, x : !A �
derelict(x) : A. By contrast, in our language, structural rules are implicit at the
term level, so that !A is regarded as a subtype of A and one writes x : !A � x : A.
As we have shown in [19], linearity information can automatically be inferred
by the type checker. This allows the programmer to program as in a non-linear
language.

This use of subtyping is the main technical complication in our proof of well-
definedness of the semantics. This is because one has to show that the denotation
is independent of the choice of a potentially large number of possible derivations
of a given typing judgment. We are forced to introduce a Church-style typing
system, and to prove that the semantics finally does not depend on the additional
type annotations.

Another technical choice we made in our language concerns the relation be-
tween the exponential ! and the pairing operation. Linear logic only requires
!A ⊗ !B � !(A ⊗ B) and not the opposite implication. However, in our pro-
gramming language setting, we find it natural to identify a classical pair of
values with a pair of classical values, and therefore we will have an isomorphism
!A ⊗ !B ∼= !(A ⊗ B).

The plan of the paper is the following. First, we describe the lambda calcu-
lus and equational axioms we wish to consider. Then, we develop a categorical



A Linear-non-Linear Model 83

model, called linear category for duplication, which is inspired by [8] and [14].
We then show that the language is an internal language for the category, thus
obtaining soundness and completeness.

2 The Language

We will describe a linear typed lambda calculus with higher-order functions
and pairs. The language is designed to manipulate both classical data, which
is duplicable, and quantum data, which is non-duplicable. For simplicity, we
assume the language is strictly linear, and not affine linear as in [19]. This means
duplicable values are both copyable and discardable, whereas non-duplicable
values must be used once, and only once.

2.1 The Type System

The set of types is given as follows: Type A, B ::= α | (A�B) | (A⊗B) | � | !A.
Here α ranges over type constants. While the remainder of this paper does

not depend on the choice of type constants, in our main application [19] this is
intended to include a type qbit of quantum bits, and a type bit of classical bits.
A � B stands for functions from A to B, A ⊗ B for pairs, � for the unit type,
and !A for duplicable objects of types A. We denote !!· · · !A with n !’s by !nA.

The intuitive definition of !A is the key to the spirit in which we want the
language to be understood: The ! on !A is understood as specifying a property,
rather than additional structure, on the elements of A. Therefore, we will have
!A ∼= !!A. Whether or not a given value of type A is also of type !A should be
something that is inferred, rather than specified in the code.

Since a term of type !A can always be seen as a term of type A, we equip the
type system with a subtyping relation as follows: Provided that (m = 0)∨(n � 1),

!nα <: !mα
(ax ),

!n� <: !m� (�),

A <: A′ B <: B′

!n(A′� B) <: !m(A � B′)
(�), A <: A′ B <: B′

!n(A ⊗ B) <: !m(A′ ⊗ B′).
(⊗).

This relation encapsulates the main properties terms should satisfy with respect
to duplicability.

2.2 Terms

The language consists of the following typed terms, divided into values on the
one hand, and general terms, or computations, on the other. Both share a subset
of the values, the core values.

CoreValue U ::= xA | cA | ∗n | λnxA.M,

Value V, W ::= U | 〈V, W 〉 | let xA = V in W | let 〈xA, yB〉n = V in W |
let ∗ = V in W,

Term M, N ::= U | 〈M, N〉 | (MN) | let 〈xA, yB〉n = M in N | let ∗ = M in N,



84 P. Selinger and B. Valiron

where n is an integer, c ranges over a set of constant terms, x over a set of
term variables and α over a set of constant types. We abbreviate (λ0xA.M)N by
let xA = N in M , λnx!m�. let ∗ = x� in M by λn∗m.M and we omit numerical
indexes when they are null.

Note that the above terms carry Church-style type annotations, as well as
integer superscripts; we call these terms indexed terms. We also define a notion
of untyped terms as terms with no index:

PureTerm M, N ::= x | c | ∗ | λx.M | (MN) | 〈M, N〉 |
let〈x, y〉 = M in N | let ∗ = M in N .

The erasure operation Erase : Term → PureTerm is defined as the operation
of removing the types and integers attached to a given indexed term. If M =
Erase(M̄), we say that M̄ is an indexation of M .

Finally, we define an α-equivalence on terms, denoted by =α, in the usual way
(see for example [3]).

2.3 Duplicable Pairs and Pairs of Duplicable Elements

Before we formally present the type system, let us informally motivate our choice
of typing rules. One non-obvious choice we had to make is for the interaction of
pairs and duplicability. Unlike previous works with comonads [8,5], we want to
think of the type !(A ⊗ B) as a type of pairs of elements of type A and B: we
want to use the same operation to access the components as one would use for
a pair of type A ⊗ B, without having to use a dereliction operation.

This immediately raises a concern: consider a pair of elements 〈x, y〉 of type
!(A ⊗ B). Are x and y duplicable? In the usual linear logic interpretation, they
are not. Having a infinite supply of pair of shoes does not mean one has an
infinite supply of right shoes: we cannot discard the left shoes. On the other
hand, in our interpretation of “classical” data as residing in “classical” memory
and therefore being duplicable, if the string 〈x, y〉 is duplicable, then so should
be the elements x and y. In other words, we want the duplication to “permeate”
the pairing.

The choice of such a “permeable” pairing is more or less forced on us by our
desire to have no explicit term syntax for structural rules. Consider the following
untyped terms, which can be typed if t is of type !(A ⊗ !(B ⊗ C)):

let〈x, u〉 = t in let〈y, z〉 = u in 〈〈z, y〉, x〉, (1)
let〈x, u〉 = t in 〈let〈y, z〉 = u in 〈z, y〉, x〉. (2)

First, we expect these two terms to be axiomatically equal. Term (2) should be
of type !(!(C ⊗ B) ⊗ A), regardless of the permeability of the pairing: if 〈y, z〉 is
duplicable, so should be 〈z, y〉. Now, consider the term (1) with a non-permeable
pairing. In the naive type system, u ends up being of type B⊗C, and the variables
y and z in the final recombination end up being respectively of type B and C.
It is not possible to make 〈z, y〉 of the duplicable type !(C ⊗ B).

We therefore choose a permeable pairing, which will be reflected, albeit subtly,
in the typing rule (⊗.I) and (⊗.E) in the following section.



A Linear-non-Linear Model 85

Table 1. Typing rules

A<:B

!Δ,x : A � xB : B
(ax1)

Ac <:B

!Δ � cB : B
(ax2)

Γ1, !Δ � M : A� B Γ2, !Δ � N : A

Γ1, Γ2, !Δ � MN : B
(app)

Δ,x : A � M : B

Δ � λ0xA.M : A� B
(λ1)

!Δ,x : A � M : B

!Δ � λn+1xA.M : !n+1(A� B)
(λ2)

!Δ � ∗n : !n� (�.I)

!Δ,Γ1 � M1 : !nA1 !Δ,Γ2 � M2 : !nA2

!Δ,Γ1, Γ2 � 〈M1,M2〉n : !n(A1 ⊗A2)
(⊗.I) !Δ,Γ1 � M : � !Δ,Γ2 � N : A

!Δ,Γ1, Γ2 � let ∗ = M in N : A
(�.E)

!Δ,Γ1 � M : !n(A1 ⊗A2) !Δ,Γ2, x1 : !nA1, x2:!
nA2 � N : A

!Δ,Γ1, Γ2 � let〈xA1
1 , xA2

2 〉n = M in N : A
(⊗.E)

2.4 Typing Judgments

A typing judgment is a tuple Δ � M : A, where M is an indexed term, A is
a type, and Δ is a typing context. To each constant term c we assign a type
!Ac. A valid typing judgment is a typing judgment that can be derived from the
typing rules in Table 1. We use the notation !Δ for a context where all variables
have a type of the form !A. Finally, when we write a context Γ, Δ, we assume
the contexts Γ and Δ to be disjoint.

The following lemmas are proved by structural induction on terms or type
derivations as appropriate.

Lemma 1. If V is a value such that Δ � V : !A is a valid typing judgment,
then Δ = !Δ′ for some context Δ′. 
�

Lemma 2. Consider the following valid typing judgment: Δ, x : A � M : B.
Then for every free instance xA′

in M , A <: A′. 
�

Definition 1. In a typing judgment Δ � M : A, a term variable x ∈ |Δ| is
called dummy if x ∈ FV (M).

Lemma 3. Any dummy variable x in Δ � M : B satisfies Δ(x) = !A, for some
A. Conversely, if Δ � M : B is valid and if x ∈ FV (M), then for all types A
the typing judgment Δ, x : !A � M : B is valid. 
�

Typing derivations are not unique per se. However for a given valid typing judge-
ment Δ � M : A two typing derivations will only differ with respect to the
placement of dummy variables, namely the unused variables in context.

2.5 Type Casting and Substitution Lemma

Lemma 4. Suppose Δ � M : A is a valid typing judgment, and suppose Δ′<:Δ
and A <: A′. Then there exists a canonical valid typing judgment Δ′ � M ′ : A′

such that Erase(M) = Erase(M ′). Moreover, if M is a value, so is M ′.

Proof. By induction on M . 
�

We will denote this M ′ with {Δ′ <: Δ � M : A <: A′}. If Δ′ = Δ or A′ = A, we
omit them for clarity.



86 P. Selinger and B. Valiron

Table 2. Axiomatic equivalence axioms

(βλ) Δ � let x = V in M ≈axM [V/x] : A
(β⊗) Δ � let〈x, y〉n = 〈V,W 〉n in M ≈axM [V/x,W/y] : A
(β∗) Δ � let ∗ = ∗ in M ≈axM : A
(ηλ) Δ � λnxA.{V : !n(A� B)<:A� B}xA ≈axV : !n(A� B).
(β2

λ) Δ � let xA = N in xA ≈axN : A.

(η⊗) Δ � let〈xA, yB〉n = N in 〈x!nA, y!nB〉n
≈axN : !n(A⊗B).

(η∗) Δ � let ∗ = N in ∗n ≈axN : !n�.

(let1) Δ � let −1 = (let −2 = M in N) in P ≈ax let −2 = M in let −1 = N in P : A
(let2) Δ � let −1 = V in let −2 = W in M ≈ax let −2 = W in let −1 = V in M : A

(letapp) Δ � let xA�B = M in let yA = N in xy ≈axMN : B

(letλ) Δ � let xD = V in λnyA.M ≈axλ
nyA. let xD = V in M : !n(A� B)

(let⊗) Δ � let xA = M in let yB = N in 〈xA, yB〉n
≈ax 〈M,N〉n : !n(A⊗B)

(app<:) {M : !n(A� D)<:B � D′}{N : C <:B}
≈ax{{M : !n(A� D)<:A� D}{N : C <:A} : D <:D′}

(let⊗<:) let〈xA′
, yB′〉n′

= {M : !n(A⊗B)<: !n
′
(A′ ⊗B′)} in N

≈ax let 〈xA, yB〉n = M in {Δ,x : !nA, y : !nB <:Δ,x : !n
′
A

′
, y : !n

′
B

′
� N}

(letx
<:) let xA′

= {M : A<:A′} in N ≈ax let xA = M in {Δ,x : A<:Δ,x : A′ � N}
(let∗<:) let ∗ = {M : !m�<: !n�} in N ≈ax let ∗ = M in N

Table 3. Axiomatic equivalence: derived rules

(αlet) Δ,x : A � let yA = xA in M : B ≈ax Δ, y : A � M : B

(let !λ) !Δ � let x!C = V in λy.M ≈ax λ
n+1y. let x!C = V in M : !n+1(A� B)

(let⊗1 ) Δ � 〈V, let − = M in N〉 ≈ax let − = M in 〈V,N〉 : !n(A⊗B)

(let⊗2 ) Δ � 〈let − = M in N,V 〉 ≈ax let − = M in 〈N,V 〉 : !n(A⊗B)
(letapp1 ) Δ � V (let − = M in N) ≈ax let − = M in V N : B
(letapp2 ) Δ � (let − = M in N)V ≈ax let − = M in NV : B

Definition 2. Given two valid typing judgments !Δ, Γ1 � V : A and !Δ, Γ2, x :
A � M : B where V is a value, we define the substitution (with capture avoiding)
!Δ, Γ1, Γ2 � M [V/x] : B as follows: we replace each free instance xA′

(where
A <: A′ from Lemma 2) in M by {Δ � V : A <: A′}.

Lemma 5 (Substitution Lemma). In Definition 2, !Δ, Γ1, Γ2 � M [V/x] : B
is well-typed. Also, if M is a value, so is M [V/x].

Proof. Proof by structural induction on M , using Lemmas 2 and 4. 
�

2.6 Axiomatic Equivalence

We define an equivalence relation on (indexed) typing judgments. We write Δ �
M ≈ax M ′ : A, or simply M ≈ax M ′, to indicate that Δ � M : A and Δ � M ′ :
A are equivalent. Axiomatic equivalent is defined as the reflexive, symmetric,
transitive, and congruence closure of the rules from Tables 2, so long as both
sides of the equivalences are well-typed. The symbol “−” is a place holder for x,
∗, or 〈x, y〉.

Lemma 6. The equivalences of Table 3 are derivable. 
�



A Linear-non-Linear Model 87

The following result stipulates that all the indexations of a given erasure live in
the same axiomatic class. In other words, the axiomatic equivalence class of a
term is independent of its indexation.

Theorem 1. If Erase(M) = Erase(M ′) and if Δ � M, M ′ : A are valid typing
judgments, then M ≈ax M ′.

Proof (Sketch). The actual proof is long and technical, and is omitted here for
space reasons. We proceed by first defining a special subset of terms, called
neutral terms, for which the Theorem is obvious. We then prove that every term
is axiomatically equivalent to a neutral term via a series of rewrite systems. 
�

3 Linear Category for Duplication

As it was advertised, the structure of the categorical semantics will closely follow
the one proposed by Bierman [8], but with the added twist of a computational
monad à la Moggi [14]. Indeed, since one has tensor product and a tensor unit,
one can expect the categorical model to be symmetric monoidal. Since one can
construct candidate maps for building a comonad, a comonoid structure for each
!A and coherence maps for the comonad, we have a linear category. Finally, the
computational aspect will be taken care by Moggi’s computational monad.

3.1 Linear Exponential Comonads

In his Ph.D. thesis, Bierman [8] gives the definition of a linear category. We prefer
here the terminology given in [15], and use the concept of linear exponential
comonad.

Definition 3. Let (C, ⊗, �) be a symmetric monoidal category [13], where
αA,B,C : A ⊗ (B ⊗ C) → (A ⊗ B) ⊗ C, λA : � ⊗ A → A, ρA : A ⊗ � → A
and σA,B : A ⊗ B → B ⊗ A are the usual associativity, left unit, right unit and
symmetry morphisms. Let (L, δ, ε, dL, dL) be a monoidal comonad [8], where
εA : LA → A, δA : LA → LLA, dL

A,B : LA⊗LB → L(A⊗B) and dL
� : � → L�.

We say that L is a linear exponential comonad [15] provided that

1. each object in C of the form LA is equipped with a commutative comonoid
(LA, �A, ♦A), where �A : LA → LA ⊗ LA and ♦A : LA → �;

2. �A and ♦A are monoidal natural transformations;
3. �A : (LA, δA) → (LA⊗LA, (δA ⊗ δA); dA) and ♦A : (LA, δA) → (�, dL

�) are
L-coalgebra morphisms;

4. Every map δA is a comonoid morphism (LA, ♦A, �A) → (L2A, ♦LA, �LA).

The equations for 2–4 are to be found in Table 4.

3.2 Strong Monad and T -Exponentials

To capture the computational effect of the probabilistic measurement, we use
the notion of strong monad, as in [14]. Recall that a monad over a category C



88 P. Selinger and B. Valiron

Table 4. Equations for a linear exponential comonad

LA⊗ LB

dL
A,B

��

�A⊗�B �� (LA⊗ LA) ⊗ (LB ⊗ LB)

sw

��
(LA⊗ LB) ⊗ (LA⊗ LB)

dL
A,B⊗dL

A,B

��
L(A⊗B) �(A⊗B)

�� L(A⊗B) ⊗ L(A⊗B)

�
λ−1
� ��

dL
� ��

� ⊗ �
dL
�⊗dL

���
L� ��

�� L� ⊗ L�

LA⊗ LB
♦A⊗♦B��

dL
A,B ��

� ⊗ �
λ�

��
L(A⊗B) ♦A⊗B

�� �

� id ��

dL
� ���������� �;

L�
♦�

����������

�A and ♦A are monoidal natural transformations.

LA
�A ��

δA

��

LA⊗ LA

δA⊗δA��
L2A⊗ L2A

dL
LA,LA��

L2A
L�A

�� L(LA⊗ LA),

LA
♦A ��

δA

��

�

dL
�

��
L2A

L♦A

�� L�;

LA
δA ��

�A

��

L2A,

�LA

��
LA⊗ LA

δA⊗δA

�� L2A⊗ L2A

LA
δA ��

♦A ���
��

��
� L2A.

♦LA����
��

��

�

�A and ♦A are L-coalgebra maps. δA us a comonoid morphism.

is a triple (T, η, μ) where T : C → C is a functor, η : id →̇ T and μ : T 2 →̇ T
are natural transformations and such that TμA; μA = μTA; μA and ηTA; μA =
idTA = TηA; μA. Given a map f : A → TB, we define the map f∗ : TA → TB
by Tf ; μB.

Definition 4. A strong monad over a monoidal category C is a monad (T, η, μ)
together with a natural transformation tA,B : A ⊗ TB → T (A ⊗ B), called the
tensorial strength, subject to a number of coherence conditions.

Remark 1. If the category C is symmetric, the tensorial strength t induces two
natural transformations TA ⊗ TB → T (A ⊗ B), namely

Ψ1 : TA ⊗ TB
σT A,T B−−−−−→ TB ⊗ TA

tT B,A−−−−→ T (TB ⊗ A)
(σT B,A;tA,B)∗−−−−−−−−−→ T (A ⊗ B),

Ψ2 : TA ⊗ TB
tTA,B−−−−→ T (TA ⊗ B)

(σT A,B ;tB,A)∗−−−−−−−−−→ T (B ⊗ A)
TσB,A−−−−→ T (A ⊗ B).

Note that Ψ1 and Ψ2 might not be equal: the map Ψ1 “evaluates” the first variable
and then the second one. The map Ψ2 does the opposite. The strength is called
commutative if Ψ1 = Ψ2.

Lemma 7. If (T, η, μ, t) is a strong monad on a symmetric monoidal category
C, then (T, η, μ, Ψ1) and (T, η, μ, Ψ2) are monoidal monad. 
�

Definition 5. A symmetric monoidal category (C, ⊗, �) together with a strong
monad (T, η, μ) is said to have T -exponentials [14], or Kleisli exponentials, if it
is equipped with a bifunctor � : Cop × C → C, and a natural isomorphism

Φ : C(A, B � C)
∼=−−−−−→ C(A ⊗ B, TC).



A Linear-non-Linear Model 89

Lemma 8. The map Φ induces a natural transformation εA,B : (A�B)⊗A →
TB defined by Φ(idA�B). 
�

3.3 Idempotent, Strong Monoidal Comonad

A comonad (L, ε, δ) on some category is said to be idempotent if δ : L →̇ LL is
an isomorphism. A monoidal comonad (L, δ, ε, dL, dL) is strong monoidal if dL

�
and dL

A,B are isomorphisms.

Definition 6. Given a monoidal category (C, ⊗, �) with an idempotent, strong
monoidal comonad (L, ε, δ), a bifunctor � : Cop × C → C, we define a canonical
arrow for C with respect to duplication by induction: For all objects A, the arrows
idA, εA, δA, dL

� and dL
A,B are canonical. All expansions of canonical arrows with

respect to duplication are also canonical. An expansion of an arrow f : A → B
is defined to be either f or any of Lg,X ⊗ g, g ⊗ X , X � g, g � X , where
g is an expansion of f and X ranges over the objects of the category. Finally,
compositions of canonical arrows are also canonical.

Theorem 2 (Coherence for idempotent comonads). Given a category C

with the structure in Definition 6, if f, g : A → B are two canonical arrows with
respect to duplication, then they are equal. 
�

3.4 Linear Category for Duplication

We now have enough background to define a candidate for the categorical model
of the language we describe in Section 2.

Definition 7. A linear category for duplication is a category C with the follow-
ing structure:

– a symmetric monoidal structure (⊗, �, α, λ, ρ, σ);
– an idempotent, strongly monoidal, linear exponential comonad (L, δ, ε, dL,

dL, ♦, �);
– a strong monad (T, μ, η);
– a Kleisli exponential �.

The computational linear category is defined to be the Kleisli category CT , as
defined in [14].

Remark 2. A linear category for duplication gives rise to a double adjunction

CL

UL

��⊥ C

F L

		

UT




⊥ CT , .

F T

�� Here the left adjunction arises from the

co-Kleisli category CL of the comonad L. It is as in the linear-non-linear models of
[4], and CL is a category of classical (non-quantum) values. The right adjunction
arises from the Kleisli category CT of the computational monad T , as in [14].
Here CT is a category of (effectful) quantum computations.



90 P. Selinger and B. Valiron

Table 5. Definitions of maps and operations on maps in Cλ

αA,B,C = x : A⊗(B⊗C) � let〈y, z〉 = x in let〈t, u〉 = z in 〈〈y, t〉, u〉 : (A⊗B)⊗C
λA = x : � ⊗A � let〈y, z〉 = x in let ∗ = y in z : A
ρA = x : A⊗ � � let〈y, z〉 = x in let ∗ = z in y : A
σA,B = x : A⊗B � let〈y, z〉 = x in 〈z, y〉 : B ⊗A
ηA = x : A � λ∗.x : ��A
μA = x : ��(��A) � λ∗.(x∗)∗ : ��A
tA,B = z : A⊗ (��B) � let〈x, y〉 = z in λ∗.〈x, y∗〉 : ��(A⊗B)
εA = x : !A � xA : A

δA = x : !A � x!2A : !2A

d!
A,B = z : !A⊗ !B � let〈x, y〉 = z in 〈x, y〉 : !(A⊗B)

d!
� = z : � � let ∗ = z in ∗ : !�

�A = x : !A � 〈x, x〉 : !A⊗ !A
♦A = x : !A � ∗ : �

(x : A � V : B) ⊗ (y : C � W : D) = z : A⊗B � let〈x, y〉 = z in 〈V,W 〉 : C ⊗D
(x : A � V : B) � (y : C � W : D) = z : B � C � λx.(let y = zV in W ) : A� D
(x : A � V : ��B)∗ = y : ��A � λ∗. let x = (y∗) in (V ∗) : ��B
ΦA,B,C (x : A � V : B � C) = t : A⊗B � λ∗. let 〈x, y〉 = t in V y : � � C

3.5 The Category Cλ

Definition 8. We can define a category Cλ as follows: Objects are types, and
arrows A → B are axiomatic classes of valid typing judgments of the form
x : A � V : B, where V is a value. We define the composition of arrows
x : A � V : B and y : B � W : C to be x : A � let y = V in W : C.
The identity on A is set to be the arrow x : A � x : A.

Lemma 9. The category Cλ is well-defined.

Proof. The composition of two arrows yields an arrow axiomatically equivalent
to a value due to Axiom (βλ) and Lemma 5. Composition is associative due to
Axiom (let1). The arrow x : A � x : A is indeed the identity on A due to axioms
(αlet ) and (β2

λ). 
�

Lemma 10. Given a valid typing judgment Δ � V : A where V is a value,
there exists a canonical value V ′ such that Erase(V ′) = Erase(V ) and such that
!Δ � V ′ : !A. We denote this V ′ by {!Δ <: Δ � V : A :> A′}.

Proof. By induction on V . 
�

Lemma 11. If Δ � V ≈ax W : A, and if V ′ = {!Δ <: Δ � V : A :> A′} and
W ′ = {!Δ <: Δ � W : A :> A′}, then V ′ ≈ax W ′.

Proof. By induction on V ≈ax W . 
�

Theorem 3. If we define T (A) := � � A and L(A) =!A, together with the
maps and the operations on maps defined in Table 5, Cλ is a linear category for
duplication.



A Linear-non-Linear Model 91

Proof. The proof is mainly a long list of verifications. It uses Theorem 1, Lem-
mas 9, 10 and 11. 
�

4 Denotational Semantics

4.1 Interpretation of the Language

The lambda-calculus defined in Section 2 is thought as a computational lambda-
calculus. Using Moggi’s technique, we split the interpretation of the language
into the interpretation of the values in a linear category for duplication C and
the interpretation of the computations, i.e. general terms, in its Kleisli category
CT . Without loss of generality, for notation purposes, we assume the category
to be strictly monoidal.

We define an interpretation of the type system to be a map Θ that assigns to
each constant type α an object Θ(α). Each type A is interpreted as an object
of C: [[α]]Θ = Θ(α), [[�]]Θ = �, [[!A]]Θ = L[[A]]Θ, [[A ⊗ B]]Θ = [[A]]Θ ⊗ [[B]]Θ and
[[A � B]]Θ = [[A]]Θ � [[B]]Θ.

Given a valid subtyping A <: B, there exists a canonical arrow [[A]]Θ → [[B]]Θ
in C with respect to duplication, as defined in Definition 6. Moreover, this arrow
is unique by Theorem 2. We extend the map Θ to interpret A<:B as this unique
arrow and we denote it by IA,B.

We use the following straightforward shortcut definitions, where A, A′, B, B′

are types and Δ, Γ and Γ ′ are typing contexts:

– Split !Δ,Γ,Γ ′ : [[!Δ]] ⊗ [[Γ ]] ⊗ [[Γ ′]] → [[!Δ]] ⊗ [[Γ ]] ⊗ [[!Δ]] ⊗ [[Γ ′]].
– Given f : [[!Δ]] ⊗ [[Γ ]] → [[A]] and g : [[!Δ]] ⊗ [[Γ ′]] → [[B]], we define the map

f ⊗!Δ g : [[!Δ]] ⊗ [[Γ ]] ⊗ [[Γ ′]] → A ⊗ B.
– Given a natural transformation nA : FA → GA, if Δ = {x1 : A1 . . . xn : An}

we define nΔ = n[[A1]] ⊗ . . . ⊗ n[[An]].

Definition 9. The map Θ is said to be an interpretation of the language if
moreover it assigns to each constant term c : Ac an arrow Θ(c) : � → [[Ac]] in C.

Given a linear category for duplication C, it is possible to interpret the typing
derivation of a well-typed value as a map in C and the typing derivation of a valid
computation as a map in the Kleisli category CT . We define them inductively.

– If x1 : A1, . . . xn : An � V : B is a value with typing derivation π, its value
interpretation [[π]]vΘ is an arrow [[A1]] ⊗ . . . ⊗ [[An]] →C [[B]];

– if x1 : A1, . . . xn : An � M : A is a term with typing derivation π, its
computational interpretation [[π]]cΘ is an arrow [[A1]]⊗ . . .⊗ [[An]] →C T ([[B]]).

Table 6 formulates the definition in the simple case where the contexts Δ, Γ1 and
Γ2 contain only one variable. One can easily extend this to the general setting.

As we already noted in Section 2.4, a valid typing judgment does not have a
unique typing tree per se. However the following result holds:



92 P. Selinger and B. Valiron

Table 6. Interpretation of values and computations

Interpretation of core values:

[[!Δ,x : A � x : B]]vΘ = [[!Δ]] ⊗ [[A]]
♦Δ⊗IA,B−−−−−−−→ [[B]]

[[!Δ � c : B]]vΘ = [[!Δ]]
♦Δ−−→ � Θ(c)−−−→ [[Ac]]

IAc,B−−−−→ [[B]]

[[!Δ � ∗ : !n�]]vΘ = [[!Δ]]
♦Δ−−→ �

dL
�−−→ L�

I!�,!n�−−−−−→ Ln�

[[Δ,x : A � M : B]]cΘ = [[Δ]] ⊗ [[A]]
f−→ T ([[B]])

[[Δ � λx.M : A� B]]vΘ = [[Δ]]
Φ−1(f)−−−−−→ [[A]] � [[B]]

[[!Δ,x : A � M : B]]cΘ = [[!Δ]] ⊗ [[A]]
f−→ T ([[B]])

[[!Δ � λx.M : !n+1(A� B)]]
v

Θ = [[!Δ]]
L(Φ−1f);I!(A�B),!n+1(A�B)−−−−−−−−−−−−−−−−−−−−→ Ln+1([[A]] � [[B]])

Interpretation of extended values:

[[!Δ,Γ1 � V : A]]vΘ = [[!Δ]]⊗[[Γ1]]
f−→ [[A]] [[!Δ,Γ2, x : A � W : B]]vΘ = [[!Δ]]⊗[[Γ2]]⊗[[A]]

g−→ [[B]]

[[!Δ,Γ2, Γ1 � let x = V in W : B]]vΘ = [[!Δ]]⊗[[Γ2]]⊗[[Γ1]]
id⊗!Δf−−−−−→ [[!Δ]]⊗[[Γ2]]⊗[[A]]

g−→ [[B]]

[[!Δ,Γ1,� V : !n(A1 ⊗A2)]]
v
Θ = [[!Δ]]⊗[[Γ1]]

f−→ Ln([[A1]] ⊗ [[A2]])

[[!Δ,Γ2, x : !nA1, y : !nA2 � W : C]]vΘ = [[!Δ]]⊗[[Γ2]]⊗Ln[[A1]] ⊗ Ln[[A2]]
g−→ [[C]]

[[!Δ,Γ2, Γ1 � let〈x, y〉n = V in W : C]]vΘ = [[!Δ]]⊗[[Γ2]]⊗[[Γ1]]
id⊗!Δf−−−−−→ [[!Δ]]⊗[[Γ2]]⊗Ln([[A1]]⊗[[A2]])

id⊗
“

dLn

[[A1]],[[A2]]

”−1

−−−−−−−−−−−−−→ [[!Δ]]⊗[[Γ2]]⊗Ln[[A1]]⊗Ln[[A2]]
g−→ [[C]]

[[!Δ,Γ2 � V : �]]vΘ = [[!Δ]] ⊗ [[Γ2]]
f−→ � [[!Δ,Γ1 � W : C]]vΘ = [[!Δ]] ⊗ [[Γ1]]

g−→ [[C]]

[[!Δ,Γ1, Γ2 � let ∗ = V in W : C]]vΘ = [[!Δ]]⊗[[Γ1]]⊗[[Γ2]]
id⊗!Δf−−−−−→ [[!Δ]] ⊗ [[Γ1]]

g−→ [[C]]

[[!Δ,Γ1 � V : !nA]]vΘ = [[!Δ]] ⊗ [[Γ1]]
f−→ Ln[[A]] [[!Δ,Γ2 � W : !nB]]vΘ = [[!Δ]] ⊗ [[Γ2]]

g−→ Ln[[B]]

[[!Δ,Γ1, Γ2 � 〈V,W 〉n : !n(A⊗B)]]vΘ = [[!Δ]] ⊗ [[Γ1]] ⊗ [[Γ2]]
f⊗!Δg−−−−→ Ln[[A]] ⊗ Ln[[B]]

dLn

A,B−−−→ Ln([[A]] ⊗ [[B]])

Interpretation of computations: First, if U is a core value, [[Δ � U : A]]cΘ = [[Δ � U : A]]vΘ; ηA.

[[!Δ,Γ1 � M : A� B]]cΘ = [[!Δ]] ⊗ [[Γ1]]
f−→ T ([[A]] � [[B]]) [[!Δ,Γ2 � N : A]]cΘ = [[!Δ]] ⊗ [[Γ2]]

g−→ T ([[A]])

[[!Δ,Γ1, Γ2 � MN : B]]cΘ = [[!Δ]]⊗[[Γ1]]⊗[[Γ2]]
f⊗!Δg−−−−→ T ([[A]]�[[B]])⊗T ([[A]])

Ψ1−−→ T (([[A]]�[[B]])⊗[[A]])
ε∗A,B−−−→ T ([[B]])

[[!Δ,Γ1 � M : !n(A1 ⊗A2)]]
c
Θ = [[!Δ]] ⊗ [[Γ1]]

f−→ TLn([[A1]] ⊗ [[A2]])

[[!Δ,Γ2, x : !nA1, y : !nA2 � N : C]]vΘ = [[!Δ]] ⊗ [[Γ2]] ⊗ Ln[[A1]] ⊗ Ln[[A2]]
g−→ T ([[C]])

[[!Δ,Γ2, Γ1 � let〈x, y〉n = M in N : !nC]]cΘ = [[!Δ]] ⊗ [[Γ2]] ⊗ [[Γ1]]
id⊗!Δf−−−−−→ [[!Δ]] ⊗ [[Γ1]] ⊗ TLn([[A1]] ⊗ [[A2]])

t;T
„
id⊗

“
dLn ”−1

«

−−−−−−−−−−−−→ T ([[!Δ]] ⊗ [[Γ1]] ⊗ Ln[[A1]] ⊗ Ln[[A2]])
g∗
−→ T [[C]]

[[!Δ,Γ2 � M : �]]cΘ = [[!Δ]] ⊗ [[Γ2]]
f−→ T (�) [[!Δ,Γ1 � N : C]]cΘ = [[!Δ]] ⊗ [[Γ1]]

g−→ T ([[C]])

[[!Δ,Γ1, Γ2 � let ∗ = M in N : C]]cΘ = [[!Δ]] ⊗ [[Γ1]] ⊗ [[Γ2]]
id⊗!Δf−−−−−→ [[!Δ]] ⊗ [[Γ1]] ⊗ T (�)

t;g∗
−−→ T ([[C]])

[[!Δ,Γ1 � M : !nA]]cΘ = [[!Δ]] ⊗ [[Γ1]]
f−→ TLn[[A]] [[!Δ,Γ2 � N : !nB]]cΘ = [[!Δ]] ⊗ [[Γ2]]

g−→ TLn[[B]]

[[!Δ,Γ1, Γ2�〈M,N〉n : !n(A⊗B)]]cΘ = [[!Δ]]⊗[[Γ1]]⊗[[Γ2]]
f⊗!Δg−−−−→ TLn[[A]]⊗TLn[[B]]

Ψ1;TdLn

A,B−−−−−−→ TLn([[A]]⊗[[B]])

Theorem 4. Given a valid typing judgment with two typing derivations π and
π′, for any interpretation Θ we have [[π]]cΘ = [[π′]]cΘ (and [[π]]vΘ = [[π′]]vΘ if the
typing judgment is a value).

Proof. The proof is done by showing that given any typing judgment Δ � M : A
with denotation f one can factor f as ♦!Γ ⊗ f̄ , where f̄ is the denotation of
Δ′ � M : A, where Δ′, !Γ = Δ and |Γ | is the set of dummy variables. 
�

Definition 10. Given a interpretation Θ of the language in a category C, we de-
fine the denotation of a valid typing judgment Δ � M : A with typing derivation
π to be [[Δ � M : A]]cΘ = [[π]]cΘ and [[Δ � M : A]]vΘ = [[π]]vΘ if M is a value.

Lemma 12. Suppose that Δ � V : A is a valid typing judgment where V is a

value. Then [[Δ � V : A]]c = [[Δ]]
[[Δ�V :A]]v−−−−−−−→ [[A]]

η[[A]]−−−→ T ([[A]]).



A Linear-non-Linear Model 93

Proof. Proof by induction on V , using Lemma 7, the bifunctoriality of ⊗LA and
the equations for strong monadicity in Definition 4. 
�

4.2 Soundness of the Denotation

The axiomatic equivalence and the categorical semantics are two faces of the
same coin. Indeed, as we will prove in this section, two terms in the same ax-
iomatic equivalence class have the same denotation. A corollary is that the in-
dexation of terms does not influence the denotation. This proves semantically
the fact that it is safe to work with untyped terms. An alternate justification of
this fact is of course the operational semantics, which was given in [19].

Lemma 13. Suppose M ′ = {Δ′ <: Δ � M : A <: A′}. Then [[Δ′ � M ′ : A′]]c =
IΔ′,Δ; [[Δ � M : A]]c; T (IA,A′). If M = V is a value, from Lemma 4, M ′ = V ′ is
a value. Then [[Δ′ � V ′ : A′]]v = IΔ′,Δ; [[Δ � V : A]]v; IA,A′ .

Proof. Proof by structural induction on M . 
�

Lemma 14 (Substitution). Given two valid typing judgments !Δ, Γ1, x : A �
M : B and !Δ, Γ2 � V : A, the typing judgment !Δ, Γ1, Γ2 � M [V/x] : B is
valid. Let h be [[!Δ, Γ1, Γ2 � M [V/x] : B]]c and h′ be [[!Δ, Γ1, Γ2 � W [V/x] : B]]v,
in the case where M = W is a value. Then they are defined by

[[!Δ]] ⊗ [[Γ1]] ⊗ [[Γ2]]

Split !Δ,Γ1,Γ2

��

h �� T ([[B]])

[[!Δ]]⊗[[Γ1]]⊗[[!Δ]]⊗[[Γ2]]
id⊗[[!Δ,Γ2�V :A]]v �� [[!Δ]]⊗[[Γ1]]⊗[[A]],

[[!Δ,Γ1,x:A�M :B]]c

��
[[!Δ]] ⊗ [[Γ1]] ⊗ [[Γ2]]

Split !Δ,Γ1,Γ2

��

h′
�� [[B]]

[[!Δ]]⊗[[Γ1]]⊗[[!Δ]]⊗[[Γ2]]
id⊗[[!Δ,Γ2�V :A]]v �� [[!Δ]]⊗[[Γ1]]⊗[[A]].

[[!Δ,Γ1,x:A�W :B]]v

��

Proof. Proof by induction on M , using Lemma 1, Lemma 12 and the naturality
of Φ. 
�

Theorem 5. If Δ � M ≈ax M ′ : A then [[Δ � M : A]]cΘ = [[Δ � M ′ : A]]cΘ (and
[[Δ � M : A]]vΘ = [[Δ � M ′ : A]]vΘ if M is a value) for every interpretation Θ.

Proof. Proof by induction on M ≈ax M ′, using Lemmas 13 and 14. 
�

Corollary 1. If Erase(M) = Erase(M ′) and if Δ � M, M ′ : A are valid typing
judgments, then [[M ]]c = [[M ′]]c (and [[M ]]v = [[M ′]]v if M is a value).

Proof. Corollary of Theorems 1 and 5. 
�

4.3 Completeness

The category Cλ being a linear category for duplication, one can interpret the
language in it. This section states that the defined lambda-calculus is an internal
language of linear categories for duplication.

Since the category Cλ is a monoidal category, one can w.l.o.g. generalize the
notion of pairing to finite tensor products of terms. Then the following results
are true:



94 P. Selinger and B. Valiron

Lemma 15. In Cλ, a valid typing judgment x1 : A1, . . . xn : An � M : B has
for computational denotation (t : A1 ⊗ · · · ⊗ An � let〈x1, . . . xn〉 = t in λ∗.M :
��B). If M = V is a value, the value interpretation is (t : A1 ⊗ · · · ⊗ An �
let〈x1, . . . xn〉 = t in V : B).

Proof. Proof by structural induction on M and V . 
�

Theorem 6. In Cλ, Θ being the identity, one has [[x : A � M : B]]cΘ ≈ax (x :
A � λ∗.M : � � B) and [[x : A � V : B]]vΘ ≈ax (x : A � V : B).

Proof. Corollary of Lemma 15. 
�

5 Towards a Denotational Model of Quantum Lambda
Calculus

As noted in the introduction, this paper is mostly concerned with the categorical
requirements for modeling a generic call-by-value linear lambda calculus, i.e., its
type system (which includes subtyping) and equational laws. We have not yet
specialized the language to a particular set of built-in operators, for example,
those that are required for quantum computation.

However, since the quantum lambda calculus [19] is the main motivation be-
hind our work, we will comment very briefly on what additional properties would
be required to interpret its primitives. The quantum lambda calculus is obtained
by instantiating and extending the call-by-value language of this paper with the
following primitive types, constants, and operations:

Types: bit , qbit
Constants: 0 : !bit , 1 : !bit

new : !(bit � qbit), U : !(qbitn � qbitn), meas : !(qbit � !bit)

Operations:
Γ1, !Δ � P : bit Γ2, !Δ � M : A Γ2, !Δ � N : A

Γ1, Γ2, !Δ � if P then M else N : A
(if )

Here, U ranges over a set of built-in unitary operations. In the intended se-
mantics, !bit ∼= bit , while !qbit is empty. new creates a new qubit, and meas
measures a qubit.

The denotational semantics of these operations is already well-understood in
the absence of higher-order types. They can all be interpreted in the category
Q of superoperators from [18]. The part that is not yet well-understood is how
these features interact with higher-order types.

In light of our present work, we can conclude that a model of the quantum
lambda calculus consists of a linear category for duplication (C, L, T, �), such
that the associated category of computations CT contains the category Q of [18]
as a full monoidal subcategory. To construct an actual instance of such a model
is still an open problem.



A Linear-non-Linear Model 95

6 Conclusion

We have developed a call-by-value, computational lambda-calculus for manip-
ulating duplicable and non-duplicable data, together with an axiomatic equiv-
alence relation on typed terms. We use a subtyping relation in order to have
implicit promotion, dereliction, copying and discarding. Then we developed cat-
egorical model for the language, inspired by the work of [8] and [14]. We finally
showed that the model is sound and complete with respect to the axiomatic
equivalence.

References

1. Abramsky, S.: Computational interpretations of linear logic. Theoretical Computer
Science 111, 3–57 (1993)

2. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of LICS 2004, pp. 415–425 (2004)

3. Barendregt, H.P.: The Lambda-Calculus, its Syntax and Semantics. North Holland,
Amsterdam (1984)

4. Benton, N.: A mixed linear and non-linear logic: Proofs, terms and models (ex-
tended abstract). In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933,
pp. 121–135. Springer, Heidelberg (1995)

5. Benton, N., Bierman, G., de Paiva, V.C.V., Hyland, M.: A term calculus for in-
tuitionistic linear logic. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS,
vol. 664, pp. 75–90. Springer, Heidelberg (1993)

6. Benton, N., Bierman, G., Hyland, M., de Paiva, V.C.V.: Linear lambda-calculus
and categorical models revisited. In: Martini, S., Börger, E., Kleine Büning, H.,
Jäger, G., Richter, M.M. (eds.) CSL 1992. LNCS, vol. 702, Springer, Heidelberg
(1993)

7. Benton, N., Wadler, P.: Linear logic, monads and the lambda calculus. In: Pro-
ceedings of LICS 1996, pp. 420–431 (1996)

8. Bierman, G.: On Intuitionistic Linear Logic. PhD thesis, Computer Science De-
partment, Cambridge University, Cambridge (1993)

9. Coecke, B.: Quantum information-flow, concretely, abstractly. In: Selinger, P., (ed.)
Proceedings of QPL 2004. TUCS General Publication No. 33, Turku Centre for
Computer Science pp. 57–73 (2004)

10. Coecke, B., Pavlovic, D.: Quantum measurements without sums. In: Chen, G.,
Kauffman, L., Lomonaco, S.J. (eds.) Mathematics of Quantum Computation and
Technology, pp. 559–596. Chapman & Hall, Boca Raton (2007)

11. Gay, S.J., Nagarajan, R.: Communicating quantum processes. In: Proceedings of
POPL 2005, ACM Press, New York (2005)

12. Lalire, M., Jorrand, P.: A process algebraic approach to concurrent and distributed
computation: Operational semantics. In: Selinger, P. (ed.) Proceedings of QPL
2004. TUCS General Publication No. 33, Turku Centre for Computer Science, pp.
109–126 (2004)

13. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1998)

14. Moggi, E.: Notions of computation and monads. Information and Computation 93,
55–92 (1991)



96 P. Selinger and B. Valiron

15. Schalk, A.: What is a model for linear logic. Manuscript (2004)
16. Seely, R.A.G.: *-autonomous categories and cofree coalgebras. Contemporary

Mathematics 92 (1989)
17. Selinger, P. (ed.): Proceedings of QPL 2004. TUCS General Publication No. 33,

Turku Centre for Computer Science (2004)
18. Selinger, P.: Towards a quantum programming language. Mathematical Structures

in Computer Science 14, 527–586 (2004)
19. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical

control. Mathematical Structures in Computer Science 16, 527–552 (2006)
20. Selinger, P., Valiron, B.: On a fully abstract model for a quantum linear functional

language. In: Preliminary proceedings of QPL 2006, pp. 103–115 (2006)
21. van Tonder, A.: A lambda calculus for quantum computation. SIAM Journal of

Computing 33, 1109–1135 (2004)
22. Wadler, P.: There’s no substitute for linear logic. Manuscript, presented at MFPS

1992 (1992)
23. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299,

802–803 (1982)



The ω-Regular Post Embedding Problem�

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France
{chambart,phs}@lsv.ens-cachan.fr

Abstract. Post’s Embedding Problem is a new variant of Post’s Correspondence
Problem where words are compared with embedding rather than equality. It has
been shown recently that adding regular constraints on the form of admissible
solutions makes the problem highly non-trivial, and relevant to the study of lossy
channel systems. Here we consider the infinitary version and its application to
recurrent reachability in lossy channel systems.

1 Introduction

Post’s correspondence problem, or shortly PCP, can be stated as the question whether
two morphisms u,v : Σ∗ → Γ∗ agree non-trivially on some input, i.e., whether u(σ) =
v(σ) for some non-empty σ∈Σ+. This undecidable problem plays a central role in com-
puter science because it is very often easier and more natural to prove undecidability by
reduction from PCP than from, say, the halting problem for Turing machines.

In a recent paper, we introduced PEP, the Post Embedding Problem, a variant of PCP
where one asks whether u(σ) is a (scattered) subword of v(σ) for some σ [CS07]. The

subword relation, also called embedding, is denoted “�”: w� w′ def⇔ w can be obtained
from w′ by erasing some letters, possibly all of them, possibly none. We also introduced
PEPreg, an extension of PEP where one adds the requirement that a solution σ belongs
to a regular language R⊆ Σ∗.

PEP is a trivial, hence not very interesting, problem. However, and quite surpris-
ingly, PEPreg behaves very differently. PEPreg is decidable but it is not primitive re-
cursive. In fact it is (non-trivially) equivalent to the reachability problem for lossy
channel systems. Thus PEPreg is a new representative of the strange computational
niche that hosts lossy channel systems and other problems in timed automata and log-
ics [LW05, ADOW05, OW06, OW07], concurrency models [AM02, Del07, LNO+07],
temporal and modal logic [DL06, GKWZ06, KWZ05, Kur06], and other areas [JL07].
We could also use PEPreg to solve open problems on unidirectional channel systems
combining one reliable and one lossy channel. These unidirectional systems, introduced
in [CS07], are currently under our active scrutiny because of their fundamental role in
the classification of channel systems that mix reliable and unreliable channels along
arbitrary network topologies [Cha07].

� Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 97–111, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



98 P. Chambart and Ph. Schnoebelen

The ω-regular Post Embedding Problem. In this paper we consider infinitary extensions
of PEPreg1, most prominently PEPω-reg, where one asks for an infinite σ ∈ Σω such
that u(σ) � v(σ), and where an ω-regular constraint can further be imposed upon σ.
Our motivation is twofold. Firstly, we aim at deepening our understanding of PEP and
PEPreg, two exciting new problems. Secondly, and based on the existing results for
the finitary case, we expect that connections can be established between PEPω-reg and
recurrent reachability questions on channel systems.

Our contribution. In this paper, we show the equivalence between PEPω-reg and re-
current reachability questions for unidirectional channel systems. This equivalence is
shown using the 2-dimensional correspondence+embedding problem, or 2PCEP, a new
intermediary problem that leads to a clearer, more abstract and more modular approach.
The approach handles both the finitary and the infinitary cases in a single way.

We also show that PEPω-reg can be reduced to PEPreg, so that the two problems
are equivalent. Hence PEPω-reg is decidable. This has the surprising consequence that
recurrent reachability for unidirectional channel systems is decidable. It further shows
that the links we established between unidirectional channel systems and lossy channel
systems (in [CS07]) do not carry over from reachability to recurrent reachability.

Finally, we show that recurrent reachability for lossy channel systems can be reduced
to PEP

ω-reg
dir , the variant of PEPω-reg where we look for direct solutions (informally,

solutions where v(σ) must be ahead of u(σ) at all times when σ grows from ε to its
final value). Hence PEP

ω-reg
dir is undecidable (while PEP

ω-reg
codir is decidable). Again, this

contrasts with the finitary case, where PEPreg, PEP
reg
dir and PEP

reg
codir are equivalent.

Outline of the paper. Section 2 recalls the necessary definitions and notations on em-
beddings between finite or infinite words. Section 3 states the ω-regular Post embed-
ding problem, solves it in the unconstrained case, and shows that restricting to short
morphisms is no loss of generality. Section 4 shows the equivalence between PEPreg

and PEPω-reg, before Section 5 links PEPω-reg and PEPreg with reachability and recur-
rent reachability questions for unidirectional channel systems. Finally, section 6 solves
the remaining case, PEP

ω-reg
dir , by linking it to recurrent reachability for lossy channel

systems.

2 Notations and Definitions

Words. We write u,v,w,t,σ,ρ,α,β, . . . for words, i.e., finite or infinite (i.e., ω-length)
sequences of letters such as a,b, i, j, . . . from alphabets Σ,Γ, . . .. The length of u ∈ Σ∗ ∪
Σω is written |u|, the set alph(u) is the set of letters (a subset of Σ) that occur in u. We
denote with u.v, or uv, the concatenation of u and v, with uv = u when u has ω-length.

A morphism from Σ∗ to Γ∗ is a map h : Σ∗ → Γ∗ that respects the monoidal struc-
ture, i.e., with h(ε) = ε and h(σ.ρ) = h(σ).h(ρ). Its extension over Σω is defined in
the obvious way: note that, in general, it takes values in Γ∗ ∪Γω since h(u) = ε for
u �= ε is allowed. A morphism h is completely defined by its image h(1), h(2), . . . ,

1 Recall that the classic PCP problem is undecidable but r.e., while the infinitary extension,
denoted PCPω, is Σ1

1-complete.



The ω-Regular Post Embedding Problem 99

on Σ = {1,2, . . .}. We often simply write h1,h2, . . ., and hσ, instead of h(1),h(2), . . .,
and h(σ).

Embeddings. Given two words u = a1 . . .an and v = b1 . . .bm, we write u� v when u is a
subword of v, i.e., when u can be obtained by erasing some letters (possibly none) from
v. For example, abba � abracadabra. Equivalently, u � v when u can be embedded
in v, i.e., when there exists an order-preserving injective map (called an “embedding”)
h : {1, . . . ,n}→ {1, . . . ,m} such that ai = bh(i) for all i = 1, . . . ,n. Embeddings between
ω-words are defined similarly, with a strictly increasing h : N�0→N�0. We explicitly
allow the embedding of finite words into infinite ones.

It is well-known that the subword relation is a partial ordering on finite words. Ob-
serve that, between ω-words, embedding is only a (partial) quasi-ordering: u � v and
v � u together do not imply u = v. For example, (ab)ω � (bba)ω � (ab)ω. We write
u≡ v when u� v and v� u.

Halving ω-words. For some u ∈ Σω, let inf(u) ⊆ Σ denote the set of letters that occur
infinitely many times in u. The word u can be decomposed under the form u′.u′′ where
u′ is a finite prefix and the corresponding suffix u′′ ∈ Σω, only contains letters from
inf(u). Such a decomposition is called a halving of u. There exists several (in fact,
infinitely many) halvings of any u ∈ Σω: the canonical halving is obtained by selecting
the shortest possible prefix u′.

The following lemma is a classic tool when considering embeddings between ω-
words (see, e.g., [Fin85]).

Lemma 2.1. Let u,v ∈ Σω be two ω-words with u′.u′′ and v′.v′′ two arbitrary halvings
of u and v. Then

u� v iff

{
alph(u′′)⊆ alph(v′′), and
there exists x ∈ alph(v′′)∗ such that u′ � v′x.

Furthermore, when u � v, then x can be chosen with |x| ≤ |u′|, and for any halving
u = u′.u′′ there exists a halving v = v′.v′′ such that u′ � v′.

Corollary 2.2. Let u1,u2 be two ω-words such that inf(u1) = alph(u1) = alph(u2) =
inf(u2). Then u.u1 ≡ u.u2 for all u ∈ Σ∗.

3 Post Embedding Problems

Post embedding problems are variants of Post correspondence problems where corre-
spondence (equality between words) is replaced by embedding, and where an additional
regular constraint may be imposed over the solution.

Formally, given two morphisms u,v : Σ∗ → Γ∗ we say that σ∈ Σ∗ is a (finite) solution
to Post’s embedding problem if uσ � vσ. If σ ∈ Σω and uσ � vσ, then σ is an infinite
solution (also called, an ω-solution).

We say that σ is a direct solution if uρ � vρ for every prefix ρ of σ. It is a codirect
solution if uρ � vρ for every suffix ρ of σ. When considering finite solutions [CS07],



100 P. Chambart and Ph. Schnoebelen

there is a symmetry between the notions of direct and codirect solutions, since a direct
solution for some u,v is a codirect solution for the mirror instance ũ, ṽ. This symmetry
does not carry over to infinite solutions because the mirror of an ω-word is not an ω-
word. Also, observe that the prefixes of a direct ω-solution are finite (direct) solutions,
and that the suffixes of a codirect ω-solution are other infinite (codirect) solutions.

The Post embedding problems we considered in [CS07] are PEPreg, PEP
reg
dir and

PEP
reg
codir that ask, given two morphisms u,v and a regular R ⊆ Σ∗, whether R contains

a solution (respectively, a direct solution, a codirect solution). The infinitary extensions
of these problems are PEPω-reg, PEP

ω-reg
dir and PEP

ω-reg
codir , that ask, given u,v and an ω-

regular R ⊆ Σω, whether there exists an ω-solution σ ∈ R (resp., a direct ω-solution, a
codirect ω-solution).

In the above definition, the regular constraint applies to σ but this is inessential and
our results still hold when the constraint applies to uσ, or vσ, or both (see [CS07]).

For complexity issues, we assume that the constraint R is given as a nondeterministic
automaton AR, that can be a FSA or a Büchi automaton depending on whether R is
finitary or not. By a reduction between two decision problems, we mean a logspace
many-one reduction, except when specified otherwise (as in Section 4). We say two
problems are equivalent when they are inter-reducible.

3.1 General Embedding for Direct Solutions

We now state a technical lemma that shows that the above definition of a direct solution,
“uρ � vρ for all prefixes ρ of σ”, can be replaced by a stronger requirement: that there
exists an embedding of uσ into vσ that embeds any uρ into the corresponding vρ.

Let a PEPω instance be given by two morphisms u,v, and consider an infinite σ∈Σω,
of the form σ = i1.i2.i3 . . .

For k = 0,1,2, . . ., we let lk and l′k denote respectively, the lengths |ui1i2...ik | and
|vi1i2...ik |.
Lemma 3.1. The following are equivalent:

(a). σ is a direct solution,
(b). For all k ∈ N, there exists an embedding hk : {1,2, . . . , lk} → {1,2, . . . , l′k} that
witnesses ui1i2...ik � vi1i2...ik ,
(c). There exists a general embedding h : N→ N that witnesses uσ � vσ and such that
its restriction to {1,2, . . . , lk} witnesses ui1i2...ik � vi1i2...ik .

Proof (Sketch). (a) and (b) are equivalent by definition of being a direct solution. (c)

obviously implies (b). We prove (c) from (b) by defining h(i) def= mink=1,2,... hk(i). ��

3.2 The Unrestricted Problems

PEP and PEPω are the special case of PEPreg and PEPω-reg where R = Σ+ (respectively,
R = Σω), i.e., where there are no regularity constraints over the form of a solution. The
remark that PEP is trivial extends to PEPω, PEPω

dir and PEPω
codir:

Proposition 3.2. Given two morphisms u,v : Σ∗ → Γ∗ defining a Post embedding
problem:



The ω-Regular Post Embedding Problem 101

1. There is a solution in Σ+ if and only if there is a direct ω-solution in Σω if and only if
there is some i ∈ Σ such that ui � vi.
2. There is an ω-solution in Σω if and only if there is there is a codirect ω-solution if
and only if there exists a non-empty subset Σ′ of Σ s.t. alph(u(Σ′))⊆ alph(v(Σ′)).

Proof. 1. Obviously, if ui� vi then i∈Σ is a solution in Σ+, and iω is a direct ω-solution.
Conversely, if there is a direct solution σ = i1i2i3 . . . in Σω, then ui1 � vi1 by definition of
directness. If there is a finite solution σ = i1i2i3 . . . im in Σ+, then either ui1 � vi1 and we
are done, or i2i3 . . . im is a shorter finite solution, and we’ll eventually encounter some
ui � vi.
2. Obviously, if alph(u(Σ′)) ⊆ alph(v(Σ′)) for some non-empty Σ′ = {i1, . . . , im}, then
(i1 . . . im)ω is an ω-solution, and even a codirect one. Conversely, given an ω-solution

σ, Lemma 2.1 entails that, letting Σ′ def= inf(σ), one has alph(u(Σ′))⊆ alph(v(Σ′)). ��
The corollary is:

Theorem 3.3. PEPω and PEPω
codir coincide, and are PTime-complete. PEPω

dir coin-
cides with the finitary problems PEP, PEPdir and PEPcodir, and these problems are in
LogSpace.

Proof (Sketch). There exists a simple polynomial-time decision procedure for PEPω. It
computes the largest Σ′ satisfying alph(u(Σ′))⊆ alph(v(Σ′)) and then checks that this Σ′
is not empty. This largest Σ′ is obtained by starting with Σ′:=Σ and then removing from
Σ′ every i for which alph(ui) is not included in the current Σ′, until eventual stabilization
(PTime-hardness is proved in the full version of this paper). Regarding PEPω

dir, one
only needs deterministic logarithmic space to find whether ui � vi for some i. ��

3.3 Short Morphisms

PEP
reg
≤1 (respectively PEP

ω-reg
≤1 ) is PEPreg (respectively PEPω-reg) with the constraint

that all images ui’s and vi’s have length ≤ 1, i.e., the morphisms can be seen as maps
u,v : Σ→ Γ∪{ε}.
Proposition 3.4
1. PEPreg and PEP

reg
≤1 are equivalent (inter-reducible).

2. PEPω-reg and PEP
ω-reg
≤1 are equivalent (inter-reducible).

Proof. It is enough to show that PEP reduces to PEP≤1. For this, let u,v : Σ∗ → Γ∗
be a PEP instance. Let k > 0 be large enough so that, for all i ∈ Σ, ui and vi have at
most k letters. Then we can write each ui under the form u1

i . . .u
k
i with u j

i ∈ Γ∪ {ε},
i.e., |u j

i | ≤ 1. Similarly, we write every vi as some v1
i . . .v

k
i with |v j

i | ≤ 1. We now define

Σ′ def= Σ×{1, . . . ,k} and two morphisms u′,v′ : Σ′∗ → Γ∗ with u′(i, j) def= u j
i and v′(i, j) def=

v j
i . Observe that u′,v′ defines a PEP≤1 instance. Now, with R ⊆ Σ∗ (or R ⊆ Σω) one

associates a constraint R′ ⊆ Σ′∗ (resp., R′ ⊆ Σ′ω) by R′ def= h(R) with h : Σ∗ → Σ′∗ given
by h(i) = (i,1)(i,2) . . . (i,k). R′ is regular (resp., ω-regular) since R is, and u′,v′ admits
a solution in R′ iff u,v has one in R. ��



102 P. Chambart and Ph. Schnoebelen

4 Reducing PEPω-reg to PEPreg

Theorem 4.1 (Main result). PEPω-reg and PEPreg are equivalent (modulo elementary
reductions).

Corollary 4.2. PEPω-reg is decidable (but not primitive-recursive).

One direction of Theorem 4.1 is obvious: any PEPreg instance u,v,R can be seen as a
PEPω-reg instance by adding an extra symbol⊥ to Σ and Γ, replacing R with R.⊥ω, and
letting u(⊥) = v(⊥) =⊥.

For the other direction, we consider a PEPω-reg instance given by two morphisms
u,v : Σ∗ → Γ∗ and an ω-regular R⊆ Σω.

Lemma 4.3. There exists σ ∈ R such that uσ � vσ if and only if there exists two finite
words ρ1 and ρ2 in Σ∗ such that

(a) ρ1.ρω
2 ∈ R,

(b) uρ1 � vρ1.ρ2 , and
(c) alph(uρ2)⊆ alph(vρ2).

Proof. The “⇐” direction is easy since taking σ = ρ1.ρω
2 is sufficient. For the “⇒”

direction, we assume that σ = a1a2a3 . . . ∈ R satisfies uσ � vσ and show how to build
ρ1 and ρ2.

Let AR = (Q,Σ,q0,F,δ) be a Büchi automaton for R, and π = q0
a1−→ q1

a2−→ q2
a3−→ ·· ·

be an accepting run of AR over σ. This run is an ω-sequence of transitions “qi−1
ai−→ qi”,

so that π ∈ δω can be halved under the form π = π′.π′′. This gives rise to two halvings
u′.u′′ and v′.v′′ of, respectively, uσ and vσ.

Let us pick a finite prefix θ of π′′ that uses every transition from inf(π) at least once,

and that ends on the starting state of π′′. Hence θ is some qn
an+1−−→ qn+1

an+2−−→ ·· · an+k−−→ qn+k

with n = |π′|, qn = qn+k, and inf(σ) = {an+1,an+2, . . . ,an+k}. Let now ρ1
def= a1a2 . . .an

and ρ def= an+1an+2 . . .an+k. Clearly ρ1.ρω ∈ R as witnessed by the ultimately periodic
run π′.θω. Furthermore, from u′ = uρ1 and inf(u′′) = alph(u′′) = alph(uρ), we deduce
uσ = u′.u′′ ≡ uρ1.ρω using Corollary 2.2. Similarly, vσ ≡ vρ1.ρω . Hence uσ � vσ entails
uρ1.ρω � vρ1.ρω . Using Lemma 2.1, we conclude that uρ1 � vρ1.ρ2 can be obtained by

picking for ρ2 a large enough power ρ2
def= ρ.ρ . . .ρ of ρ. Such a ρ2 further ensures

ρω
2 = ρω, so that requirements (a) and (c) are inherited from ρ. ��

For the next step, we show how to state the existence of two finite ρ1 and ρ2 as in
Lemma 4.3 under the form of a PEPreg problem.

Let AR =(Q,Σ,q0,F,δ) be the Büchi automaton defining R. As is standard, for q,q′ ∈
Q, we let Lq,q′ ⊆ Σ∗ denote the (regular) language accepted by starting AR in q and
stopping in q′.

Let Σ′ = {1′,2′, . . .} be a copy of Σ = {1,2, . . .} where letters have been primed: for
x ∈ Σ∗ and L⊆ Σ∗, we let x′ ∈ Σ′∗ and L′ ⊆ Σ′∗ denote primed versions of x and L.

We can now express condition (a) as a regularity constraint on ρ1.ρ′2: by definition,
ρ1.ρω

2 belongs to R iff for some q ∈ Q, ρ1 ∈ Lq0,q and ρ2 ∈ (Lq,q � ε). That is, if and
only if ρ1.ρ′2 ∈ R1 with



The ω-Regular Post Embedding Problem 103

R1
def=
�

q∈Q

Lq0,q.(L
′
q,q � ε).

Condition (b) can be stated as an embedding property on ρ1.ρ′2: let u′,v′ : (Σ∪Σ′)∗ →Γ∗

be the extensions of u and v given by u′i′
def= ε and v′i′

def= vi. Then

uρ1 � vρ1.ρ2 if and only if u′ρ1.ρ′2
� v′ρ1.ρ′2

.

Finally, condition (c) can be expressed as another regularity constraint. Indeed, for
X ⊆ Γ, alph(uρ2) ⊆ X and alph(vρ2)⊆ X require ρ2 ∈ u−1(X∗) and, respectively, ρ2 ∈
v−1(X∗). These are regular conditions on ρ2 since inverse morphisms preserve regular-
ity. Let now

R2
def=
�

X⊆Γ

(
u−1(X∗)∩ v−1(X∗)∩

�

a∈X

a∈alph(vρ2 )
︷ ︸︸ ︷
Σ∗{i ∈ Σ | a ∈ alph(vi)}Σ∗

)
.

Clearly, alph(uρ2) ⊆ alph(vρ2) if and only if ρ2 ∈ R2. Hence alph(uρ2) ⊆ alph(vρ2) if,
and only if, ρ1.ρ′2 ∈ Σ∗.(R2)′ where we observe that R2, hence Σ∗.(R2)′ too, are regular.

Finally, u,v has an ω-solution in R iff u′,v′ has a finite solution in R1∩ (R2)′, which
provides the reduction from PEPω-reg to PEPreg.

Remark 4.4. The automaton for R1 has size linear in |AR|. The automaton for R2 has
size exponential in |Σ|: this is because we consider all subsets X ⊆ Σ. Hence the re-
duction from PEPω-reg to PEPreg is not logspace when the constraint R is given by a
non-deterministic FSA. It is polynomial-space, which is certainly fine enough to state
“equivalence” by inter-reducibility between problems that are not primitive-recursive.

There exists other possible choices for the precise finitary way with which R is
supposed to be provided in a PEP instance: for many of these choices, from various
logical formalisms (e.g., MSO) to various automata-based framework (e.g., alternating
automata), logspace reductions from PEPω-reg to PEPreg exist. ��
We conclude this section with the following observation:

Theorem 4.5. PEP
ω-reg
codir and PEP

reg
codir are equivalent (inter-reducible).

This can be proved using the same techniques we used in this section, in particular one
can state a version of Lemma 4.3 that accounts for codirect solutions (while this is not
possible for direct solutions). Then a codirect infinite solution σ induces the existence
of a codirect ρ1.ρω

2 , and the existence of such an infinite ρ1.ρω
2 can be witnessed by a

finite ρ1.ρ′2 that solves a derived PEP
reg
codir instance.

5 Unidirectional Channel Systems

Unidirectional channel systems, shortly UCS, are systems composed of two finite-state
machines that communicate unidirectionally via one reliable and one lossy channel,



104 P. Chambart and Ph. Schnoebelen

q1

q2q3

r!a

l!d

r!b

l!c p1 p2

p3p4

r?c

l?a

l?c

r?b

l?b

r?a

r?d

channel r (reliable)

channel l (lossy)

a b d a c

b c

Fig. 1. A unidirectional channel system with one reliable and one lossy channel

as illustrated in Fig. 1. No feedback communication from the receiver to the sender is
possible. UCS’s are a key ingredient in the complete classification of mixed channel
systems according to their network topologies [Cha07].

Formally, a UCS has the form S = (Q1,Q2,M,{r,l},Δ1,Δ2), where Q1 and Δ1 (re-
spectively, Q2 and Δ2) are the finite set of states and set of rules of the sender (re-
spectively, the receiver), M is the finite message alphabet, r and l are the names of,
respectively, the reliable and the lossy channel. The sender’s rules, Δ1, is a subset of

Q1×{r,l}×{!}× M∗×Q1, i.e., it contains rules of the form q
r!u−→ q′ or q

l!u−→ q′. The

receiver’s rules have the form q
r?u−→ q′ or q

l?u−→ q′ with q,q′ ∈ Q2.
A configuration of S is a tuple 〈q1,q2,v1,v2〉 with control states q1 and q2 for the

components, contents v1 for channel r, and v2 for l. The operational semantics is as ex-

pected. A rule q
r!u−→ q′ (resp. q

l!u−→ q′) from Δ1 gives rise to all transitions 〈q,q2,v1,v2〉 −→
〈q′,q2,v1u,v2〉 (resp. all 〈q,q2,v1,v2〉 −→ 〈q′,q2,v1,v2u′〉 for u′ � u). A rule q

r?u−→ q′

(resp. q
l?u−→ q′) from Δ2 gives rise to all transitions 〈q1,q,uv1,v2〉 −→ 〈q1,q′,v1,v2〉 (resp.

all 〈q1,q,v1,uv2〉 −→ 〈q1,q′,v1,v2〉). Observe that message losses only occur when writ-
ing to channel l. A run π is a sequence

π : 〈q0
1,q

0
2,v

0
1,v

0
2〉 −→ 〈q1

1,q
1
2,v

1
1,v

1
2〉 −→ 〈q2

1,q
2
2,v

2
1,v

2
2〉 −→ ·· ·

of configurations linked by valid transitions.
We consider reachability and recurrent reachability problems for UCS’s. Formally,

given a UCS S, two initial states q1
init ∈ Q1 and q2

init ∈ Q2, two sets F1 ⊆ Q1 and
F2⊆Q2 of final states, the reachability problem, denoted ReachUcs, asks whether there
exists a run that starts from configuration 〈q1

init,q
2
init,ε,ε〉 and ends in some configu-

ration 〈q1
final,q

2
final,ε,ε〉 with (q1

final,q
2
final) ∈ F1×F2. The recurrent reachability prob-

lem, denoted RecReachUcs, asks whether there exists an infinite run starting from
〈q1

init,q
2
init,ε,ε〉 and visiting infinitely many configurations 〈qi

1,q
i
2,v

i
1,v

i
2〉with (qi

1,q
i
2)∈

F1×F2.

Remark 5.1. As explained in [CS07], requiring that our reachability questions have
empty channels in the initial and the target configurations is just a technical simplifi-
cation. More general reachability questions, including control-state reachability, where
the channels contents in the target configuration are existentially quantified upon, re-
duce easily to ReachUcs. ��



The ω-Regular Post Embedding Problem 105

Theorem 5.2 (Equivalence between UCS and Post Embedding)
1. PEPreg and ReachUcs are equivalent (inter-reducible).

2. PEPω-reg and RecReachUcs are equivalent (inter-reducible).

The finitary case was first stated and proved in [CS07]. In the rest of this section, we
develop a new and more modular proof that also applies to the ω-regular case.

We first introduce an abstract version of the UCS problems that is closer to PEP:

Definition 5.3 (2PCEP)
a. The 2-dimensional correspondence plus embedding problem asks, given two pairs
of morphisms f1,g1 : Σ∗1 → Γ∗ and f2,g2 : Σ∗2 → Γ∗, to find words σ1 and σ2 s.t.
f1(σ1) = f2(σ2) (correspondence) and g1(σ1)� g2(σ2) (embedding).
b. 2PCEPreg is the decision problem, where given f1,g1, f2,g2 and two regular lan-
guages R1 ⊆ Σ∗1 and R2 ⊆ Σ∗2, one asks whether there is a solution with σ1 ∈ R1 and
σ2 ∈ R2.
c. 2PCEPω-reg is the infinitary version of 2PCEPreg, where now R1 ⊆ Σω

1 and R2 ⊆ Σω
2

are two given ω-regular languages, and where one looks for ω-solutions with σ1 ∈ R1

and σ2 ∈ R2.

Lemma 5.4 (See Appendix)
1. ReachUcs and 2PCEPreg are equivalent.

2. RecReachUcs and 2PCEPω-reg are equivalent.

We now reduce 2-dim correspondence+embedding to Post embedding:

Lemma 5.5 (See Appendix)
1. 2PCEPreg reduces to PEPreg.

2. 2PCEPω-reg reduces to PEPω-reg.

We can now conclude the proof of Theorem 5.2: since PEPreg can be seen as a special
case of 2PCEPreg (let f1 = f2 = Id, g1 = u, g2 = v) and, similarly, PEPω-reg as a special
case of 2PCEPω-reg, Lemmas 5.4 and 5.5 entail the equivalence of PEPreg and Reach-
Ucs on the one hand, of PEPω-reg and RecReachUcs on the other hand.

6 Lossy Channel Systems

Systems composed of several finite-state components communicating via several chan-
nels (all of them lossy) can be simulated by systems with a single channel and a single
component (see, e.g., [Sch02, Section 5]). Hence we define here a lossy channel sys-
tem (a LCS) as a tuple S = (Q,M,{c},Δ) as illustrated in Fig. 2. Rules read from, or
write to, the single channel c. Configurations of S are pairs 〈q,v〉 ∈ Q× M∗ of a state
and a channel contents. Transitions between configurations are obtained from the rules
as expected, in the write-lossy spirit we just used for UCS’s (see [CS07] for a formal
definition).

ReachLcs, the reachability problem for LCS’s, is the question, given a LCS S, an
initial state qinit ∈ Q and a set F ⊆ Q of final states, whether S has a run that goes
from 〈qinit,ε〉 to 〈q,ε〉 for some q ∈ F . RecReachLcs, the recurrent reachability prob-
lem for LCS’s, is the question whether S has an infinite run 〈qinit,ε〉 −→ 〈q1,v1〉 −→



106 P. Chambart and Ph. Schnoebelen

q1

q2q3

c!a

c?d

c!b

c?c
lossy channel c

a b a d

Fig. 2. A single-component system with a single lossy channel

〈q2,v2〉 −→ ·· · with qk ∈ F for infinitely many k ∈ N. Recall that ReachLcs is decid-
able [Pac87, AJ96b, BBS06] (albeit not primitive-recursive [Sch02]) while RecReach-
Lcs is undecidable [AJ96a] (albeit r.e.).2 Furthermore, ReachUcs and ReachLcs (and
PEPreg) are inter-reducible [CS07].

In the rest of this section we prove the following theorem.

Theorem 6.1. PEP
ω-reg
dir and RecReachLcs are equivalent (inter-reducible).

Corollary 6.2. PEP
ω-reg
dir is (r.e. but) undecidable.

The two directions of Theorem 6.1 are given by Lemmas 6.3 and 6.4.

Lemma 6.3. PEP
ω-reg
dir reduces to RecReachLcs.

Proof. The reduction from PEP
ω-reg
dir to RecReachLcs is illustrated in Fig. 3, where the

“rules” of the form q
c!xc?y−−−→ q′ are just a shorthand description for two consecutive rules

q
c!x−→ q? and q?

c?y−→ q′ that traverse an anonymous intermediary state q?. Simply put, the
LCS Su,v,R mimics the Büchi automaton AR that defines the constraint R ⊆ Σω. A run
of the LCS that visits F infinitely often will performs steps 1,2,3, . . ., writing to the
channel some v′1, v′2, v′3, . . . , that are subwords (because of message losses) of vi1 , vi2 ,
vi3 , . . . (the writes prescribed by the rules). During these same steps, it reads ui1 , ui2 ,
ui3 , . . . , from the channel. These read letters must have been written earlier, hence for
k = 1,2,3, . . ., ui1 . . .uik is a prefix of v′1 . . .v

′
k, hence a subword of vi1 . . .vik . Finally,

σ def= i1.i2.i3 . . . is a direct solution.
Reciprocally, given a direct solution σ = i1.i2.i3 . . ., it is possible (using the general

embedding provided by Lemma 3.1) to find subwords v′1, v′2, v′3, . . . of vi1 , vi2 , vi3 , . . .
s.t., for all k = 1,2, . . ., ui1 . . .uik is a prefix of v′1 . . .v

′
k. Using these v′k, one easily obtains

an infinite run of the LCS that shows the associated RecReachLcs is positive. ��
Lemma 6.4. RecReachLcs reduces to PEPω-reg

dir .

Proof. Consider a RecReachLcs instance S = (Q,M,{c},Δ) with given qinit and F . With
it, we associate a PEP

ω-reg
dir instance where Σ = Δ and where R ⊆ Σω is given by the

Büchi automaton that is exactly like S, with the difference that any rule δ between some

2 For Turing machines, the reachability problem is undecidable albeit r.e., while the recurrent
reachability problem is Σ1

1-complete.



The ω-Regular Post Embedding Problem 107

qinit

q2q3

i1

i2

i3

i2

From AR

⇒

qinit

q2q3

c!v1

c?u1

c!v2c?u2

c!v3

c?u3

c!v2 c?u2

To an LCS Su,v,R

c

Fig. 3. Reductions between PEP
ω-reg
dir and RecReachLcs

states q and q′ is now a transition q
δ−→ q′ in AR. The morphisms u,v are defined by

u(δ) def= “what rule δ reads in channel c”, v(δ) def= “what δ writes in c”. Since u(δ) = ε or
v(δ) = ε for every rule (LCS’s rules either read or write to c, not both), S (essentially)
coincides with Su,v,R (Fig. 3). Hence the proof of Lemma 6.3 shows that u,v,R is a
positive PEPω-reg instance iff the original RecReachUcs instance is positive. ��

7 Concluding Remarks

We introduced infinitary versions of PEPreg, a new and exciting variant of Post Corre-
spondence Problem based on embedding rather than equality, which also is an abstract
representative of the LCS complexity niche.

Our main result is that two such infinitary versions, PEPω-reg and PEP
ω-reg
codir , are

equivalent to the finitary PEPreg. Hence they are decidable albeit not in primitive-
recursive time. Since one can link PEPω-reg and RecReachUcs, the recurrent reachabil-
ity problem for unidirectional channel systems, we obtain the decidability of RecReach-
Ucs. In fact, and quite surprisingly, RecReachUcs and PEP or ReachLcs are equivalent.
The last version, PEP

ω-reg
codir , is equivalent to RecReachLcs, the recurrent reachability

problem for lossy channel systems, which is undecidable albeit r.e. Finally, the PTime-
complete unconstrained PEPω is harder that the unconstrained PEP that can be solved
in logspace.

References

[ADOW05] Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity
results for timed automata via channel machines. In: Caires, L., Italiano, G.F.,
Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580,
pp. 1089–1101. Springer, Heidelberg (2005)

[AJ96a] Abdulla, P.A., Jonsson, B.: Undecidable verification problems for programs with
unreliable channels. Information and Computation 130(1), 71–90 (1996)



108 P. Chambart and Ph. Schnoebelen

[AJ96b] Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Infor-
mation and Computation 127(2), 91–101 (1996)

[AM02] Amadio, R., Meyssonnier, C.: On decidability of the control reachability prob-
lem in the asynchronous π-calculus. Nordic Journal of Computing 9(2), 70–101
(2002)

[BBS06] Baier, C., Bertrand, N., Schnoebelen, P.: On computing fixpoints in well-
structured regular model checking, with applications to lossy channel systems.
In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp.
347–361. Springer, Heidelberg (2006)

[Cha07] Chambart, P.: Canaux fiables et non-fiables: frontières de la décidabilité. Rapport
de Master, Master Parisien de Recherche en Informatique, Paris, France (Septem-
ber 2007)

[CS07] Chambart, P., Schnoebelen, P.: Post embedding problem is not primitive re-
cursive, with applications to channel systems. In: Arvind, V., Prasad, S. (eds.)
FSTTCS 2007. LNCS, vol. 4855, pp. 265–276. Springer, Heidelberg (2007)

[Del07] Delzanno, G.: Constraint-based automatic verification of abstract models of mul-
tithreaded programs. Theory and Practice of Logic Programming 7(1–2), 67–91
(2007)

[DL06] Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In:
Proc. LICS 2006, pp. 17–26. IEEE Comp. Soc. Press, Los Alamitos (2006)

[Fin85] Finkel, A.: Une généralisation des théorèmes de Higman et de Simon aux mots
infinis. Theoretical Computer Science 38(1), 137–142 (1985)

[GKWZ06] Gabelaia, D., Kurucz, A., Wolter, F., Zakharyaschev, M.: Non-primitive recursive
decidability of products of modal logics with expanding domains. Annals of Pure
and Applied Logic 142(1–3), 245–268 (2006)

[JL07] Jurdziński, M., Lazić, R.: Alternation-free modal mu-calculus for data trees. In:
Proc. LICS 2007, pp. 131–140. IEEE Comp. Soc. Press, Los Alamitos (2007)

[KWZ05] Konev, B., Wolter, F., Zakharyaschev, M.: Temporal logics over transitive states.
In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 182–203.
Springer, Heidelberg (2005)

[Kur06] Kurucz, A.: Combining modal logics. In: Blackburn, P., van Benthem, J., Wolter,
F. (eds.) Handbook of Modal Logics, vol. 3, ch. 15, pp. 869–926. Elsevier, Ams-
terdam (2006)

[LW05] Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)

[LNO+07] Lazić, R., Newcomb, T., Ouaknine, J., Roscoe, A.W., Worrell, J.: Nets with to-
kens which carry data. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS,
vol. 4546, pp. 301–320. Springer, Heidelberg (2007)

[OW06] Ouaknine, J., Worrell, J.: On metric temporal logic and faulty Turing machines.
In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–
230. Springer, Heidelberg (2006)

[OW07] Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal
Logic over finite words. Logical Methods in Comp. Science 3(1), 1–27 (2007)

[Pac87] Pachl, J.K.: Protocol description and analysis based on a state transition model
with channel expressions. In: Proc. PSTV 1987, pp. 207–219. North-Holland,
Amsterdam (1987)

[Sch02] Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive
complexity. Information Processing Letters 83(5), 251–261 (2002)



The ω-Regular Post Embedding Problem 109

A Proofs for Section 5

A.1 Commuting UCS Steps

We first state a trivial but important property about runs of unidirectional systems.

Let S = (Q1,Q2,M,{r,l},Δ1,Δ2) be some UCS, and 〈q1,q2,x,y〉 δ2−→ 〈q1,q′2,x
′,y′〉 δ1−→

〈q′1,q′2,x′′,y′′〉 be two consecutive steps with δ1 ∈ Δ1 and δ2 ∈ Δ2, i.e., where the re-
ceiver performs the first step, and the sender the second step. Then it is possible to fire
δ1 before δ2 and reach the same configuration. More precisely, there exists x′′′ and y′′′

with 〈q1,q2,x,y〉 δ1−→ 〈q′1,q2,x′′′,y′′′〉 δ1−→ 〈q′1,q′2,x′′,y′′〉.
The corollaries are

Lemma A.1. If S has a run 〈q1,q2,x,y〉 Δ1∪Δ2−−−→ ∗〈q′1,q′2,x′,y′〉 then it has one such run
of the form

〈q1,q2,x,y〉 Δ1−→ ∗〈q′1,q2,x
′′,y′′〉 Δ2−→ ∗〈q′1,q′2,x′,y′〉.

Lemma A.2. If S has an infinite run from 〈q1
0,q

2
0,x0,y0〉 of the form

〈q1
0,q

2
0,x0,y0〉 −→ 〈q1

1,q
2
1,x1,y1〉 −→ 〈q1

2,q
2
2,x2,y2〉 −→ ·· ·

with q1 = q1
i for infinitely many i’s, and q2 = q2

i for infinitely many i’s (not necessarily
the same), then it has one such run with (q1,q2) = (q1

i ,q
2
i ) for infinitely many i’s.

A.2 Proof of Lemma 5.4

2PCEPreg reduces to ReachUcs, and 2PCEPω-reg to RecReachUcs

For this, consider a 2PCEPreg instance f1,g1, f2,g2,R1,R2 as in Definition 5.3.b. Further
assume that, for i = 1,2, Ri is given by some FSA Ai = (Qi,Σi,qi

init,Fi,δi).
With this instance, we associate an UCS where the the sender is obtained from A2 by

replacing transitions q
i−→ q′ ∈ δ2 with rules q

r! f2(i) l!g2(i)−−−−−−−→ q′, and the receiver is obtained

from A1 by replacing transitions q
i−→ q′ ∈ δ1 with rules q

r? f1(i) l?g1(i)−−−−−−−→ q′.
If the 2PCEPreg instance is positive, then a solution σ1,σ2 can be used in a straight-

forward way to build, out of σ2, a run in the UCS that will start from 〈q2
init,q

1
init,ε,ε〉,

will reach some 〈q2
final,q

1
init, f2(σ2),x〉 for some q2

final ∈ F2, and where, using message
losses, we can choose to reach any x � g2(σ2). By picking x = g1(σ1), we can now
continue the run, using σ1, and reach 〈q1

final,q
2
final,ε,ε〉 for some q1

final ∈ F1.
Reciprocally, using Lemma A.1, a run from 〈q2

init,q
1
init,ε,ε〉 to some 〈q1

final,q
2
final,ε,ε〉

can be reordered into some

〈q2
init,q

1
init,ε,ε〉 r1−→ r2−→ ·· · rn−→︸ ︷︷ ︸

rules from Δ1

〈q2
final,q

1
init,x,y〉

r′1−→ r′2−→ ·· · r′m−→︸ ︷︷ ︸
rules from Δ2

〈q1
final,q

2
final,ε,ε〉

where all sender’s steps occur first, followed by the receiver steps. This translates into a

path q2
init

σ2−→ q2
final in A2, and q1

init
σ1−→ q1

final in A1 where f2(σ2) = x = f1(σ1), and where
g2(σ2)� y = g1(σ1), solving the 2PCEPreg instance.



110 P. Chambart and Ph. Schnoebelen

Finally, the 2PCEPreg instance is positive iff the associated ReachUcs instance is.
Hence 2PCEPreg reduces to ReachUcs.

The same association of an UCS with f1,g1, f2,g2,A1,A2 shows that 2PCEPω-reg

reduces to RecReachUcs.
Indeed, an infinite solution σ1,σ2 in some ω-regular languages R1 and R2, can be

used to build an infinite run of the UCS that visit infinitely many configurations
〈q2

final,q
1
i ,xi,yi〉with some q2

final ∈F2, and infinitely many configurations 〈q2
i ,q

1
final,x

′
i,y
′
i〉

with some q1
final ∈ F1. Using Lemma A.2, this run can be reordered into a run visiting

infinitely many configurations 〈q2
final,q

1
final,x

′′
i ,y
′′
i 〉, showing the RecReachUcs instance

is positive.
Reciprocally, from an infinite run of the UCS that visits infinitely many configura-

tions of the form 〈q2
final,q

1
final,x

′′
i ,y
′′
i 〉, one extracts two solutions σ1,σ2 that show that

the 2PCEPω-reg instance is positive.

ReachUcs reduces to 2PCEPreg, and RecReachUcs to 2PCEPω-reg

Consider an ReachUcs instance with some UCS S = (Q1,Q2,M,{r,l},Δ1,Δ2), some
initial states q1

init,q
2
init, and some sets of final states F1,F2.

With this instance, we associate a 2PCEPreg instance where Σ1
def= Δ2 and Σ2

def= Δ1

are the set of rules. Automata A1 and A2 for R1 and R2 are obtained from the control
graph of the receiver (resp., the sender) in the obvious way. (Note that we extract FSA’s
from an ReachUcs instance, and Büchi automata from an RecReachUcs instance.) The
morphisms are defined in the obvious way:

f1(δ) def= x and g1(δ) def= y for δ = q
r?x l?y−−−→ r in Δ2,

f2(δ) def= x and g2(δ) def= y for δ = q
r!x l!y−−−→ r in Δ1.

A.3 Proof of Lemma 5.5

We consider a 2PCEP instance f1,g1, f2,g2 where we assume that the morphisms are
short, i.e., fi and gi can be seen as having type (Σi ∪{ε})→ (Γ∪{ε}). For 2PCEPreg

and 2PCEPω-reg, and thanks to the possibility offered by the regular constraints, this
assumption is no loss of generality, as can be easily proved using the techniques from
section 3.3.

Let Σ def= (Σ1∪{ε})× (Σ2∪{ε}) and define X ⊆ Σ by

(i, j) ∈ X if and only if f1(i) = f2( j).

Then (i1, j1).(i2, j2) . . . (in, jn) ∈ X∗ implies that f1(i1.i2 . . . in) = f2( j1. j2 . . . jn). Re-
ciprocally, if f1(σ1) = f2(σ2), then σ1 and σ2 can be decomposed under the form
σ1 = i1.i2 . . . in and σ2 = j1. j2 . . . jn such that (ik, jk) ∈ X for k = 1, . . . ,n. Observe that
in this decomposition, n≥ |σi| is possible since ik = ε or jk = ε (or both) is allowed.

Now define projection morphisms h1 : Σ∗ → Σ∗1 and h2 : Σ∗ → Σ∗2 in the obvious way,

and let u,v : Σ∗ → Γ∗ be two morphisms given by u
def= g1 ◦ h1 and v

def= g2 ◦ h2. Then
u(i1, j1).(i2, j2)...(in, jn) � v(i1, j1).(i2, j2)...(in, jn) if and only if g1(i1.i2 . . . in)� g2( j1. j2 . . . jn).



The ω-Regular Post Embedding Problem 111

Finally, the 2PCEPreg instance with regular constraints R1,R2 translates into an
equivalent PEPreg instance, with morphisms u and v as above, and with constraint

R
def= X∗ ∩h1

−1(R1)∩h2
−1(R2),

which is regular. Similarly, the 2PCEPω-reg instance with ω-regular constraints R1,R2

translates into an equivalent PEPω-reg instance, with same morphisms u and v, and with
constraint

R
def= Xω∩h1

−1(R1)∩h2
−1(R2),

which is ω-regular.



Complexity of Decision Problems for
Mixed and Modal Specifications�

Adam Antonik1, Michael Huth1,
Kim G. Larsen2, Ulrik Nyman2, and Andrzej Wąsowski2,3

1 Department of Computing, Imperial College London, United Kingdom
{aa1001,mrh}@doc.imperial.ac.uk

2 Department of Computer Science, Aalborg University, Denmark
{kgl,ulrik}@cs.aau.dk

3 IT University of Copenhagen, Denmark
wasowski@itu.dk

Abstract. We consider decision problems for modal and mixed transi-
tion systems used as specifications: the common implementation problem
(whether a set of specifications has a common implementation), the con-
sistency problem (whether a single specification has an implementation),
and the thorough refinement problem (whether all implementations of
one specification are also implementations of another one). Common im-
plementation and thorough refinement are shown to be PSPACE-hard for
modal, and so also for mixed, specifications. Consistency is PSPACE-
hard for mixed, while trivial for modal specifications. We also supply
upper bounds suggesting strong links between these problems.

1 Introduction

Bisimulation equivalence [1,2] is widely accepted as a correctness criterion for
realizations of abstract specifications. Bisimulation is, however, a rather strong
relation that severely, and often unnecessarily, limits the choices of designers in
how specifications should be realized. At the same time, the main alternative,
bisimulation’s sister preorder simulation [1], is often too weak to use in this
context as it only limits faulty behaviours, without enforcing any correct ones.
In order to address these shortcomings, Larsen and Thomsen [3] have proposed

modal transition systems and the accompanying modal refinement, in this pa-
per referred to simply as refinement. Modal transition systems feature required
and allowed transitions able to simultaneously describe an under- and over-
approximation of behavior within a single specification. Modal refinement gener-
alizes both simulation and bisimulation, letting the specifier choose the required
level of strictness in the spectrum between the two. In [4] Larsen argued that
any sufficiently expressive specification language necessarily must accommodate

� Partially supported by the UK EPSRC projects Efficient Specification Pattern Li-
brary for Model Validation (EP/D50595X/1) and Complete and Efficient Checks for
Branching-Time Abstractions (EP/E028985/1).

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 112–126, 2008.
© Springer-Verlag Berlin Heidelberg 2008



Complexity of Decision Problems for Mixed and Modal Specifications 113

inconsistent specifications, akin to inconsistent logical formulæ, and thus lifted
the consistency requirement. The same type of systems were independently rein-
troduced by Dams as mixed transition systems [5,6].
Here we establish complexities of several decision procedures for this family

of specification languages, addressing several long outstanding open problems:

CI. Deciding whether k > 1 modal transition systems have a common imple-
mentation is PSPACE-hard in the sum of the sizes of these k systems.

C. Deciding whether a mixed transition system is consistent, i.e. whether it
has an implementation, is PSPACE-hard in the size of that system.

TR. Deciding whether one modal transition system thoroughly refines another
modal transition system is PSPACE-hard in the size of these systems.

We show quite strong links between these problems. In particular we efficiently
reduce problems of type CI to problems of type C, and problems of type C to
problems of type TR—though mixed, not necessarily modal, transition systems
are the targets of that latter reduction. All three problems C, CI, and TR are
shown to be in EXPTIME.
We begin with discussing the related work in Section 2 and introducing the

basic concepts in Section 3. The hardness results and the aforementioned problem
reductions for common implementation, consistency, and thorough refinement
are the subject of Sections 4, 5, and 6 respectively. A general discussion, including
the provision of upper bounds, is given in Section 7. We conclude in Section 8.

2 Related Work

Our terminology differs from that used in [7]: what we call “modal transition
systems” and “mixed transition systems” are called respectively “syntactically
consistent modal transition systems” and “modal transition systems” therein.
In [8] a superpolynomial algorithm was given for deciding CI for k > 1 modal

specifications. The algorithm is exponential in k, but polynomial if k is fixed. In
particular, it computes a common implementation if there is one. These upper
bounds also follow easily from the polynomial algorithm for consistency checking
of a conjunction of disjunctive modal transition systems, as studied in [9].
Larsen et al. [7] show that TR is coNP-hard, while C is NP-hard. We strength-

en both of these bounds here. They also hint at exponential upper bounds for
both problems, without arguing how these can be achieved. We elaborate on
how to attain these bounds, by giving precise reductions in Section 7.
Hussain and Huth [10] present an example of two modal specifications that

have a common implementation but no greatest common implementation.
Fischbein et al. [11] use modal specifications for behavioral conformance check-

ing of products with specifications of product families. They propose a new thor-
ough refinement whose implementations are defined through a refinement notion
that generalizes branching bisimulation. The thorough refinement obtained in
this manner is finer than weak refinement, and argued to be more suitable for
conformance checking. In the light of the present work it is very likely that this
refinement can be shown to be PSPACE-hard in the size of the specifications.



114 A. Antonik et al.

3 Background

Let us begin with defining the basic objects of interest in our study [12,5,13]:

Definition 1. For an action alphabet Σ, a mixed transition systemM is a triple
(S,R�, R�), where S is a set of states and R�, R� ⊆ S×Σ×S are must- and may-
transitions relations respectively. A modal transition system is a mixed transition
system satisfying R� ⊆ R�; all its must-transitions are also may-transitions. A
pointed mixed (respectively modal) transition system (M, s) is a mixed (modal)
transition system M with a designated initial state s ∈ S. The size |M | of a
mixed (modal) transition system M is defined as |S |+ |R� ∪R� |. All transition
systems considered here are finite, i.e. Σ and S are always finite sets.

Throughout this paper we refer to pointed modal (mixed) transition systems
as modal (mixed) specifications. Throughout figures, solid arrows denote R�-
transitions, dashed arrows denote R�-transitions. Arrows without labels have
an implicit �-label, where � ∈ Σ is an action with context-dependent meaning.
Two examples of modal specifications are depicted in Fig. 1, while a mixed
specification that is not a modal specification can be seen in Fig. 5.
Modal refinement [12,5,13] is a refinement relationship for mixed specifications

that allows verifying that one such specification is more abstract than another.
It generalizes bisimulation [14] to underspecified models:

Definition 2. A mixed specifications (N, t0) = ((SN , R�

N , R
�
N ), t0) refines an-

other mixed specification (M, s0) = ((SM , R�

M , R
�
M ), s0) over the same alphabet,

written (M, s0)≺(N, t0), iff there is a relation Q ⊆ SM × SN containing (s0, t0)
and whenever (s, t) ∈ Q then
1. for all (s, a, s′) ∈ R�

M there exists some (t, a, t′) ∈ R�

N with (s′, t′) ∈ Q.
2. for all (t, a, t′) ∈ R�N there exists some (s, a, s′) ∈ R�M with (s′, t′) ∈ Q.

Deciding whether one finite-state mixed

s0

s1 s2 s3

s4
M :

t0

t1 t2

t3
N :

Fig. 1. Specifications (M, s0), (N, t0)
with I(M,s0) = I(N, t0) (so I(M,s0)
⊆ I(N, t0)), but not (N, t0)≺(M, s0)

specification refines another one is in P.
Labeled transition systems over an al-
phabet Σ are pairs (S,R) where S is a
set of states and R ⊆ S×Σ×S is a tran-
sition relation. We identify labeled
transition systems (S,R) with modal
transition systems (S,R,R). The set of
implementations I(M, s) of a mixed spec-
ification (M, s) are all pointed labeled
transition systems (T, t) refining (M, s).
Note that I(M, s) may be empty in gen-
eral, but is guaranteed to be non-empty
if M is a modal transition system.

Example. (Due to Harald Fecher) Figure 1 shows modal specifications (M, s0)
and (N, t0) over alphabet {�}. Relation Q = {(s0, t0), (s1, t1), (s2, t2), (s3, t2),
(s4, t3)} witnesses that (N, t0) refines (M, s0), but (M, s0) does not refine (N, t0).



Complexity of Decision Problems for Mixed and Modal Specifications 115

As in [7] we define the thorough refinement (M, s)≺th(N, t) to be the predicate
I(N, t) ⊆ I(M, s). Transitivity of refinement ensures that refinement soundly
characterizes thorough refinement: (M, s)≺(N, t) implies (M, s)≺th(N, t). But
the converse does not hold: completeness of refinement for thorough refinement
is known to be false [15,16,17]; Figure 1 provides a counterexample.
We shall now formally define the problems that we study, and briefly discuss

their significance.

Common implementation (CI): given k > 1 mixed specifications (Mi, si), is
the set

⋂k
i=1 I(Mi, si) non-empty? For example, (M1, s1) could be our system

model and all other (Mi, si) could be definitions of faulty behavior (respectively
features). Common implementations are then possible implementations of our
model that can exhibit all k − 1 faults (features).
Consistency (C): Is I(M, s) non-empty for a mixed specification (M, s)? Specifi-
cation formalisms need the ability to express inconsistencies so that conflicts in
systems or their design are detectable. Equally, inconsistent specifications may
well result from the composition of consistent specifications.

Thorough refinement (TR): Does a mixed specification (N, t) thoroughly refine
a mixed specification (M, s), i.e., do we have I(N, t) ⊆ I(M, s)? As refinement
is only sound but not complete for thorough refinement, the question arises of
whether thorough refinement has an efficient, e.g. co-inductive, definition that
can be integrated in refinement tools.

We assume that specifications are finite-state, given their abstract nature. But
implementations may (have to) be infinite-state as we otherwise cannot express
important features, e.g. unbounded ranges of data types. For the three decision
problems studied in this paper, it turns out that they won’t change if we restrict
implementations to finite-state ones. For example, a mixed specification (M, s)
is consistent in the infinite sense iff its characteristic modal mu-calculus formula
Ψ(M,s) [18] is satisfiable. Appealing to the small model theorem for that logic,
Ψ(M,s) is satisfiable iff it is satisfiable over finite-state implementations. We can
reason in a similar manner about common implementation, through the formula∧
i Ψ(Mi,si). Finally, (M, s)≺th(N, t) is false iff Ψ(N,t)∧¬Ψ(M,s) is satisfiable. This
justifies that we consider only finite-state specifications and implementations.
Throughout this paper we work with Karp reductions, many-one reductions

computable by deterministic Turing machines in polynomial time. This choice
is justified since we reduce problems that are PSPACE-complete.

4 Common Implementation

We show that the CI problem is PSPACE-hard for modal specifications, which
then automatically renders the same hardness result for mixed specifications.

Theorem 3. Let {(Mi, si) | 1 ≤ i ≤ k} with k > 1 be a finite family of modal
specifications over the same action alphabet Σ. Deciding emptiness of the set⋂k
i=1 I(Mi, si) is PSPACE-hard in

∑k
i=1 |Mi |.



116 A. Antonik et al.

We argue for this by reduction from the Generalized Geography game [19,20].

Definition 4. A rooted, directed graph is a structure G = (V,E, v0), where V
is a finite set of vertices, E ⊆ V × V is a set of edges and v0 ∈ V is the root.
For an edge e = (u, v) ∈ E we write tgt e for v and src e for u, and we define
Follow(e) := {f ∈ E | tgt e = src f} and Init := {e ∈ E | src e = v0}.
For G = (V,E, v0) the two-player Generalized Geography game on G is played
according to the following rules:

“The two players alternate choosing a new edge from E. The first edge
chosen (by player 1) must have its source at v0 and each subsequently
chosen edge must have its source at the vertex that was the target of the
previous edge and must not have been previously chosen in the game.
The first player unable to choose such a new edge loses.” [19, p. 254]

The generalized geography problem (GenGeo) is whether given a rooted di-
rected graph G does there exist a winning strategy for player 1 in the Generalized
Geography game played on G? GenGeo is PSPACE-complete [19].

Proof (of Theorem 3). We reduce GenGeo to checking CI of k modal specifi-
cations {(Mi, si)}, where both k and each |Mi | are at most polynomial in the
size of G. The reduction should be such that a common implementation of all
(Mi, si), if it exists, will explicitly give the winning strategy for Player 1.
We will create a set of modal specifications for each kind of conditions imposed

by the game. All specifications will share an alphabet Σ = E ∪ {�}, where � is
a fresh name such that � /∈ E. Choosing an edge in the game corresponds to
taking a transition in these specifications.
Let us begin with modal specifications (P1, s1) and (P2, s2) presented in Fig-

ure 2, which ensure that Player 1 can always continue – a necessary condition
for obtaining a winning strategy. Transitions with labels X ⊆ Σ denote sets of
transitions, one for each e ∈ X . We keep track of whose turn it is in the game by
distinguishing Player 1 states from Player 2 states, labeling states with Player
numbers for the sake of clarity. Observe that both P1 and P2 oscillate between
Player 1 and Player 2 decisions. Each Player 2 move is modeled directly by a
single transition, while a Player 1 move is modeled by exactly two transitions; a
�-transition followed by a regular edge transition. As will be seen later, disjunc-
tive choices will only occur in Player 1 mode, so �-transitions used to encode
disjunctions are there only for Player 1 states. Specification P1 limits choices of
Player 1 to a disjunction of all legal actions, while P2 enforces that at least one
of these choices is indeed taken.
Let us continue with the remaining GenGeo game rules. We can enforce that

an edge e is played at most once using a modal specification (Me, se) shown in
the left part of Figure 3. This specification models a flag that disallows any
further e-transitions once e has been used. Similarly, for each edge e create a
modal specification (Ne, te), as shown in the right part of Figure 3, to constrain
the moves following an e move to edges directly following it. Ne has a �-labeled



Complexity of Decision Problems for Mixed and Modal Specifications 117

1

1

1
2

s1

(P1, s1) :

en

e0

E

.

.

.

1 1 2E

E

s2

(P2, s2) :

Fig. 2. Modal specifications (P1, s1) and (P2, s2) together ensuring that Player 1 can
always continue playing. Assume E = {e0, . . . en}.

se e

Σ \ {e} Σ \ {e}Me :

te
e fn

f0

ΣΣ \ {e} ...

Ne :

Fig. 3. SpecificationsMe, Ne instantiated for each e ∈ E and {f0, . . . , fn} = Follow(e)

loop on its middle state to account for both Player 1 and Player 2 moves. Recall
that if e was played by Player 2, then in our encoding it will be first followed by
a � before Player 1 plays any subsequent edge. The requirement that Player 1
should choose one of the transitions leaving the root as the first move is enforced
by (P0, s0) as shown in the left part of Figure 4.
We are left with the last and the most complex game rule, namely that when-

ever Player 1 makes a choice then Player 2 has to be able to respond with any
so far unused edge f following that choice. Our implementation, which directly
represents the strategy, should thus have all transitions representing possible
choices in such a state. We model this by creating a specification (Mef , sef ) for
every pair of edges e and f such that f ∈ Follow(e) \ {e}. The idea is that each
modal transition system Mef enforces an f transition after an e transition has
been chosen by Player 1, unless f has already been used (either by Player 1 or
Player 2), or e has been used by Player 2. See the right part of Figure 4.
The answer to GenGeo(V,E, v0) is yes iff the answer to CI is yes for
⎛

⎝
⋃

i=0..2

{(Pi, si)}
⎞

⎠ ∪
⋃

e∈E

⎛

⎝{(Me, se), (Ne, te)} ∪
⋃

f∈Follow(e)\{e}
{(Mef , sef )}

⎞

⎠ . (1)

The size of each of these O(|E|2) specifications is O(|E|). �	
Corollary 5. The common implementation problem for k > 1 mixed specifica-
tions is PSPACE-hard in the size of these specifications.

Proof. This follows from Theorem 3 and the fact that the set of mixed specifi-
cations is a superset of the set of modal specifications. �	



118 A. Antonik et al.

s0

en

e0

Σ.

.

.

(P0, s0) :

1

1 2

2

e f

Σ\{�, e, f}

Σ\{�, e, f}
{e, f}

f

Σ

sef(Mef , sef ):

Fig. 4. Specifications (P0, s0) and (Mef , sef ) assuming that Init = {e0, . . . , en}

5 Consistency

Let us now show that consistency of a single mixed specification is PSPACE-
hard in its size. We achieve this by appealing to Theorem 3, and reducing CI for
several modal specifications to the C for a single mixed specification.

Theorem 6. Consistency of a mixed specification is PSPACE-hard.

Proof. By Theorem 3, it suffices to show how k > 1 mixed specifications (Mi, si)
can be conjoined into one mixed specification (M, ck) with |M | being polyno-
mial in

∑
i |Mi | such that (M, ck) has an implementation iff all (Mi, si) have a

common implementation.
Figure 5 illustrates the construction, s1

c2 s2

c3 s3

ck sk

(M1, s1)

(M2, s2)

(M3, s3)
...

...
...
· · ·

· ·
·

(Mk, sk)

Fig. 5. Conjunction of k mixed specifica-
tions into one mixed specification

which originates in [7], by showing a
conjunction of states s1, s2, s3 up to
sk. In order to conjoin two states s1
and s2, two new �-transitions are
added from a fresh state c2 to each
of s1, s2. One of the �-transitions is
a may �-transition and the other is a
must �-transition. Only two states can
be conjoined directly in this way, but
the process can be iterated as many
times as needed, as seen in the figure,
by adding a corresponding number of
�-transitions to the newly conjoined
systems. Observe that the resulting specification is properly mixed (not modal).
Its size is linear in

∑
i |Mi | and quadratic in k, which itself is O(

∑
i |Mi |).

If the specifications that are being conjoined have a common implementation,
then the new specification will also have an implementation which is the same
implementation prefixed with a sequence of k−1 �-transitions. Conversely if the
new mixed specification has an implementation, then this implementation will
contain at least a sequence of k−1 �-transitions, followed by an implementation
that must individually satisfy all the systems that have been conjoined. �	



Complexity of Decision Problems for Mixed and Modal Specifications 119

6 Thorough Refinement

We show PSPACE-hardness of TR for mixed specifications by appeal to Theo-
rem 6 and a reduction of consistency checks to thorough refinement checks.

Theorem 7. Thorough refinement of mixed specifications is PSPACE-hard in
the size of these specifications.

Proof. By Theorem 6 deciding C for a mixed specification is PSPACE-hard.
Therefore it suffices to reduce C to TR. Let (M, s) be a mixed specification over
Σ. Consider a modal specification (N, t) over Σ ∪ {�} with N = ({t}, {}, {}),
which only has a single state and no transitions. From (M, s) construct the mixed
specification (M ′, s′) over Σ∪{�} by prefixing s with a new state s′ and a single
transition (s′, �, s) ∈ R�M ′\R�

M ′ . Then (M ′, s′) is a mixed specification that has
(N, t) as an implementation, where Q = {(s′, t)} is the witnessing refinement
relation. We show that (M, s) is consistent iff not (N, t)≺th(M ′, s′).

1◦ If (M, s) is consistent, then it has an implementation (L, l), from which we
get an implementation (L′, l′) of (M ′, s′) by creating a new state l′ with
a transition (l′, �, l). But then (M ′, s′) has an implementation that is not
allowed by (N, t) and so I(M ′, s′) 
⊆ I(N, t).

2◦ Conversely, if I(M ′, s′) 
⊆ I(N, t) then there exists an implementation (L, l′)
of (M ′, s′), which is not an implementation of (N, t) – and so (L, l′) has a
transition (l′, �, l). Moreover (L, l) refines (M, s) since (L, l′) refines (M ′, s′)
and s is the unique successor of s′ in M ′. Thus (M, s) is consistent.

Remark: Observe that the first argument above would also work for refinement
instead of thorough refinement. However we would not be able to get the second
implication for refinement, due to its incompleteness. �	
Let us now strengthen Theorem 7 to the subclass of modal specifications, by a
polynomial reduction from the PSPACE-complete decision problem QUANTI-
FIED 3SAT [19, pp. 171-2] of computing the truth value of closed quantified
Boolean formulæ in 3CNF. These formulæ are of the form Qx1 . . . Qxn. χ, where
each Q is ∃ or ∀ and χ is a propositional formula over x1, . . . , xn in 3CNF. We
refer to them as QCNF formulæ in here. We can assume without loss of gen-
erality that our formulæ do not contain any clauses with duplicate literals, nor
vacuously true clauses. We use ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x) as a running example.
We present the semantics of QCNF formulæ in a style that will facilitate our

proof. Each formula ϕ can be rewritten into a set of valuation trees. The non-
deterministic rewrite system for this is depicted in Figure 6. Universal quan-
tification rewrites into branching, existential quantification into a choice, and
the 3CNF kernel χ into the set of variables selected to be true on the path
from the tree root to that kernel node. The terminals of this rewrite system for
term (ϕ, ∅) are valuation trees of ϕ. One such valuation tree for the formula
∀x∃y (¬x∨ y)∧ (¬y ∨x) can be seen in Figure 7. Each leaf of a valuation tree T
contains all those xi that are true in the respective model for the propositional



120 A. Antonik et al.

(∀xϕ′, V ) � 1 0
x

(ϕ′, V ∪ {x}) (ϕ′, V )

(∃xϕ′, V ) � 1 0

x

(ϕ′, V ∪ {x})

x

(ϕ′, V )

or

(χ′, V ) � V

Fig. 6. Semantics of QCNF as a non-
deterministic rewrite system

x

y y

{x, y} ∅

1 0

01

Fig. 7. Valuation tree witnessing the
truth of ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x)

kernel formula χ. We define T |= ϕ to mean that all models of leaves of T satisfy
the kernel χ of ϕ. Finally, ϕ is defined to be true iff there is a valuation tree T
for ϕ such that T |= ϕ. For example, T |= ϕ for the valuation tree T in Fig. 7,
as the CNF kernel (¬x∨ y)∧ (¬y ∨x) is true in both models {x, y} (x and y are
true) and ∅ (x and y are false). Thus, ϕ is true.
In Figure 8 we present a second non-deterministic rewrite system whose ter-

minals are potential valuation trees. In this new system there is no path context,
existential quantification has two more rewrite rules, and the CNF kernel may
rewrite into any subset of its variables. The terminals of this rewrite system are
potential valuation trees of ϕ. By construction, every valuation tree is a potential
valuation tree. A potential valuation tree that is not a valuation tree is called a
flawed valuation tree. Figure 9 shows a valuation tree for our running example
with three kinds of flaws: the leftmost y node has no successor, the rightmost y
node has two successors, and the leaf set {x, y} is inconsistent with the 0 label
for x on its path.
Our reduction constructs for any ϕ of QCNF two modal specifications (Nϕ, tϕ)

and (Mϕ, sϕ) such that

I(Nϕ, tϕ) ⊆ I(Mϕ, sϕ) iff ϕ is false. (2)

The intuition behind the construction is that (Nϕ, tϕ)models potential valuation
trees and (Mϕ, sϕ) models flawed, and only flawed, valuation trees of ϕ.
More precisely, these modal specifications are such that any valuation tree T

with T |= ϕ can be transformed into an implementation of (Nϕ, tϕ) that is not
an implementation of (Mϕ, sϕ) and, conversely, that any element of I(Nϕ, tϕ) \
I(Mϕ, sϕ) can be transformed into such a valuation tree T with T |= ϕ.

Both models are defined over the following alphabet

Σϕ = {�} ∪ {vxi , v¬xi | 1 ≤ i ≤ n} (3)



Complexity of Decision Problems for Mixed and Modal Specifications 121

∀xϕ′ �
x

ϕ′

1 0

ϕ′

∃xϕ′ � x

∃xϕ′ �
x

ϕ′

w where w ∈ {0, 1}

∃xϕ′ � ∀xϕ′

χ � any subset of variables of χ

Fig. 8. Non-deterministic rewrite system
for QCNF deriving potential valuation trees

x

y y

{x, y} ∅

1 0

01

Fig. 9. Flawed valuation tree for for-
mula ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x)

where x1, . . . , xn is the set of variables of ϕ.1 Specification (Nϕ, tϕ) is defined by
structural induction on ϕ according to the rules presented in Figure 11.
The initial state tϕ has a must �-transition to the continuation of the compi-

lation of Nϕ. Each quantifier Qxi gets translated into a diamond shaped model
of �-transitions, where the upper half consists of must and may transitions for
quantifiers ∀ and ∃ (respectively). The corners of diamonds have “spikes”, tran-
sitions labeled with a “truth value” vxi or v¬xi , for quantifier variable xi, to a
dead-end state. After all quantifiers have been compiled in this manner, con-
junction is compiled as a fork of two must �-transitions, disjunction as a fork of
two may �-transitions, and literals compiled as spikes of truth values. See the
result of this compilation for our running example in Figure 12.
Refinement, as defined for modal speci-

sϕ

C∃xi

1≤i≤n

C∨ Cxi

1≤i≤n

C¬xi

1≤i≤n

Fig. 10. Structure of modal spe-
cification (Mϕ, sϕ): �-transitions lead
from sϕ to components that detect
possible flaws in potential valuation
trees of ϕ

fications, does not guarantee that a fork of
may �-transitions (present in the compila-
tion of ∃xi and ∨) will implement at least
one of these may �-transitions. Also, an
implementation may be inconsistent as to
its choice of truth values vxi or v¬xi . Each
path through a sequence of diamonds cor-
responds to a choice of such truth values,
recorded in the respective spike transition.
When such a path reaches the compilation
of a propositional literal, that literal may
well be inconsistent with the spike for that literal encountered en route. In total,
these are then the static criteria for corresponding to a flawed valuation tree,
and hence drive the construction of specification (Mϕ, sϕ), whose architecture
1 A stronger, albeit more complicated, reduction is possible to TR of specifications
over a singleton alphabet. We show the simpler variant here for the sake of clarity.



122 A. Antonik et al.

ϕ �
tϕ

[ϕ]

[∀xϕ′] �
vx v¬x

[ϕ′]

[∃xϕ′] �
vx v¬x

[ϕ′]

[ϕ1 ∧ ϕ2] �
[ϕ1] [ϕ2]

[ϕ1 ∨ ϕ2] �
[ϕ1] [ϕ2]

[xi] � vxi

[¬xi] � v¬xi

Fig. 11. Deterministic rules rewriting a QCNF for-
mula ϕ into a specification (Nϕ, tϕ)

vx v¬x

∀x

vy v¬y

∃y

∧

∨

v¬yvxvyv¬x

Fig. 12. Modal specifica-
tion (Nϕ, tϕ) for ϕ =
∀x∃y (¬x ∨ y) ∧ (¬y ∨ x)

is depicted in Fig. 10. Initial state sϕ has may �-transitions to modal specifi-
cations, components that each encode a potential flaw for a valuation tree. For
each variable xi of ϕ we have a component

– C∃xi , whose Mϕ-implementations have no “witness” for ∃xi, i.e., no may
transitions on the top of the diamond encoding the quantifier
– Cxi , whose Mϕ-implementations have a path on which there is some vxi

spike but where, on that same path, a v¬xi-transition occurs subsequently
– C¬xi , whose Mϕ-implementations have a path on which there is some v¬xi

spike but where, on that same path, a vxi-transition occurs subsequently.

Finally there is a component C∨ whoseMϕ-implementations all have a path of
3n �-transitions to a dead-end state, and so no such implementation can encode
all disjunctions of ϕ correctly.
Based on the constructions we can present the following theorem.

Theorem 8. Thorough refinement between modal specifications is PSPACE-
hard in the size of these specifications.

Since the modal transition systems Nϕ andMϕ can be constructed in polynomial
time in the size of ϕ, it suffices to show that (3) holds.
Note that, by construction, (({sϕ}, ∅, ∅), sϕ) is an implementation of (Mϕ, sϕ)

but not of (Nϕ, tϕ). So the result also applies to strict thorough refinement.

Corollary 9. Strict thorough refinement, whether I(N, t) ⊂ I(M, s), is
PSPACE-hard in |M | and |N | for modal and thus also for mixed specifications.



Complexity of Decision Problems for Mixed and Modal Specifications 123

sϕ

C∃xi

C∨

vx

v¬x

Cx

v¬x

vx

C¬x

vy

v¬y

Cy

v¬y

vy

C¬y

Fig. 13. Modal specification (Mϕ, sϕ) for ϕ = ∀x∃y (¬x ∨ y) ∧ (¬y ∨ x). All incoming
and outgoing transitions of all loop states are labeled with Σϕ (omitted for clarity).

7 Discussion

First, we relate our results to the complexity of related problems. Second, we
discuss and derive our upper bounds.
In [21] efficient translations are given between various classes of 3-valued mod-

els such that these translations preserve and reflect the respective refinement no-
tions. These classes of models are all consistent and one of them subsumes modal
transition systems. Therefore our complexity results for common refinement and
thorough refinement for modal transition systems transfer to these model classes
if we define our three concepts in the same manner for each respective notion of
refinement. In particular, our complexity results apply to partial Kripke struc-
tures and Kripke modal transition systems.
It is likely that our results extend to “weak” refinement notions that general-

ize weak bisimulation. This, however, requires a further study. Such refinement
notions were systematically studied in [7].
The “conjunction” gadget used in reducing the common implementation prob-

lem for modal transition systems to consistency of a mixed transition system
(Section 5) is able to identify states uniquely based on the may/must pattern
of transitions encountered en route from the initial state. Nominals, used in hy-
brid logic [22], are a well known mechanism for identifying states uniquely. One
can show NP-hardness of the common implementation problem for two modal
transition systems already if such systems are enriched with nominals [23].



124 A. Antonik et al.

If specifications are “closed under negation” in that ¬(M, s) has the comple-
ment of I(M, s) as set of implementations, then thorough refinement reduces to
common implementation: (M, s)≺th(N, t) is false iff (M, s) and ¬(N, t) have a
common implementation. From the results in [18] it follows easily that modal
transition systems do not have such a negation. Support of negation for specifi-
cations should require more structure than that found in mixed transition sys-
tems. Another open problem is whether non-empty languages I(M, s) accepted
by mixed specifications (M, s) can also be accepted by modal specifications; in
other words—if a mixed specification is consistent, is it refinement-equivalent to
a modal specification?
Generalized model checking [24] considers judgments GMC(M, s, ϕ) which are

true iff there is an implementation of (M, s) that satisfies ϕ. For pointed modal
specifications (M, s) and Hennessy-Milner formulae ϕ this is PSPACE-complete
in the size of ϕ [24,21]. For each such ϕ there are 1 ≤ m <∞ pointed modal spec-
ifications (Mi, si) such that GMC(M, s, ϕ) is false iff I(M, s) ⊆ ⋃m

i=1 I(Mi, si)
[18]. Intuitively, the union on the right-hand side is the set of implementations
that satisfy ¬ϕ. In general, m > 1 so there seems to be no natural and direct
reduction of generalized model checking to thorough refinement. For ϕ in CTL,
GMC(M, s, ϕ) is EXPTIME-complete [24,21] but 1 < m or m =∞ may hold.
We finally discuss what upper bounds we can provide for the decision prob-

lems presented in this paper. Mixed and modal specifications (M, s) have char-
acteristic formulæ Ψ(M,s) [18] in the modal μ-calculus such that pointed labeled
transition systems (L, l) are implementations of (M, s) iff (L, l) satisfies Ψ(M,s).
The common implementation and consistency problem reduce to satisfiability
checks of

∧
i Ψ(Mi,si) and Ψ(M,s), respectively. The thorough refinement problem

of whether (M, s)≺th(N, t) reduces to a validity check of ¬Ψ(N,t) ∨ Ψ(M,s).
Validity checking of such vectorized modal μ-calculus formulæ is in EXPTIME

(an unpublished popular wisdom, for which we give a formal argument here).
One way in which this membership in EXPTIME can be seen is by translat-
ing the problem into alternating tree automata. It is well known that formulæ
Ψ(M,s) can be efficiently translated [25] into alternating tree automata A(M,s)

(with parity acceptance condition) that accept exactly those pointed labeled
transition systems that satisfy Ψ(M,s). Since non-emptiness, intersection, and
complementation of languages is in EXPTIME for alternating tree automata,
we get our EXPTIME upper bounds if these automata have size polynomial in
|M |. Since the size of Ψ(M,s) may be exponential in |M | we require a direct
translation from (M, s) into a version of A(M,s). The formulæ Ψ(M,s) can be
written as a system of recursive equations [4] Xs = bodys for each state s of
M . We can therefore construct all A(M,s) in a compositional manner: whenever
Xs refers in its bodys to some Xt, then A(M,s) has a transition to the initial
state of A(M,t) at that point. This A(M,s) generates the same language as the
one constructed from Ψ(M,s), by appeal to the existence of memoryless winning
strategies in parity games. The system of equations is polynomial in |M |, and
so the compositional version of A(M,s) is polynomial in the size of that system
of equations. We summarize:



Complexity of Decision Problems for Mixed and Modal Specifications 125

Table 1. Tabular summary of the results provided in this paper

Modal specifications Mixed specifications

Common implementation PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

Consistency trivial PSPACE-hard, EXPTIME

Thorough refinement PSPACE-hard, EXPTIME PSPACE-hard, EXPTIME

Theorem 10. The common implementation, consistency and thorough refine-
ment problems are all in EXPTIME for modal and mixed specifications.

8 Conclusion

We studied modal and mixed specifications and their fundamental decision prob-
lems: consistency (a form of realizability), common implementations (a conjunc-
tive form of consistency), and thorough refinement (a form of implication) of
specifications. We established that all these decision problems are in EXPTIME
and PSPACE-hard for mixed as well as for modal specifications – keeping in
mind that all modal specifications are consistent by construction. These results
showed that some of these decision problems are at least as hard as others studied
here. This raises the question of whether they in fact have the same complexity.

Acknowledgments. Harald Fecher made us aware of the counterexample for
incompleteness of refinement used in this paper. This then led to the rediscovery
of a history of such counterexamples. Nir Piterman helped in improving the
presentation of the proof for Theorem 8. We thank Igor Walukiewicz, Wolfgang
Thomas and Dietmar Berwanger for independently confirming that validity of
vectorized μ-calculus formulæ is in EXPTIME. The referees’ comments helped
with improving the presentation of this paper.

References

1. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

2. Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.)
GI-TCS 1981. LNCS, vol. 104, Springer, Heidelberg (1981)

3. Larsen, K.G., Thomsen, B.: A modal process logic. In: Third Annual IEEE Sympo-
sium on Logic in Computer Science (LICS), pp. 203–210. IEEE Computer Society,
Los Alamitos (1988)

4. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

5. Dams, D.: Abstract Interpretation and Partition Refinement for Model Checking.
PhD thesis, Eindhoven University of Technology (July 1996)



126 A. Antonik et al.

6. Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems.
ACM Trans. Program. Lang. Syst. 19(2), 253–291 (1997)

7. Larsen, K.G., Nyman, U., Wąsowski, A.: On modal refinement and consistency. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119.
Springer, Heidelberg (2007)

8. Hussain, A., Huth, M.: On model checking multiple hybrid views. Technical report,
Department of Computer Science, University of Cyprus, TR-2004-6 (2004)

9. Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: Fifth
Annual IEEE Symposium on Logics in Computer Science (LICS), Philadelphia, PA,
USA, June 4–7, 1990, pp. 108–117 (1990)

10. Hussain, A., Huth, M.: Automata games for multiple-model checking. Electr. Notes
Theor. Comput. Sci. 155, 401–421 (2006)

11. Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: ROSATEA 2006 Proceedings,
pp. 39–48. ACM Press, New York (2006)

12. Larsen, K.G.: Modal specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407,
pp. 232–246. Springer, Heidelberg (1990)

13. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Program. Lang. Syst. 16(5), 1512–1542 (1994)

14. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of
the 5th GI-Conference on Theoretical Computer Science, pp. 167–183. Springer,
London, UK (1981)

15. Hüttel, H.: Operational and denotational properties of modal process logic. Mas-
ter’s thesis, Computer Science Department. Aalborg University (1988)

16. Xinxin, L.: Specification and Decomposition in Concurrency. PhD thesis, Depart-
ment of Mathematics and Computer Science, Aalborg University (April 1992)

17. Schmidt, H., Fecher, H.: Comparing disjunctive modal transition systems with a
one-selecting variant. Submitted for publication to JLAP (2007)

18. Huth, M.: Labelled transition systems as a Stone space. Logical Methods in Com-
puter Science 1(1), 1–28 (2005)

19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

20. Jonsson, B., Larsen, K.G.: On the complexity of equation solving in process algebra.
In: Abramsky, S., Maibaum, T.S.E. (eds.) TAPSOFT 1991. LNCS, vol. 493, pp.
381–396. Springer, Heidelberg (1991)

21. Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck,
L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS,
vol. 2575, pp. 206–222. Springer, Heidelberg (2002)

22. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application
to semistructured data). J. Applied Logic 4(3), 279–304 (2006)

23. Antonik, A.: MPhil/PhD transfer report. Imperial College London, United King-
dom (January 2007)

24. Bruns, G., Godefroid, P.: Generalized model checking: Reasoning about partial
state spaces. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 168–
182. Springer, Heidelberg (2000)

25. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Soc. Math. Belg. 8(2) (May 2001)



Classes of Tree Homomorphisms with Decidable
Preservation of Regularity�

Guillem Godoy1, Sebastian Maneth2, and Sophie Tison3

1 Universitat Politècnica de Catalunya (UPC)
Jordi Girona 1, Barcelona, Spain
ggodoy@lsi.upc.edu

2 NICTA and UNSW, Sydney, Australia
sebastian.maneth@nicta.com.au

3 Université des Sciences et Technologies de Lille
59655 Villeneuve d’Ascq Cedex, France

sophie.tison@lifl.fr

Abstract. Decidability of regularity preservation by a homomorphism is a well
known open problem for regular tree languages. Two interesting subclasses of this
problem are considered: first, it is proved that regularity preservation is decidable
in polynomial time when the domain language is constructed over a monadic
signature, i.e., over a signature where all symbols have arity 0 or 1. Second, de-
cidability is proved for the case where non-linearity of the homomorphism is
restricted to the root node (or nodes of bounded depth) of any input term. The lat-
ter result is obtained by proving decidability of this problem: Given a set of terms
with regular constraints on the variables, is its set of ground instances regular?
This extends previous results where regular constraints where not considered.

1 Introduction

Representations of sets of terms are used in many areas of computer science. The choice
of formalism depends on the expressiveness, but also on the properties from a computa-
tional point of view. Tree automata [3,7] are a well studied formalism for representing
term languages. They are the natural extension of standard finite automata over words
to tree/term languages. For example, the tree automaton

a→ qa
g(qa)→ qg

f(qg, qf )→ qaccept

g(qg)→ qg
f(qa, qa)→ qf

recognizes the language f(g+(a), f(a, a)). The languages recognized by tree automata
are also called regular. They are a classical concept which has been used in many con-
texts: for instance, they adequately describe the parse trees of a context-free grammar
or the well-formed terms over a sorted signature, and they naturally capture type for-
malisms for tree-structured (XML) data [14,9]. Similar as in the case of regular sets of

� The first author was supported by Spanish Min. of Educ. and Science by the LogicTools project
(TIN2004-03382), and by the FORMALISM project (TIN2007-66523).

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 127–141, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



128 G. Godoy, S. Maneth, and S. Tison

words, the class of regular term languages has many convenient properties such as clo-
sure under boolean operations (intersection, union, negation), decidable properties such
as inclusion and equivalence, and they are characterized by many different formalisms
such as regular grammars, regular term expressions, congruence classes of finite in-
dex, deterministic bottom-up finite tree automata, nondeterministic top-down finite tree
automata, sentences of monadic second-order logic, etc, cf. [3,7]. Deterministic tree
automata, for instance, can effectively be minimized and give rise to efficient parsing
procedures.

Nevertheless, the expressiveness of regular tree languages is considerably limited:
simple languages like the recursively defined set Tbin = {a}∪{f(t, t) | t ∈ Tbin}, i.e.,
the set of complete trees over {f, a} where f is a binary symbol and a is a constant,
is not regular. Accordingly, it is often convenient to use a more general formalism to
describe a set of terms, loosing then some of the nice computational properties. In this
setting, it makes sense to study the decidability of the regularity of a given set of terms
represented by a concrete (and more expressive) formalism. Practically speaking, we
want to allow the specification of term languages in a more general formalism than
regular term languages, but want to be able to detect if a specific given language is in
fact regular. Deciding a class of languages inside a larger class is a very hard problem;
for instance, given a context-free (word) language it follows from Greibach’s Theorem
that is impossible to decide whether or not the language is in fact regular (see, e.g., [8]).

In this paper we study the decidability of regularity for two particular and related
representations: when the set of terms is described as the image of a regular set by a
tree homomorphism, and when it is described as the ground instances of a finite set of
terms with regular constraints on the variables.

Tree homomorphisms are the natural extension of the usual word homomorphisms
to trees. A homomorphism H is usually defined by associating to each symbol g in
the input signature a term H(g) with variables x1, x2, . . . , xk, where k is the arity of
g. This definition is then homomorphically extended to any term of the signature. For
example, the homomorphism {H(g) = f(x1, x1), H(a) = a} applied to the language
g∗(a) = {a, g(a), g(g(a)), . . .} generates as image the language Tbin of above. This
example shows that the image of a regular language by a homomorphism is in general
not regular. In fact, it is a long-standing open problem whether or not it is decidable if
the homomorphic image of a regular set of terms is regular (“the HOM-problem”); cf.,
e.g., Conclusions of [6]. Some particular cases are known to be decidable, for instance
when the homomorphism is linear, see [5], or when in the termsH(g), for all input sym-
bols g, multiple occurrences of the same variable all have the same parent node (i.e.,
are siblings of each other) [2]. If slightly more expressive tree translation devices than
homomorphisms are considered, then regularity preservation quickly becomes undecid-
able: for a deterministic top-down tree transducer with only two states, it is undecidable
whether its image of a regular tree language is again regular [6] (homomorphisms nat-
urally correspond to the 1-state case of top-down or bottom-up tree transducers). Let
us also note that the problem of regularity of a set of ground normal forms of a term
rewriting system is known to be decidable but with rather intricate proofs [11], while it
can be reduced to a particular subclass of the HOM-problem.



Classes of Tree Homomorphisms with Decidable Preservation of Regularity 129

We solve the HOM-problem for two new interesting subcases: first, we show decid-
ability in polynomial time for the case where the domain language is constructed over
a monadic signature, i.e., over a signature where all symbols have arity 0 or 1. This is
obtained by characterizing regularity using a pumping argument, and then reducing the
regularity check to certain finiteness tests on images of the homomorphism. Second, de-
cidability is proved for the case where non-linearity of the homomorphism is restricted
to the root node of any input term (or, more precisely, to input nodes of bounded depth).
The latter result is obtained by proving decidability of the following problem: Given
a set of terms with regular constraints on the variables, is its set of ground instances
regular? This extends previous results where regular constraints were not considered,
see, e.g., [10]. For this case, we give a sufficient condition for non-regularity by the
existence of certain infinite solutions of a formula. The formula is of first-order logic
with equality predicates and membership constraints in regular languages, altogether
interpreted over a term algebra. Our algorithm for this case makes iterated use of the
decidability for this sufficient condition, which follows from a result by Comon and
Delor [4].

2 Preliminaries

Convention. In this article we use the words “term” and “tree” interchangeably, and
the same holds for “position” and “node”.

A signature consists of an alphabet Σ, i.e., a finite set, together with a mapping that
assigns to each symbol in Σ a natural number, its arity. We write Σ(k) to denote the
subset of symbols inΣ that are of arity k, and we write σ(k) to denote that σ is a symbol
of arity k. The set of all terms over Σ is denoted TΣ and is inductively defined as the
smallest set T such that for every σ ∈ Σ(k), k ≥ 0, and t1, . . . , tk ∈ T , the term
σ(t1, . . . , tk) is in T . For a term of the form a() we simply write a. For instance, if
Σ = {f (2), a(0)} then TΣ is the set of terms that represent all binary trees with internal
nodes labeled f and leaves labeled a. We fix the set X = {x1, x2, . . . } of variables.
The set of trees over Σ with variables in X , denoted TΣ(X), is the set of terms over
Σ ∪ X where every symbol in X has arity zero. Given a tree σ(t1, . . . , tk) ∈ TΣ , its
set of positions Pos(t) equals {ε} ∪1≤i≤k {i.p | p ∈ Pos(ti)}. Thus, ε denotes the
root node, and p.i denotes the ith child of position p. The subtree of t at position p
is denoted by t/p, and the symbol of t at position p is denoted by t[p]. For instance,
for s = σ(f(a, b), c), s/1 equals f(a, b) and s[1] equals f . For a signature Γ , we use
PosΓ (t) to denote the set of positions of t that are labeled by symbols in Γ . E.g., for
s of above, Pos{c}(s) = {2} and PosX(s) = ∅. For terms s, t and p ∈ Pos(s), we
denote by s[p ← t] the result of replacing the subtree at position p in s by the term t.
For instance, f(f(a, a), a)[1← a] = f(a, a).

A (deterministic) bottom-up tree automaton (for short, DTA) is a tuple A = (Q,Qa,
Σ, δ) where Q is a finite set of states, Qa ⊆ Q is the set of accepting states, Σ is a
signature, and δ = (δσ)σ∈Σ is a collection of transition functions such that for every
σ ∈ Σ(k), k ≥ 0, δσ is a function from Qk to Q. The language L(A) recognized by
A is the set {t ∈ TΣ | A(t) ∈ Qa} where A is the extension of δσ to trees in TΣ ,
recursively defined as: A(σ(t1, . . . , tk)) = δσ(A(t1), . . . , A(tk)) for σ ∈ Σ(k), k ≥ 0,



130 G. Godoy, S. Maneth, and S. Tison

and t1, . . . , tk ∈ TΣ . We also define, for a state q, the set L(A, q) = {t ∈ TΣ | A(t) =
q} of trees for which A arrives in state q. A term language L ⊆ TΣ is regular if there
exists a DTA A such that L = L(A).

Tree Homomorphisms. Let Σ and Δ be signatures. A homomorphism (from Σ to Δ)
is a mappingH that associates to every symbol σ ∈ Σ of arity k a tree in TΔ({x1, . . . ,
xk}). The homomorphism H is extended to trees over Σ by defining H(σ(s1, . . . ,
sk)) = H(σ)[x1 ← H(s1), . . . xk ← H(sk)]. The term t[x1 ← t1, . . . , xk ← tk]
denotes the substitution of every occurrence of xi in t by the tree ti. The homomorphism
H is linear if H(σ) is linear in {x1, . . . , xk} for each σ ∈ Σ of arity k, i.e., if each xi,
1 ≤ i ≤ k occurs at most once in H(σ). We will later make use of the following known
result, cf. Corollary 3.10 of [5].

Proposition 1. Let H be a linear homomorphism and L a regular tree language. Then
H(L) is effectively regular.

Sets of Terms with Regular Constraints. Let V = {x1, . . . , xn}. A regular constraint
for variables x1, . . . , xn maps each xi in V to a regular tree language. Let Γ be a
signature. A solution of C (over Γ ) is a ground substitution ϕ : V → TΓ such that
ϕ(xi) ∈ C(xi) for all i ∈ {1, . . . , n}. A set of terms with regular constraints is a pair
〈S,C〉where S is a set of terms (with variables) andC is a constraint defined at least for
the variables occurring in S. The language of 〈S,C〉, denoted as L(〈S,C〉), is defined
as {t | ∃ϕ, s : (t = ϕ(s) ∧ s ∈ S ∧ ϕ is a solution of C)}. The following result is due
to [12], cf. also [10].

Proposition 2. Let C be the trivial constraint mapping every variable to the set of all
terms. Then, regularity of L(〈S, C〉) is decidable for given S.

3 The Monadic Case

We consider the particular case where the regular input term language is constructed
over a monadic signature with only unary symbols and constants and prove that regu-
larity of the image by a homomorphism is decidable in polynomial time.

Let Σ be a monadic signature, i.e., Σ = Σ(1) ∪ Σ(0). Let L be a regular term lan-
guage overΣ, andH be a homomorphism. For simplicity we assume that the signature
for the domain language L contains just one constant c, and moreover, H(c) = c. If
this was not the case we can easily transform L and H into new L′ and H ′ such that
L′ satisfies this requirement and H ′(L′) = H(L): we simply introduce a new constant
c not present in Σ and define L′ as Hlin(L) where Hlin is the linear homomorphism
with Hlin(f) = f(x1) for all unary functions f , and Hlin(e) = e(c) for constants
e. We define H ′ as H ′(f) = H(f) for unary function symbols f , H ′(e) = H(e) for
constants e of the original signature of L, and H ′(c) = c. Note that constants e of the
original signature of L are now unary function symbols of the signature of L′.

For the current case the language L is essentially a language on words. We use then
expressions like abbaa(c) or just abbaa for denoting a(b(b(a(a(c))))). Note that Σ =
Σ(1) ∪ {c(0)}.



Classes of Tree Homomorphisms with Decidable Preservation of Regularity 131

A unary symbol a is called erasing if H(a(x)) = x, and by w� we denote the
number of positions of w with non-erasing symbols. Intuitively, we are counting the
number of symbols that generate at least one output node in the image; this means that
the size of the term H(w) is larger than or equal to w�.
Definition 3. Let Σ be a monadic signature, H a homomorphism over Σ, and w ∈
TΣ . The level of a position p with respect to w and H , denoted by level(p, w,H), is
k + 1 if there exists a factoring of the form w = w1aw2 with w1� = k such that
p �∈ Pos(H(w1)) but p ∈ Pos(H(w1a)).

Intuitively, level(p, w,H) = k means that p in H(w) was generated by the k-th non-
erasing symbol in the word w. For instance, if H(g) = f(x1, x1) and H(c) = c
then level(ε, ggg(c), H) = 1 because ggg = w1gw2 with w1 the empty word,
ε �∈ Pos(H(w1)) = ∅, and ε ∈ Pos(H(g)). If H is also defined as H(d) = x1,
then level(1.2, gdgg(c), H) = 3 because the node 1.2 in the term H(gdgg(c)) =
f(f(f(c, c), f(c, c)), f(f(c, c), f(c, c))) was generated by the third non-erasing sym-
bol of gdgg(c), i.e., by the last g. The following lemma is straightforward from this
definition.

Lemma 4. Let p, q be positions such that q is a prefix of p. If level(p, w,H) ≥ k +
level(q, w,H), then |p| ≥ k + |q|.
Definition 5. A position p is live in 〈w,H〉 if there exists p′ such that level(p.p′, w,H)
> level(p, w,H).

We define h := Maxa∈Σ(1)(height(H(a))). The following two lemmas are straight-
forward from the previous definitions.

Lemma 6. Let p be a position and w a word such that height(H(w)/p) > h. Then, p
is live in 〈w,H〉.
Lemma 7. Let p and q be positions andw a word such that, p and q are live in 〈w,H〉,
and level(p, w,H) = k + level(q, w,H). Then, |height(H(w)/p) −
height(H(w)/q)| ≤ h · (k + 1).

The following lemma is essential for doing a pumping argument in the lemma after,
which characterizes the regularity of the image of a homomorphism for the monadic
case.

Lemma 8. Let t be a term in H(L), let p, p.q1, p.q2 be positions in Pos(t) such that
|q1|, |q2| ≤ h and height(t/p.q1), height(t/p.q2) > h. Then |height(t/p.q1) −
height (t/p.q2)| ≤ h(h+ 1).

Proof. By our assumptions, |p.q1|−|p| ≤ h and |p.q2|−|p| ≤ h. By Lemma 4, level
(p.q1, w,H) = k1 + level(p, w,H) and level(p.q2, w,H) = k2 + level(p, w,H)
for some k1, k2 ≤ h. Therefore, either level(p.q1, w,H) = k + level(p.q2, w,H)
or level(p.q2, w,H) = k + level(p.q1, w,H) for some k ≤ h. By Lemma 6, p.q1
and p.q2 are live in 〈w,H〉. Finally, by Lemma 7, |height(H(w)/p.q1) − height
(H(w)/p.q2)| ≤ h(k + 1) ≤ h(h+ 1). ��



132 G. Godoy, S. Maneth, and S. Tison

Definition 9. We say that a symbol a ∈ Σ(1) is deleting in H , or that H is deleting
on a, if H(a) does not contain x1. A word w is deleting (or “H is deleting on w”)
if it contains a deleting symbol. Let a ∈ Σ(1). We define La := {w | ∃u : (uaw ∈
L ∧ u is non-deleting)}.
We are now ready to prove the main result of this section. It characterizes regularity of
the homomorphic image of a monadic tree language. A symbol a ∈ Σ(1) is copying in
H , or H is copying on a, if H(a) contains at least two occurrences x1. A word w is
copying (or “H is copying on w”) if it contains a copying symbol.

Lemma 10. H(L) is not regular iff there exists a ∈ Σ(1) such that H is copying on a
and H(La ) is infinite.

Proof. We first prove the if-direction. Let a ∈ Σ(1) such that H is copying on a and
H(La ) is infinite. We assume that H(L) is regular in order to reach a contradiction.
Then, there exists a bottom-up tree automaton A recognizing H(L). Recall from the
Preliminaries that A(t) denotes the state in which A arrives after processing the term t.
FromLa we choose two wordsw1 andw2 such that height(H(w1)), height(H(w2))
> h, |height(H(w1))− height(H(w2))| > h(h+1), andA(H(w1)) = A(H(w2));
this is possible by non-finiteness of H(La ). Now, since w1 belongs to La , there ex-
ists a word of the form uaw1 in L where u is non-deleting. Therefore, since a is
copying, H(uaw1) is of the form s[p ← t′[q1 ← H(w1)][q2 ← H(w1)]] for po-
sitions p, q1, q2 satisfying |q1|, |q2| ≤ h and q1 is “disjoint” from q2 (q1 is not a
prefix of q2, and q2 is not a prefix of q1). Recall from the Preliminaries that u[q ←
v] denotes the result of replacing position q in the term u by the term v. The term
t = s[p ← t′[q1 ← H(w1)][q2 ← H(w2)]] is also in H(L) because A(H(w1)) =
A(H(w2)). By our previous conditions we have height(t/p.q1), height(t/p.q2) >
h, and |height(t/p.q1) − height(t/p.q2)| > h(h + 1). This is a contradiction to
Lemma 8.

Next, we prove the only-if-direction. Assume that for all a ∈ Σ(1) such that H is
copying on a, H(La ) is finite. We define La = aLa , i.e., La = {aw | ∃u : (uaw ∈
L and u is non-deleting)}, for every a ∈ Σ(1), and also define T = {t | ∃a ∈ Σ(1) :
(H is copying on a ∧ t ∈ H(La))}, which is a finite set. Further, we define a new set
of constants C = {ct | t ∈ T }.

Our goal is to define an alternative language L′ and a homomorphismH ′ satisfying
H ′(L′) = H(L), and for which it is easy to see that H ′(L′) is regular. We first define
some particular subsets of L′.

Lcop = {uct | H is neither copying nor deleting on u ∧
∃a,w : ((H is copying on a) ∧ uaw ∈ L ∧ H(aw) = t)}

Ldel = {ua | H is neither copying nor deleting on u ∧
H is deleting on a ∧ ∃w : (uaw ∈ L)}

Loth = {u | H is neither copying nor deleting on u ∧ u ∈ L}
Finally we define L′ = Lcop∪Ldel∪Loth, andH ′ is defined like H for the symbols

a ∈ Σ that are not copying, H ′ is undefined for the a ∈ Σ(1) that are copying, and
H ′(ct) = t for every t ∈ T . Note that L′ does not have words containing symbols such
that H is copying on them.



Classes of Tree Homomorphisms with Decidable Preservation of Regularity 133

We show first that H ′(L′) = H(L). The inclusion ⊆ is straightforward from the
definition of L′ and H ′. For ⊇ let v be a word of L. Either v does not contain any
copying or deleting symbol, or it is of the form uaw where u does not contain any
copying or deleting symbols, and a is either copying or deleting. Depending on the
case, it is easily seen that either v ∈ H ′(Loth) or v ∈ H ′(Lcop) or v ∈ H ′(Ldel).

Second, we see that L′ is regular. From an automatonA recognizingL we can easily
define an automata for Lcop, Ldel and Loth, respectively. Without lost of generality we
assume that all states of A can reach an accepting state. For the case of Loth it suffices
to remove from A the transitions with copying and deleting symbols. For the case of
Ldel it suffices to remove the transitions with copying symbols and to redirect all the
transitions with deleting symbols to a new accepting state. For the case of Lcop we have
to remove all transitions of deleting symbols and all transitions of constant symbols. We
also need to consider the transitions with a copying symbol a from a state q to a state
q′, such that q is reachable and q′ can reach an accepting state through non-deleting
and non-copying symbols. Every of these transitions has to be replaced by several new
transitions to the state q′ one for every constant ct such that t ∈ H(a L(A, q′)). Finally,
from the regularity of L′ and the fact that H ′ is linear we conclude by Proposition 1
that H ′(L′) = H(L) is regular. ��
Before we use Lemma 10 to show decidability of regularity ofH(L) for monadic L, let
us give an example application of the only-if direction of the previous lemma.

Example 11. Let Σ = {a(1), b(1), d(1), c(0)} and, for n ≥ 0, Ln = {d(a|b)k(c) |
k ≤ n}. The language Ln is recognized by the automaton An = ({q0, q1, . . . , qn, qf},
{qf}, Σ, δ) where δc() = q0, δa(q0) = δb(q0) = q1, δa(q1) = δb(q1) = q2, . . . ,
δa(qn−1) = δb(qn−1) = qn, and δd(qi) = qf for all 0 ≤ i ≤ n. The tree ho-
momorphism H is defined by H(a) = a(x1), H(b) = b(x1), H(d) = f(x1, x1),
and H(c) = c. Thus, H(Ln) = {f(w,w) | w ∈ (a|b)kc, k ≤ n}. Since H(Ln)
is finite, it is obviously regular. Let us now follow the only-if direction of the proof
of Lemma 10 in order to construct a tree automaton Bn which recognizes H(Ln).
Note that Ld = {w ∈ (a|b)kc | k ≤ n}. The set T defined in the proof equals
H({dw | w ∈ Ld }) = {f(w,w) | w ∈ Ld }. Thus, for every possible w ∈ {a, b}∗ of
length at most n, the set T contains the tree t = f(w,w), and accordingly, C contains
the constant ct. For instance, if n = 2, then C = {cf(c,c), cf(a(c),a(c)), cf(b(c),b(c)),
cf(aa(c),aa(c)), cf(ab(c),ab(c)), cf(ba(c),ba(c)), cf(bb(c),bb(c))}.

Now, to define Loth we simply remove from An all d-transitions because d is copy-
ing. Since the resulting automaton has no transitions to accepting states, its language
is empty, i.e., Loth = ∅. Also Ldel = ∅ because d-transition are removed from An
and no new transitions are added because there are no deleting symbols. The automa-
ton for Lcop is obtained from An by deleting the transition δc() = q0 and by replacing
each transition δd(qi) = qf , 0 ≤ i ≤ n by the new transitions δct() = qf for each
ct ∈ C. Thus, the resulting automaton Bn recognizes precisely the set C. Since for ev-
ery t ∈ H(Ln) the constant ct is in C, and the new homomorphismH ′ has H ′(ct) = t
for all ct ∈ C, we obtain that H ′(L(Bn)) = H ′(C) = H(Ln). ��
It is interesting to observe that a tree automaton that recognizes the language H(Ln)
of Example 11, is bound to be of size at least O(2n). This is easy to see, because for



134 G. Godoy, S. Maneth, and S. Tison

every possible subtree s of f(s, s) ∈ H(Ln) we need one extra state. In fact, even if
we consider nondeterministic bottom-up tree automata, which are obtained by gener-
alizing the transition functions δσ : Qk → Q to functions δσ : Qk → P(Q), then
any smallest automaton for H(Ln) is still of size O(2n). Thus, through copying of a
finite set of terms (recognized by a DTA An with O(n) states) we obtain a finite set of
terms for which any tree automaton needs exponentially more states than An. In other
words, the description of H(Ln) through the homomorphismH and the automatonAn
is exponentially more succinct than the description through any (even nondeterministic)
tree automaton for H(Ln). We obtain the following proposition. Let the size of a ho-
momorphism be defined as the sum of sizes of the trees H(g) for which H is defined,
and the size of a term t equals the cardinality of Pos(t).

Proposition 12. For every n, there exists a homomorphismH and a DTA An such that
(1) H is of size O(n) (2) An has O(n)-many states, and (3) H(L(An)) cannot be
recognized by any nondeterministic tree automaton with less than 2n states.

Note that the language H(Ln) of Example 11 cannot be recognized by a deterministic
top-down tree automaton. We are ready to state the main result of this section.

Theorem 13. Regularity of the homomorphic image of a regular term language L is
decidable in polynomial time if L is defined over a unary alphabet.

Proof. By Lemma 10 it suffices to prove that the infiniteness ofH(La ) can be checked
in polynomial time, for a given tree automatonA recognizing the regular language L, a
homomorphismH , and copy symbol a. To this end, we just have to look for a transitions
δa(q1) = q2 and δb(q3) = q4 such that q1 is reachable from the initial state using no
deleting symbols, b is not deleting nor erasing, q3 is reachable from q2 without deleting
symbols, and q3 is reachable from q4 without deleting symbols. The statement of the
theorem follows from the fact that all these checks can be done in polynomial time with
usual algorithms for finding paths. ��

4 Sets of Terms with Regular Constraints and Bounded-Depth
Copying Homomorphisms

In this section we prove decidability of regularity for the set of ground instances of a
given finite set of terms. This is done in three steps. In Section 4.1 we give a sufficient
condition for non-regularity by the existence of a certain infinite set of instances. In
Section 4.2 we prove decidability of such existence as a direct consequence of a result
from [4] and provide an algorithm for this problem. We also define in Section 4.3 a class
of pairs (L,H), where L is a language and H is a homomorphism, called bounded-
depth copying, and prove that regularity of H(L) is decidable.

4.1 A Sufficient Condition for Non-regularity

Some technical definitions are needed in order to prove our condition in Lemma 14.
We say that a term s is determined on a position p if either p is a position of s and



Classes of Tree Homomorphisms with Decidable Preservation of Regularity 135

is labeled by a non-variable symbol, i.e., s[p] �∈ X , or there exists a prefix p′ of p
such that s/p′ is a non-variable symbol, i.e., s/p′ = s[p′] �∈ X . Equivalently, s is
determined on p if for any two substitutions ϕ1, ϕ2, either p is not defined in both
ϕ1(s) and ϕ2(s), or p is defined in both ϕ1(s) and ϕ2(s) and ϕ1(s)[p] = ϕ2(s)[p]. We
say that s is determined on a set of positions P if s is determined on all positions p in
P . Recall from the Preliminaries that a set of terms with regular constraints is a pair
〈S,C〉 where C maps each variable occurring in S to a regular term language, and that
L(〈S,C〉) = {ϕ(s) | s ∈ S, ϕ is a solution of C}.

Lemma 14. Let s be a term, S a set of terms, and C a constraint for the variables
occurring in s and S. Let x be a variable that occurs twice in s. Let {ϕ1, ϕ2, . . .}
be an infinite set of solutions of C satisfying ϕi(s) �∈ L(〈S,C〉) for all i > 0, and
ϕi(x) �= ϕj(x) for all 1 ≤ i < j. Then L(〈{s} ∪ S,C〉) is not regular.

Proof. Without lost of generality we may suppose that the set of variables occurring
in s is disjoint from the set of variables occurring in S; if it is not the case we simply
introduce a new variable for each variable that occurs in s and S. Let S = {s1, . . . , sn}.
We may make the following assumption. For a term t, let Posnv(t) denote the positions
p in Pos(t) that are not labeled by a variable, i.e., for which t[p] �∈ X .

Assumption 1: s is determined on
⋃
i∈{1,...,n} Posnv(si).

If the assumption is not satisfied, we proceed as follows. Since s is not determined on⋃
i∈{1,...,n} Posnv(si), there exists a position p ∈ Pos(s) such that s/p is a certain vari-

able y and p ∈ ⋃
i∈{1,...,n} Posnv(si). Let A be a deterministic bottom-up tree automa-

ton that recognizes the regular term language C(y). The automatonA has a finite set of
transitions of the form δg(q1, . . . , qm) → q for states q1, . . . , qm, q of A where q is an
accepting state. For every of these rules δg(q1, . . . , qm)→ q we construct a substitution
γg,q1,...,qm,q that is the identity for all variables except for y, for which it is defined as
γg,q1,...,qm,q(y) = g(z1, . . . , zm), for new variables z1, . . . , zm. We also extend the con-
straint C to a new constraint C′ by defining C′(zi) = L(A, qi). We do this for all tran-
sitions, choosing new variables for every transition. Let s′1, . . . , s

′
l be the terms obtained

by applying all the substitutions γg,q1,...,qm,q to s. Note that L(〈{s′1, . . . , s′l} ∪ S,C′〉)
coincides with L(〈{s}∪S,C〉), and that the languagesL(〈s′1, C′〉), . . . , L(〈s′l, C′〉) are
disjoint, since A is deterministic. By finiteness, for one of the terms s′1, . . . , s

′
l, say s′1,

there exists an infinite subset {ϕi1 , ϕi2 , . . .} of {ϕ1, ϕ2, . . .} such that the run of A on
each ϕij (y) applies the same transition δg(q1, . . . , qm) = q at the root node. Let k be
the arity of this g, and note that in the case where y equals x, k is greater than 0 due to
the condition ϕi(x) �= ϕj(x) for all 1 ≤ i < j. There exist substitutions θi1 , θi2 , . . .
such that every ϕij coincides with the corresponding θij ◦ γg,q1,...,qm,q . Moreover, in
the case where y equals x, there exists k′ between 1 and k and an infinite subset Θ of
{θi1 , θi2 , . . .} such that for all different θ, θ′ ∈ Θ, θ(zk′) �= θ′(zk′), where z1, . . . , zk
are the new variables in γq,q1,...,qm,q(y).

The term s′1, the set of terms {s′2, . . . , s′l} ∪ S, the set of substitutions Θ or {θi1 ,
θi2 , . . .}, deppending on whether x equals y or not, the constraint C′, and the variable
zk′ if y was x, or the variable x otherwise, satisfy the conditions of the lemma, but also,
p is determined on s′1. Hence, since L(〈{s′1, . . . , s′l} ∪S,C′〉) coincides with L(〈{s}∪



136 G. Godoy, S. Maneth, and S. Tison

S,C〉), the statement of the lemma remains unchanged when replacing the elements by
these new ones, for which there is strictly one less position that is not determined. We
can repeat this process if there are still positions in

⋃
i∈{1,...,n} Posnv(si) that s′1 is not

determined on them, until Assumption 1 on determined positions is satisfied.
Now, we come back to the principal proof with this additional assumption. We prove

that L(〈{s} ∪ S,C〉) is not regular by contradiction. Hence, suppose that B is a deter-
ministic tree automaton recognizing this language. We also assume an implicit election
of an automatonAC(y) recognizing C(y), for every variable y ∈ Dom(C). At this point
we need an additional assumption.

Assumption 2: For every position p ∈ Pos(s), the run of B gives the same state on all
terms ϕi(s)/p. Moreover, for every of such p ∈ Pos(s) and AC(y), the run of AC(y)

gives the same state on all terms ϕi(s)/p.

Similar as before, Assumption 2 can easily be enforced by choosing a certain infinite
subset Γ of the substitutions ϕ1, ϕ2, . . .

Now, note that the fact that a certain term ϕi(s) is not in L(〈{sj}, C〉) for any sj ∈ S
can be due to several different causes:

(i) There is a position p ∈ Posnv(sj) such that either p is not defined in s or it is
defined in s but then s[p] �= sj [p].

(ii) Item (i) is not satisfied, but there exists a position p such that sj/p is a variable and
ϕi(s)/p �∈ C(sj/p).

(iii) Items (i) and (ii) are not satisfied, but there exist positions p1, p2 such that sj/p1

and sj/p2 are the same variable, but ϕi(s)/p1 �= ϕi(s)/p2.

We say that either (i), or (ii), or (iii) with the corresponding chosen p1 and p2, are
the cause for ϕi ∈ Γ and sj ∈ S, depending on the case.

Finally, we fix a position q such that s/q = x and a substitution ϕ ∈ Γ .
Now, consider ϕ and any other substitution ϕ′ ∈ Γ such that ϕ′(x) is not a subterm

of ϕ(s). Note that such a ϕ′ exists thanks to the fact that all the ϕi(x) are different.
The term ϕ(s)[q ← ϕ′(x)] is accepted by B due to Assumption 2. Hence, to reach
a contradiction it suffices to see that it is not in L(〈{s} ∪ S,C〉), i.e. the language
accepted by B. Of course it is not in L(〈{s}, C〉), since x appears multiple times in
s, and in particular at position q and in some other position q′ satisfying ϕ(s)[q ←
ϕ′(x)]/q �= ϕ(s)[q ← ϕ′(x)]/q′. But also, ϕ(s)[q ← ϕ′(x)] is not in any L(〈{sj}, C〉)
for sj ∈ S, and we prove it deppending on which is the cause for ϕ and sj . If the cause
for ϕ and sj is (i), this is trivial. If the cause for ϕ and sj is (ii), this follows directly
from Assumption 2. If the cause for ϕ and sj is (iii) with positions p1 and p2, then,
either q is disjoint with p1 and p2 and this is trivial, or otherwise, q has to be a suffix
of either p1 or p2, due to Assumption 1. In the latter case, due to the election of ϕ′,
ϕ(s)[q ← ϕ′(x)]/p1 �= ϕ(s)[q ← ϕ′(x)]/p2, and hence, ϕ(s)[q ← ϕ′(x)] is not in
L(〈{sj}, C〉) again. ��

4.2 Computing the Existence of Infinite Instances

Due to our sufficient condition, and the use of it that is done later by the algorithm for
deciding regularity, we need to prove that the following problem is computable:



Classes of Tree Homomorphisms with Decidable Preservation of Regularity 137

Infinite-Instances Problem
Input: x, s, {s1, ..., sn}, C.
Output: If there exists an infinite set ϕ1, ϕ2, . . . of solutions of C such that ϕi(x) �=

ϕj(x), and ϕi(s) is not in L(〈{s1, . . . , sn}, C〉), then give output “yes”. Otherwise,
give as output the finite set {t1, . . . , tk} of ground terms ti satisfying: ti �= tj for
1 ≤ i < j ≤ k, ti is ground for 1 ≤ i ≤ k, and for any solution ϕ such that ϕ(s) is not
in L(〈{s1, . . . , sn}, C〉), it holds that ϕ(x) = ti for some i in {1, . . . , k}.

The decidability of this problem is directly deduced from the work of Comon and
Delor [4] on equational formulae with membership constraints 1. An equational formula
with membership constraints is a first order formula whose atoms are equations t = u,
membership constraints t ∈ S (S is called a sort symbol) or⊥. Formulae are interpreted
w.r.t. to a mappingU which associates with each sort symbolS a subset of TΣ . A ground
substitution σ is a solution of the equation s = t if its domain contains the set of free
variables of {s, t} and tσ ≡ sσ, where ≡ denotes the syntactic equality in terms. This
is a solution of t ∈ S if tσ belongs U(S). The connectives are interpreted as usual
and with a formula we associate the set of solutions. Two formulae are said equivalent
w.r.t. U if they have the same solutions w.r.t. U . From now on, we will suppose that the
interpretation of the sort symbols is fixed and that sorts are interpreted as recognizable
languages. In [4], the authors provide a complete, correct and terminating set of rules,
which reduces a formula to an equivalent solved form which is either ⊥, or a finite
disjunction of formulae (called definition with constraints) of the form:
∃w : x1 = t1 ∧ ... ∧ xn = tn ∧ z1 �= u1 ∧ zm �= um ∧ y1 ∈ S1... ∧ yk ∈ Sk where:

- x1, . . . , xn are free variables that occur only once in the formula
- z1, . . . , zm are variables, s.t. for all i, zi /∈ V ar(ui)
- y1, . . . , yk are distinct variables
- for all i, Si is interpreted as an infinite (recognizable) language.
- t1, . . . , tn, u1, . . . , um are -non necessarly ground- terms.

Furthermore, Comon and Delor prove that every definition with constraints has at
least one solution (Lemma 2 of [4]). Using those results we can even get:

Lemma 15. Let D = ∃w : x1 = t1∧ . . .∧xn = tn∧z1 �= u1∧ . . .∧zm �= um∧y1 ∈
S1 ∧ . . . ∧ yk ∈ Sk be a definition with constraints satisfying the above conditions. Let
x a free variable in D. D has an infinite set of solutions satisfying σi(x) �= σj(x) for
all j > i > 0 iff it does not contain any equation x = t with t ground.

Proof. Of course, if D contains an equation x = t with t ground, D has no infinite set
of solutions satisfying σi(x) �= σj(x).

Conversely, let us suppose thatD does not contain any equation x = t with t ground.
We can suppose without lost of generality that {y1, . . . , yk} contains all the variables
except the xi’s (we can add v ∈ � if necessary). By Lemma 2 of [4], D has one solution
σ1. Now consider a new formula D′ obtained by replacing every Si by Si − {σ1(yi)}.
This formula is again a definition with constraints (the new sets are regular and infinite).

1 Thanks to Hubert Comon who made us aware of this fact.



138 G. Godoy, S. Maneth, and S. Tison

For D′, Lemma 2 of [4] applies again and we have a solution σ2 for D′, which in fact
is also a solution of D. Moreover, σ1(x) differs from σ2(x) due to the definition of σ2,
and the fact that either x is some yi, or x is some xi and the corresponding ti is not
ground and with all its variables in {y1, . . . , yk}. This process can be repeated again
by replacing every Si by Si − {σ1(yi), σ2(yi)}, and so on, thus obtaining the desired
sequence. ��
Now we come back to the Infinite-Instances problem. Let x, s, S = {s1, ..., sn}, C be
an input of the problem. For this input we define Φ as the following equational formula
with membership constraints:

(∧y∈V ar(s)y ∈ C(y))∧
(∧1≤i≤n,{x1,...,xk}=V ar(si)(∀x1, . . . , xk : (x1 ∈ C(x1) ∧ . . . ∧ xk ∈ C(xk) ⇒ si �= s)))

Let Sol(Φ) the set of solutions of Φ. There exists an infinite set ϕ1, ϕ2, . . . such that
ϕi(x) �= ϕj(x), and ϕi(s) is not in L(〈{s1, . . . , sn}, C〉), iff there exists an infinite set
ϕ1, ..., ϕj .. in Sol(Φ) such that ϕi(x) �= ϕj(x), 0 < i < j.

But now, as said before, we can transform Φ into an equivalent finite disjunction
of definitions with constraints ∨1≤i≤kDi. For each of these definitions Di, we check
whether it contains an equation x = ti, with ti ground. If the answer is no for at least one
element of the disjunction, there exists an infinite set {ϕ1, ϕ2, . . .} included in Sol(Φ)
satisfying that ϕi(x) �= ϕj(x) for all j > i > 0 and we output yes. If the answer is
yes for each definition Di, we output ”no” and the set {t1, . . . , tk} fulfills the required
conditions.

Lemma 16. The Infinite-Instances problem is computable.

Deciding Regularity of the Instances of a Set of Terms with Regular Constraints
Using Lemmas 14 and 16 we obtain an algorithm for deciding whether L(〈S,C〉) is
regular for given S andC. It checks repeatedly the previous sufficient condition looking
for non-regularity. After a finite number of steps it terminates with an equivalent linear
set, thus concluding regularity.

1 Input: A finite set of terms S and a constraint C.
2 If all terms in S are linear then stop with answer “yes”.
3 Otherwise, chose a term s ∈ S with a certain variable x occurring at least twice in
s, and ask for the existence of an infinite set {ϕ1, ϕ2, . . .} of solutions of C such
that ϕi(x) �= ϕj(x), and ϕi(s) is not in L(〈{S − {s}, C〉).

4 If the answer is “yes” then stop with answer “no”.
5 Otherwise consider the set of ground terms {t1, . . . , tk} satisfying ti �= tj for

1 ≤ i < j ≤ k, ti is ground for 1 ≤ i ≤ k, and for any solution ϕ of C such that
ϕ(s) is not in L(〈{S − {s}, C〉), it holds that ϕ(x) = ti for some i in {1, . . . , k},
and do: S := (S − {s}) ∪ {{x �→ t1}(s), . . . , {x �→ tk}(s)}.

6 Go to 2.

Theorem 17. It is decidable whether L(〈S,C〉) is regular for given set of terms S and
constraint C.



Classes of Tree Homomorphisms with Decidable Preservation of Regularity 139

4.3 Deciding the HOM-Problem for Bounded-Depth Copying Homomorphisms

We now come back to the problem of deciding regularity of homomorphic images of
regular tree languages, i.e., deciding whetherH(L) is regular for a given tree homomor-
phism H and regular tree language L. Let L be an arbitrary regular tree language. We
show that if H is “bounded-depth copying”, then we can construct a set of terms with
constraints 〈S,C〉 such that L(〈S,C〉) = H(L). Since for such sets we can decide reg-
ularity by Theorem 17, we obtain decidability of regularity ofH(L). Roughly speaking,
“bounded-depth copying” means that symbols σ for which H(σ) is non-linear (“copy-
ing”), occur at bounded depth. Let us first fix some notations. For a homomorphismH ,
denote by Copy(H) the set of symbols σ for which H(σ) is non-linear, i.e., for which
a variable xi occurs more than once in H(σ). A symbol σ is called erasing if H(σ) is
a variable, i.e., H(σ) ∈ X . A position p of t is deleted in t by H if there exists q, r and
an i ≥ 1 such that p = q.i.r and t[q] is a symbol b such that H(b) does not contain the
variable xi.

Definition 18. LetL be a set of trees,H a tree homomorphism, and k a natural number.
The pair (L,H) is depth-k copying if for any t in L and position p in t such that t[p]
belongs to Copy(H), either p is deleted in t by H or the path from the root of t to p
contains at most k occurrences of non-erasing symbols. The pair (L,H) is bounded-
depth copying if there exists a k such that (L,H) is depth-k copying.

Note that, given (L,H), it is decidable whether or not (L,H) is bounded-depth copy-
ing: we can construct a finite state word automaton A that recognizes the labeled paths
of trees in L which lead to a (non-deleted) copy symbol in Copy(H). Then (L,H) is
bounded-depth copying if and only if we can bound the number of non-erasing symbols
occurring in words in L(A), which is decidable. Note that this is similar to computing
the inverse image of a regular tree language under a homomorphism, used at the end of
the proof of Lemma 20; cf. also the discussion in the Conclusions. Clearly, if symbols
of Copy(H) only occur at deleted positions in trees of L, then H(L) is regular. The
reason for this is that only linear rules of H are applied when translating trees in L.

Lemma 19. Let L recognizable and H a homomorphism such that any position in a
tree t ∈ L labeled by a symbol in Copy(H) is deleted in t by H . Then H(R) is regular.

Lemma 20. Let L be recognizable and H a tree homomorphism such that (L,H) is
bounded-depth copying. There effectively exists a finite set of terms with regular con-
straints 〈S,C〉 such that L(〈S,C〉) = H(L).

Proof. Let A = (Q,Qa, Σ, δ) be a deterministic tree automaton with L(A) = L and
let k ≥ 0 such that (L,H) is depth-k copying. The proof is by induction on k.

If k = 0 then for any t ∈ L and p ∈ Pos(t) such that t[p] ∈ Copy(H), the path from
the root of t to p does not contain non-erasing symbols. Let a be a non-erasing symbol.
Let Seta = {(q1, . . . , qn) | ∃t(x), δ(t(a(q1, . . . , qn)) ∈ Qf ∧ H(t(x)) = x}. Then,
by assumption, for any (q1, . . . , qn) in Seta, the languages L(A, q1), . . . , L(A, qn) do
not contain any occurrence of symbols in Copy(H) at non-deleted positions. Hence,
by Lemma 19, their images by H are recognizable languages, let us say Rq1 , . . . , Rqn .
Now, any term u can be decomposed into u1(u2) where H(u1(x)) = x and the root of



140 G. Godoy, S. Maneth, and S. Tison

u2 is labeled by a non-erasing symbol. So, H(L) is the union of the L(〈{H(a)}, C〉)
for a non-erasing, where C(xi) = Rqi . Thus, by introducing new variables for each
such a and extending C appropriately, we obtain a set of terms with constraints 〈S,C〉
which equals H(L).

Induction step: Let us suppose the lemma holds for pairs of regular tree language
and homomorphism which are depth-k copying. Let (L,H) be depth-(k + 1) copy-
ing. This means that for any position p in t such that t[p] belongs to Copy(H), the
path from the root of t to p contains at most k + 1 non-erasing symbols. Once more,
let a be a non-erasing symbol and Seta defined as before. Then H(L) is the union
of the L(〈H(a), {(xi, H(L(A, qi)) | 1 ≤ i ≤ n}〉) for non-erasing a of arity n and
(q1, . . . , qn) in Seta. The H(L(A, qi)) are not necessarily regular but (H,L(A, qi))
is depth-k copying. Thus, by induction hypothesis, for any L(A, qi) there exists some
〈Si, Ci〉 such that H(L(A, qi)) = L(〈Si, Ci〉). By renaming of variables we can com-
pose these sets 〈Si, Ci〉 to obtain a set 〈S,C〉 such that L(〈S,C〉) = H(L). This con-
cludes our inductive proof.

In order to show that the above proof is constructive, it suffices to show that Seta
is computable. Thus, we need to show how to compute the set of trees t(x) for which
H(t(x)) = x. To this end, let ⊥ be a new constant and let G be the extension of H by
G(⊥) = ⊥. Then G−1(⊥) is effectively regular because inverses of tree transducers
effectively preserve the regular tree languages (see, e.g., Proposition 20.1 of [7] where
this is shown for the class of top-down tree transducers which includes the class of tree
homomorphisms). Let L⊥ = {t[p ← ⊥] | t ∈ L, p ∈ Pos(t)} be the regular tree
language of all trees t in L in which exactly one node has been replaced by ⊥. Then
G−1(⊥) ∩ L⊥ is the required set of trees t(x) for which H(t(x)) = x. ��

Using Lemma 20 and Theorem 17 we obtain our main result about pairs of regular tree
languages L and homomorphismsH with decidable regularity of H(L).

Theorem 21. Let L be a regular tree language and H a tree homomorphism such that
(L,H) is bounded-depth copying. It is decidable whether or not H(L) is regular.

Conclusions and Future Work. For a given regular tree language L and a tree ho-
momorphism H we have shown that regularity of H(L) is decidable in the following
cases: (1) if L is monadic, i.e., only uses symbols of arity 1 or 0, (2) if non-linear rules
of H are only applied at positions of bounded depth in the trees of L. For case (1) we
have given a decision procedure that runs in polynomial time; furthermore, we have
shown that, even in the monadic case, there are pairs of L, H that generate regular
languages for which any smallest (nondeterministic) tree automaton is exponentially
larger than the representation of L and H . It remains open what the precise complexity
of the decision procedure of case (2) is: currently we apply the inverse image of a tree
homomorphism in the proof, which can be expensive: for top-down tree transducers
this problem is known to be EXPTIME-complete [13]. What is the complexity of this
problem for tree homomorphisms? Can we drop the bounded-depth restriction of case
(2) and extend decidability to homomorphisms that copy at most once? Or even to those
that copy a bounded number of times? The latter is the “finite-copying” restriction [1],
a well-studied topic in tree transducer theory.



Classes of Tree Homomorphisms with Decidable Preservation of Regularity 141

References

1. Aho, A.V., Ullman, J.D.: Translations on a context-free grammar. Information and Con-
trol 19, 439–475 (1971)

2. Bogaert, B., Seynhaeve, F., Tison, S.: The recognizability problem for tree automata with
comparison between brothers. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp.
150–164. Springer, Heidelberg (1999)

3. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree automata techniques and applications (2002),
http://www.grappa.univ-lille3.fr/tata

4. Comon, H., Delor, C.: Equational formulae with membership constraints. Inf. Comput. 112,
167–216 (1994)

5. Engelfriet, J.: Bottom-up and top-down tree transformations — A comparison. Math. Sys-
tems Theory 9, 198–231 (1975)

6. Fülöp, Z.: Undecidable properties of deterministic top-down tree transducers. Theoret. Com-
put. Sci. 134, 311–328 (1994)

7. Gécseg, F., Steinby, M.: Tree languages. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of
Formal Languages, vol. 3, ch. 1, Springer, Heidelberg (1997)

8. Hopcroft, J.W., Ullman, J.D.: Introduction to automata theory, languages, and computation.
Addison-Wesley, Reading (1979)

9. Hosoya, H.: Foundations of XML processing (2002),
http://arbre.is.s.u-tokyo.ac.jp/∼hahosoya/xmlbook/xmlbook.pdf

10. Kucherov, G., Rusinowitch, M.: Patterns in words versus patterns in trees: A brief survey and
new results. In: Ershov Memorial Conference, pp. 283–296 (1999)

11. Kucherov, G., Tajine, M.: Decidability of regularity and related properties of ground normal
form languages. Inf. Comput. 118, 91–100 (1995)

12. Lassez, J.-L., Marriott, K.: Explicit representation of terms defined by counter examples. J.
Autom. Reasoning 3, 301–317 (1987)

13. Martens, W., Neven, F.: On the complexity of typechecking top-down xml transformations.
Theor. Comput. Sci. 336, 153–180 (2005)

14. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of xml schema languages using
formal language theory. ACM Trans. Internet Techn. 5(4), 660–704 (2005)

15. Suciu, D.: The XML typechecking problem. SIGMOD Record 31, 89–96 (2002)

http://www.grappa.univ-lille3.fr/tata
http://arbre.is.s.u-tokyo.ac.jp/~hahosoya/xmlbook/xmlbook.pdf


A Kleene-Schützenberger Theorem for Weighted

Timed Automata

Manfred Droste and Karin Quaas

Institut für Informatik, Universität Leipzig
04009 Leipzig, Germany

{droste,quaas}@informatik.uni-leipzig.de

Abstract. During the last years, weighted timed automata (WTA) have
received much interest in the real-time community. Weighted timed au-
tomata form an extension of timed automata and allow us to assign
weights (costs) to both locations and edges. This model, introduced by
Alur et al. (2001) and Behrmann et al. (2001), permits the treatment
of continuous consumption of resources and has led to much research on
scheduling problems, optimal reachability and model checking. Also, sev-
eral authors have derived Kleene-type characterizations of (unweighted)
timed automata and their accepted timed languages. The goal of this
paper is to provide a characterization of the possible behaviours of WTA
by rational power series. We define WTA with weights taken in an ar-
bitrary semiring, resulting in a model that subsumes several WTA con-
cepts of the literature. For our main result, we combine the methods
of Schützenberger, a recent approach for a Kleene-type theorem for un-
weighted timed automata by Bouyer and Petit as well as new techniques.
Our main result also implies Kleene-type theorems for several subclasses
of WTA investigated before, e.g., for weighted finite automata, timed
automata and timed automata with stopwatch observers.

1 Introduction

Since its introduction in 1994 by Alur and Dill [2], timed automata have been
a thoroughly investigated model for the specification and analysis of real-time
systems. In the literature, not only a variety of interesting theoretical results for
timed automata and timed languages have been established (see [4] for a survey),
but there has also much practical work been done such as the development
of symbolic data structures and efficient algorithms, leading to model-checking
tools like Kronos, Uppaal and HyTech [17], [25], [22], successfully used for
solving industrially relevant problems, e.g. [27], [23].

Weighted timed automata have been of much interest in the real-time com-
munity during the last years. The model has been introduced independently by
Alur et al. [3] and Behrmann et al. [8] and allows us to assign weights to both the
locations and edges of the underlying timed automaton. The weight of an edge
gives the actual cost for executing it, whereas the weight of a location gives the
cost for staying in this location per time unit. The weight for reaching a certain

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 142–156, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Kleene-Schützenberger Theorem for Weighted Timed Automata 143

location s (or, analogously, the weight for accepting a certain timed word) is
computed by taking the minimum over the running weights of all runs ending
in s. The running weight of a run is the sum of the costs of all participating
transitions of the run. In this way, WTA have been used to model continuous
consumption of resources, allowing applications in operations research, in par-
ticular optimal scheduling and planning [20], [28]. Consequently, a number of
decision problems have been investigated, most of them concerning the reacha-
bility problem under some optimization aspect [8], [3], [11], model-checking [18],
[12], [14], and weighted timed games [1].

The goal of this paper is to provide a characterization of the possible be-
haviours of WTA in terms of rational power series, i.e., power series constructed
by the standard rational operations addition, Cauchy product and Kleene star
iteration. Moreover, we give a more general definition of WTA which includes
all the various definitions given in the literature so far and which gives rise to
some interesting variants.

We define WTA over a semiring in the same manner as it is done for classical
weighted finite automata [29], [24], [10]. In this way, we are not bound to a
fixed set of weights, nor are we restricted to use the operations of addition and
infimum for computing the weight of a word. Secondly, we do not restrict the cost
functions for the locations to be linear (as previously done in [3], [8]). Instead,
we consider WTA with respect to an arbitrary family of functions F mapping
positive reals to elements in the semiring. The cost for staying in a location s is
defined by a cost function Cs ∈ F . By introducing the notion of a family of cost
functions F and the semiring, we hope to obtain a flexible model of WTA.

For our characterization of the behaviours of WTA by rational power series, we
establish a Kleene-Schützenberger theorem for WTA. Schützenberger’s theorem
is the analogue to the famous Kleene theorem for the class of weighted finite
automata: the set of recognizable power series, i.e., the set of power series that
constitute the behaviour of a weighted automaton, is precisely the set of rational
power series [30]. As is well-known, rational expressions can be used to specify
properties of systems. Recently, there have also been several approaches to give
a Kleene-type theorem for timed languages [5], [7], [6], [15], of which we choose
the latest approach of Bouyer and Petit in 2001 [16] because of its simplicity
and elegance. According to their result, the set of regular timed languages, as
defined by Alur and Dill [2], coincides with the set of rational timed languages,
defined over the standard rational operations +, ·, ∗ and an additional projection
operation. For the proof of our main result, we combine the methods of Bouyer
and Petit, Schützenberger and new techniques.

We define the semantics of WTA based on the notion of clock words as intro-
duced by Bouyer and Petit [16]. Clock words, as opposed to the well-known timed
words [2], bear more information concerning the actual values of clock variables
than timed words, and thus enable the authors to define a concatenation oper-
ation in a natural way. Consequently, all the definitions and constructions for
the Kleene theorem are given with respect to clock words. However, it can be
shown that clock words can easily be mapped to timed words using a projection



144 M. Droste and K. Quaas

function; thus the Kleene theorem for clock words can be extended to timed
words. To bring weights into play, we introduce the notion of clock series. Clock
series are a particular kind of power series which map clock words to elements
in a semiring. We define addition, Cauchy product and Kleene star iteration on
the set of clock series to give a formal definition for the set of rational clock
series. The main objective of this work is to show that this set is equal to the set
of recognizable clock series, which make up the behaviour of the class of WTA.
We establish this in two steps. First, the crucial part for showing that any ra-
tional clock series is a recognizable clock series is to prove that WTA are closed
under the three operations mentioned above. In our proof, for dealing with the
weights assigned to locations, we need to give new methods for normalizing the
automata. The proof for the other direction, i.e., any recognizable clock series is
rational, is based on the solution of equations [16], [10]. Finally, we show how we
can extend the theorem in such a way that it can be applied to timed semantics
as well.

2 Preliminaries

In the following, we use �≥0 and � to denote the positive reals and natural
numbers, respectively. Furthermore, we write �1+n

≥0 for �≥0 × �
n
≥0.

Clock Constraints and Clock Valuations. Let X be a finite set of variables,
called clock variables. We define clock constraints φ over X to be conjunctions of
formulas of the form x ∼ k, where k ∈ �, x ∈ X , and ∼∈ {<, ≤, >, ≥}. Let Φ(X)
be the set of all clock constraints φ over X . A clock valuation ν : X → �≥0 is a
function that assigns a value to each clock variable. A clock valuation ν satisfies
a clock constraint φ, written ν |= φ, if φ evaluates to true according to the
values given by ν. Given δ ∈ �≥0, we let ν + δ be the clock valuation such that
(ν +δ)(x) = ν(x)+δ for each x ∈ X . For λ ⊆ X , we define ν[λ := 0] as the clock
valuation that assigns 0 to each x ∈ λ, and agrees with ν over the remaining
clock variables x ∈ X\λ.

Timed and Clock Words. Let Σ be a finite alphabet and n ∈ �. A timed
word is a finite sequence w = (σ1, t1)(σ2, t2)...(σk, tk) ∈ (Σ × �≥0)∗, where the
sequence t1t2...tk is non-decreasing. Intuitively, ti gives the time of occurrence
of σi. An n-clock word is a finite sequence w = (t0, ν0)(σ1, t1, ν1)...(σk, tk, νk)
from the infinite set (�1+n

≥0 )(Σ × �
1+n
≥0 )∗, where (σ1, t1)...(σk, tk) is a timed

word, and νi gives the values of the clock variables just after the computa-
tion of σi. The pair (t0, ν0) corresponds to the starting condition and is consid-
ered to be an empty n-clock word. The set of empty n-clock words is denoted
by Γn(= �

1+n
≥0 ). We define (�1+n

≥0 )(Σ × �
1+n
≥0 )+ by (�1+n

≥0 )(Σ × �
1+n
≥0 )∗\Γn. Let

w = (t0, ν0)(σ1, t1, ν1)...(σk, tk, νk) and w′ = (t′0, ν
′
0)(σ

′
1, t
′
1, ν
′
1)...(σ

′
l, t
′
l, ν
′
l) be two

n-clock words. We say that w is compatible with w′ if (tk, νk) = (t′0, ν′0). In this
case, we define the concatenation w · w′ of w and w′ to be the n-clock word
(t0, ν0)(σ1, t1, ν1)...(σk, tk, νk)(σ′1, t′1, ν′1)...(σ′l , t

′
l, ν
′
l). By |w| we mean the length

of an n-clock word w.



A Kleene-Schützenberger Theorem for Weighted Timed Automata 145

Semirings and Formal Power Series. A semiring is a tuple K=(K, ⊕, 	, 0, 1)
such that (K, ⊕, 0) is a commutative monoid, (K, 	, 1) is a monoid, 	 is both
left- and right-distributive over ⊕, and 0 	 x = x 	 0 = 0 for any x ∈ K.
As examples consider the semiring (�, +, ·, 0, 1) of natural numbers with the
usual addition and multiplication, the Boolean semiring ({0, 1}, ∨, ∧, 0, 1), and
the tropical semiring (�≥0 ∪ {∞}, min, +, ∞, 0). Let A be an arbitrary set and
K a semiring. A function S : A → K is called a formal power series (fps) over
K. For historical reasons, the image of an element w ∈ A is denoted by (S, w).
We write K〈〈A〉〉 to mean the set of all fps S : A → K.

3 Weighted Timed Automata

Weighted Timed Automata. Let K be a semiring, Σ be a finite alphabet, and
X be a finite set of clock variables. We consider timed automata A augmented
with cost functions that assign elements from K, so-called weights (or costs),
to both the edges and the locations of A. The weight for staying in a location
depends on the amount of time we spend in this location; thus, we define a cost
function from �≥0 to K for each location. Let F be any family of functions from
�≥0 to K. A weighted timed automaton (WTA) over K, Σ, X and F is a tuple
A = (S, S0, Sf , E, C), where

– S is a finite set of locations (states)
– S0 ⊆ S is a set of initial locations
– Sf ⊆ S is a set of final locations
– E ⊆ S × S × Σ × Φ(X) × 2X is a finite set of edges. An edge (s, s′, σ, φ, λ)

allows a jump from location s to location s′ if σ is read, provided that the
current values of the clock variables in location s satisfy the clock constraint
φ. After the edge has been executed, all clock variables in λ are reset to zero,
whereas the values of all other clock variables remain unchanged.

– C = {CE} ∪ {Cs : s ∈ S}, where CE : E → K, and Cs ∈ F for any s ∈ S.

Let A = (S, S0, Sf , E, C) be a WTA. The timed semantics of A is given by an
infinite state transition system that corresponds to a weighted extension of the
original semantics of timed automata defined by Alur and Dill [2]. However, in
the following we will give an additional semantics, called clock semantics. This
model is based on the notion of clock words rather than timed words, and allows
for a natural definition of concatenation [16].

Timed Semantics. Let ST
A be a state-transition-system with states of the form

(s, ν), where s ∈ S and ν is a clock valuation. We define timed transitions to be

transitions of the form (s, ν)
δ/c−→T (s, ν+δ) where c = Cs(δ). A discrete transition

is of the form (s, ν)
σ/c−→D (s′, ν′) such that there is an edge e = (s, s′, σ, φ, λ) in

E where CE(e) = c, ν |= φ, and ν′ = ν[λ := 0]. A timed run rT of A is a finite
alternating sequence of timed and discrete transitions in ST

A

rT =
(
(s0, ν0)

δ1/c1−→ T (s1, ν1)
σ1/c′1−→ D (s′1, ν

′
1)

δ2/c2−→ T ...
σk/c′k−→ D (s′k, ν′k)

)



146 M. Droste and K. Quaas

where ν0 = 0|X|. With rT , the timed word w = (σ1, t1)(σ2, t2)...(σk, tk), such
that tj =

∑j
i=1 δj for each 1 ≤ j ≤ k, is associated.

Clock Semantics. The clock semantics is very similar to the timed semantics
and is given in terms of |X |-clock words. Consider the state-transition-system
SC
A , whose states are of the form (s, t, ν), where s is a location, t ∈ �≥0, and ν is

a clock valuation. The transition relation over the set of states in SC
A is defined

in the same manner as the transition relation in ST
A. A clock run rC of A is a

finite alternating sequence of timed and discrete transitions

rC =
(
(s0, t0, ν0)

δ1/c1−→ T (s1, t1, ν1)
σ1/c′1−→ D (s′1, t

′
1, ν
′
1)

δ2/c2−→ T ...
σk/c′k−→ D (s′k, t′k, ν′k)

)

where t1 = t0 + δ1, t′i = ti for any 1 ≤ i ≤ k, and ti = t′i−1 + δi for any 2 ≤ i ≤ k.
Note that in contrast to the timed semantics, ν0 can be arbitrary. The label of
a canonical clock run is the |X |-clock word w = (t0, ν0)(σ1, t

′
1, ν
′
1)...(σk, t′k, ν′k).

Behaviour of A. Let r be a (timed or clock) run as above. We define the
running weight rwt(r) of r to be rwt(r) =

∏k
i=1 ci 	 c′i. The running weight of

the empty clock run (t0, ν0) with label (t0, ν0) ∈ Γ|X| is defined to be 1. We say
that r is initialized if s0 ∈ S0. It is accepting if s′k ∈ Sf . If r is both initialized
and accepting it is called successful. The timed behaviour of the WTA A is the
fps ‖A‖T : (Σ × �≥0)∗ → K defined by

(‖A‖T , w) =
∑

{rwt(r) : r is a successful timed run of A on w}

Similarly, we define the clock behavior of A to be the fps
‖A‖C : (�1+|X|

≥0 )(Σ × �
1+|X|
≥0 )∗ → K given by

(‖A‖C , w) =
∑

{rwt(r) : r is a successful clock run of A on w}

In the remainder of the paper, we will use the clock semantics for defining the
notions of recognizability and rationality. In the last section, we show that these
notions can easily be adapted to the timed semantics.

4 Relation to other Automata Models

Here we show that our model of WTA subsumes a number of more particular
concepts of timed automata, as well as weighted (untimed) automata, which
have been investigated intensively in the literature. In particular, by restricting
K and F , we obtain timed automata and weighted automata. This implies that
our main theorem in Sect. 5 also applies to these automata classes.

Timed Automata. The classical (unweighted) timed automaton defined by
Alur and Dill [2] can be obtained as follows. Let K be the Boolean semiring
({0, 1}, ∨, ∧, 0, 1), F be the family of constant functions 1, i.e., Cs(δ) = 1 for any
s ∈ S, δ ∈ �≥0, and CE(e) = 1 for any e ∈ E. Thus, Theorem 8 of Bouyer and
Petit [16] is implied by our main theorem in Sect. 5.



A Kleene-Schützenberger Theorem for Weighted Timed Automata 147

Other Weighted Timed Automata Models. Weighted timed automata
have been introduced independently by Alur et al. [3] and Behrmann et al. [8].
Both consider timed automata A augmented with a cost function that assigns a
natural number to locations and edges of A. In doing so, the increase of the cost
variable is restricted to be linear. The cost of reaching a location s is computed
by taking the minimum of the costs of any run ending in s, where the cost of a
run r is the sum of the costs of all participating transitions in r. We can easily
model this using the tropical semiring (�≥0 ∪{∞}, min, +, ∞, 0), and restricting
F to the class of linear functions.

Recently, the weighted timed automaton model has been generalized by allow-
ing more than one cost variable. Larsen and Rasmussen introduced dual-priced
timed automata [26]. The dual-priced timed automaton model can be modeled
by defining a new “tropical” semiring with the underlying set (�≥0 ∪ {∞}) ×
(�≥0 ∪{∞}), and modifying the definitions of min and + in a suitable way, e.g.
coordinate-wise. Similarly, we can extend to multi-priced models [13].

Timed Automata with Stopwatch Observers. A stopwatch is a clock vari-
able that can be stopped and turned on again [21]. In other words, the rate of
change of the stopwatch variable is either 0 or 1. A timed automaton augmented
with a stopwatch variable that can neither be tested in a clock constraint nor be
reset is called a timed automaton with a stopwatch observer. We use a WTA to
model such an automaton by restricting F to be the constant functions 0 and
1. The edges shall not cost anything: CE(e) = 1 for any e ∈ E.

Weighted Finite Automata. A weighted finite automaton A over a semiring
K = (K, ⊕, 	, 0, 1) is a finite automaton whose transitions are assigned costs
taken from the semiring. The behavior of A is defined using the semiring opera-
tions ⊕ and 	 in the same manner as it is done for WTA in Sect. 3. By restricting
the family of functions F to the constant function 1, we yield a model which does
not add any costs while staying in a location. In this way, we yield a classical
weighted finite automaton. This implies that the Schützenberger theorem [30] is
a special case of our main theorem in Sect. 5.

5 Clock Series

To describe the behaviour of a WTA A over K, Σ, X and F , we want to use F-
rational clock series. In this section, we give a general definition of clock series,
some basic properties of clock series, and the definition of rationality. Finally, we
will give the main theorem of the paper. For the remainder of the paper, we fix
a semiring K, a finite alphabet Σ, a set of clock variables X = {x1, ..., xn}, and
a family F of functions from �≥0 to K. If not otherwise specified, by writing A
we mean a WTA A over K, Σ, X and F .

Clock Series. A function S : (�1+n
≥0 )(Σ×�1+n

≥0 )∗ → K is called an n-clock series.
We denote the set of all n-clock series by Kn〈〈Σ,�≥0〉〉. On the set Kn〈〈Σ,�≥0〉〉,



148 M. Droste and K. Quaas

we define the sum S +T pointwise, i.e., (S +T, w) = (S, w)⊕(T, w). The Cauchy
product S · T is defined by

(S · T, w) =
∑

u·v=w

(S, u) 	 (T, v)

Furthermore, we define the clock series � by (�, w) = 1 if w ∈ Γn, (�, w) = 0
otherwise, and the clock series � by (�, w) = 0 for each w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 ).

The following lemma is the clock series version of the well-known fact that the set
of fps over the free monoid together with sum and Cauchy product is a semiring.

Lemma 1. The structure (Kn〈〈Σ,�≥0〉〉, +, ·, �, �) is a semiring.

For a clock series S, let S0 = � and, inductively, Sk = S ·Sk−1 be the k-th power
of S for k ≥ 1. The clock series S ∈ Kn〈〈Σ,�≥0〉〉 is called proper, if (S, w0) = 0
for any w0 ∈ Γn. For proper clock series S, we define the Kleene star iteration
S∗ by

(S∗, w) =
∑

k≥0

(Sk, w)

Notice that from (S, w0) = 0 for w0 ∈ Γn, it follows that (Sk, w) = 0 for any
k > |w|. This implies that the sum given above is finite and hence exists in K.

Lemma 2. Let S ∈ Kn〈〈Σ,�≥0〉〉 be proper. Then S · S∗ + � = S∗.

Next, we give an explicit formula for the calculation of Sk. It can be proved by
induction on k.

Lemma 3. If S is a proper n-clock series, k ∈ �, and w ∈ (�1+n
≥0 )(Σ ×�

1+n
≥0 )∗,

then (Sk, w) has the explicit representation

(Sk, w) =
∑

w=w1·...·wk

k∏

i=1

(S, wi)

Rational Clock Series. For c ∈ F , k ∈ K, σ ∈ Σ, φ ∈ Φ(X), and λ ⊆ X , we
define the F -monomial 〈c, k, σ, φ, λ〉 : (�1+n

≥0 )(Σ × �
1+n
≥0 )∗ → K as follows:

(〈c, k, σ, φ, λ〉, w) =

⎧
⎪⎨

⎪⎩

c(δ) 	 k if w = (t, ν)(σ, t + δ, ν′) ∈ (�1+n
≥0 )(Σ × �

1+n
≥0 )

s.t. δ ∈ �≥0, ν + δ |= φ and ν′ = ν + δ[λ := 0]
0 otherwise

An n-clock series S is F-rational if it can be defined starting from finitely
many F -monomials or the clock series � and �, by means of a finite number
of applications of +, · and ∗, where the latter may only be applied to proper n-
clock series. We use KF−rat

n 〈〈Σ,�≥0〉〉 to denote the set of all F -rational n-clock
series.

Observe that, similarly to the case of WTA, by restricting K and F , we obtain
rational expressions for several other (unweighted) automata classes or rational



A Kleene-Schützenberger Theorem for Weighted Timed Automata 149

fps for weighted automata. For instance, if K is the Boolean semiring and F
is the family of constant functions 1, then rational clock series correspond to
rational clock expressions defined by Bouyer and Petit [16].

Example 1. Consider the following specification of a real-time system with a
single resource, where Λ = {a, b, c, d} is a set of actions:

The system must execute a and b, and b must be executed exactly 3 time
units after a. Between a and b, action c (costs e 3) and action d (costs
e 2) may be executed consecutively for an arbitrary number of times,
but d is restricted to happen strictly between 1 and 2 time units after c.
Being in the state after action a or d has been executed, costs e 5 per
time unit, whereas being in the state after c has been executed, costs e 1
per time unit.

The specification can be represented by the following rational clock series over
the tropical semiring, Λ, Y = {x, y} and Ci(δ) = i · δ for each i, δ ∈ �≥0:

〈C0, 0, a, �, {x}〉(〈C5, 3, c, �, {y}〉〈C1, 2, d, 1 < y < 2, ∅〉)∗〈C5, 0, b, x = 3, ∅〉

where � means true. In Fig. 1, we give the corresponding WTA.

s1 s2

s3 s4

a/0,x:=0

b/0,x=3

c/3
y:=0

d/2
1<y<2

for each δ ∈ �≥0

Cs1(δ) = 0
Cs2(δ) = 5 · δ
Cs3(δ) = 1 · δ
Cs4(δ) = 0

Fig. 1. The weighted timed automaton for Example 1

Recognizable Clock Series. We say that a clock series S is an F -recognizable
n-clock series if there is a WTA A = (S, S0, Sf , E, C) with S = ‖A‖. We use
KF−rec

n 〈〈Σ,�≥0〉〉 to denote the set of all F -recognizable n-clock series.
Now, we are ready to present the main theorem of our paper.

Theorem 1. Let K be a semiring, Σ be a finite alphabet, X = {x1, ..., xn} be a
finite set of clock variables and F be a family of functions from �≥0 to K. Then
the set of F-recognizable n-clock series is equal to the set of F-rational n-clock
series:

KF−rec
n 〈〈Σ,�≥0〉〉 = KF−rat

n 〈〈Σ,�≥0〉〉

Proof. The two inclusions of this result will follow from Proposition 1 and Propo-
sition 2, respectively, presented in the next two sections.



150 M. Droste and K. Quaas

6 Rationality Implies Recognizability

In this section, we prove one inclusion of Theorem 1, namely that any rational
n-clock series is recognizable. To this end, we will show that the basic n-clock
series �, � and F -monomials are recognized by a WTA. Then, we will present new
constructions that prove that WTA are closed under addition, Cauchy product
and Kleene star iteration.

Proposition 1. KF−rat
n 〈〈Σ,�≥0〉〉 ⊆ KF−rec

n 〈〈Σ,�≥0〉〉.

Proof. Follows from Lemmas 4, 5, 7 and 9 given subsequently.

Lemma 4. �, � and F-monomials in KF−rat
n 〈〈Σ,�≥0〉〉 are recognizable n-clock

series.

Proof. � is the behaviour of the WTA A� = ({s}, {s}, ∅, ∅, C), and the WTA
A� = ({s}, {s}, {s}, ∅, C) corresponds to the clock series �. In both cases, Cs ∈
F is arbitrary. Let S = 〈c, k, σ, φ, λ〉 be an F -monomial in KF−rat

n 〈〈Σ,�≥0〉〉,
where c ∈ F , k ∈ K, σ ∈ Σ, φ ∈ Φ(X), λ ⊆ X . We define the WTA
A〈c,k,σ,φ,λ〉 = (S, S0, Sf , E, C) where

– S = {s1, s2}
– S0 = {s1}
– Sf = {s2}
– E = {(s1, s2, σ, φ, λ)}
– C = {CE} ∪ {Cs : s ∈ S}

where CE : E → K is defined by CE((s1, s2, σ, φ, λ)) = k. Also, let Cs1 = c, and
choose any Cs2 ∈ F . Clearly, ‖A〈c,k,σ,φ,λ〉‖ = S.

The proof of the next lemma can be done as in the case of traditional finite
automata by taking a disjoint union of two WTA.

Lemma 5. If S, T ∈ KF−rec
n 〈〈Σ,�≥0〉〉, then S + T ∈ KF−rec

n 〈〈Σ,�≥0〉〉.

In the following, we give normalization techniques for WTA which will be essen-
tial for subsequent constructions of WTA. For showing closure of WTA under the
Cauchy product, we need a final-location-normalization. We say that a WTA A
is final-location-normalized if there is one single final location, and this location
has no outgoing edge.

Lemma 6. If A is a WTA, then there is a final-location-normalized WTA A′
with (‖A‖, w) = (‖A′‖, w) for any w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 )+.

Proof. Let A = (S, S0, Sf , E, C) be a WTA.
Define A′ = (S′, S′0, S

′
f , E ∪ E′, C ∪ C′), where

– S′ = S ∪ {sf}
– S′0 = S0

– S′f = {sf}



A Kleene-Schützenberger Theorem for Weighted Timed Automata 151

– E′ = {(s, sf , σ, φ, λ) : ∃s′ ∈ Sf s.t. (s, s′, σ, φ, λ) ∈ E}
– C′ : E′ → K is defined by C′((s, sf , σ, φ, λ)) =

∑

s′∈Sf

(s,s′,σ,φ,λ)∈E

C((s, s′, σ, φ, λ))

– Csf
∈ F

Intuitively, we redirect all edges going into a final location to the new final
location. The weight of each of these new edges must be the sum of the weights
of all “equivalent” edges, i.e., edges with the same label, clock constraint and
reset set. Using this notion of equivalence, we can show that (‖A‖, w) = (‖A′‖, w)
for any w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 )+.

Lemma 7. If S, T ∈ KF−rec
n 〈〈Σ,�≥0〉〉, then S · T ∈ KF−rec

n 〈〈Σ,�≥0〉〉.

Proof. We give the construction of the WTA A such that ‖A‖ = S · T . For
i = 1, 2, let Ai = (Si, Si

0, S
i
f , Ei, Ci) such that ‖A1‖ = S and ‖A2‖ = T . By

Lemma 6, we know that there is a final-location-normalized WTA
AN = (SN , SN

0 , {sf}, EN , CN ) such that (‖A1‖, w) = (‖AN‖, w) for any
w ∈ (�1+n

≥0 )(Σ ×�
1+n
≥0 )+. Assume CN = {CN

EN }∪{CN
s }s∈SN and |S1

0 ∩S1
f | = m.

Define AN,2 = (SN ∪ S2, SN
0 , S2

f , EN ∪ E2 ∪ E, {CN} ∪ {C2} ∪ {CE}) where

– E = {(s, s′, σ, φ, λ) : s′ ∈ S2
0 , (s, sf , σ, φ, λ) ∈ EN}

– CE : E → K is defined by CE((s, s′, σ, φ, λ)) = CN
EN ((s, sf , σ, φ, λ)) if

(s, sf , σ, φ, λ) ∈ EN

Intuitively, we redirect all edges going into the single final location of AN to the
initial locations of A2 and preserve the cost assigned to these edges.

For i ∈ �, define A2,i to be an isomorphic copy of A2 such that its locations
and edges are indexed by i. Let A be the disjoint union of AN,2 and A2,i for
1 ≤ i ≤ m. Then, (‖A‖, w) = S · T : AN,2 recognizes precisely the clock words w
that are the concatentation of two clock words w1 and w2 accepted by AN and
A2, respectively. Words obtained by concatentation of an empty word w0 ∈ Γn

and a word w2 recognized by A1 and A2, respectively, have to be treated in a
different manner. To overcome the problem that (‖A1‖, w0) = m · 1 (i.e., the
sum of m summands of 1 ∈ K), whereas (AN , w0) = 0 due to the construction
of AN , we add m isomorphic copies of A2. In this way, words of this kind are
assigned the correct weight.

For showing closure of WTA under the Kleene star iteration, we need an addi-
tional normalization technique. A WTA is initial-location-normalized if all initial
locations are sources, i.e., have no ingoing edges. Note that, in contrast to the
case of classical weighted automata, we do not require to have one single initial
state.

Lemma 8. If A is a WTA, then there is an initial-location-normalized WTA
A′ with (‖A‖, w) = (‖A′‖, w) for any w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 )∗.

Proof. Let A = (S, S0, Sf , E, C) be a WTA, where C = {CE} ∪ {Cs : s ∈ S}.
For each s ∈ S, let s′ be the copy of s.
Define A′ = (S ∪ S′, S′0, Sf ∪ S′f , E ∪ E′, C ∪ C′), where



152 M. Droste and K. Quaas

– S′ = {s′ : s ∈ S0}
– S′0 = S′

– S′f = {s′ : s ∈ S0 ∩ Sf}
– E′ = {(s′, t, σ, φ, λ) : (s, t, σ, φ, λ) ∈ E}
– C′ = {C′E′} ∪ {C′s′ : s′ ∈ S′}, where C′E′ : E′ → K is defined by

C′E′((s′, t, σ, φ, λ)) = CE((s, t, σ, φ, λ)), and C′s′ = Cs for any s ∈ S.

The intuituion behind this construction is to create a new initial location s′ for
every initial location s ∈ S0 such that s′ carries only copies of the outgoing
edges of s. In particular, no (new) initial location has any ingoing edge. The
final states of A′ consist of the final states of A and of those locations s′ whose
original location s is both initial and final in A. This choice of new final states
s′ guarantees that A′ behaves correctly on the empty n-clock words. One can
prove ‖A′‖ = ‖A‖ by establishing a weight-preserving bijective correspondence
between the successful runs of A and A′.

Corollary 1. Let A be a WTA. Then there is an initial- and final-location-
normalized WTA AN with (‖AN‖, w) = (‖A‖, w) for any
w ∈ (�1+n

≥0 )(Σ × �
1+n
≥0 )+. Moreover, (‖AN‖, w0) = 0 for any w0 ∈ Γn.

Lemma 9. If S ∈ KF−rec
n 〈〈Σ,�≥0〉〉 is proper, then S∗ ∈ KF−rec

n 〈〈Σ,�≥0〉〉.

Proof. By Corollary 1 there is an initial- and final-location-normalized WTA
A = (S, S0, {sf}, E, C) with ‖A‖ = S. We define
A∗ = (S ∪ {s0f}, S0 ∪ {s0f}, {sf , s0f}, E ∪ E′, C ∪ C′), where

– s0f is a new location (to obtain (‖A∗‖, w0) = 1 for w0 ∈ Γn)
– E′ = {(s, s′, σ, φ, λ) : s′ ∈ S0, (s, sf , σ, φ, λ) ∈ E}
– C′ : E′ → K is defined by C′((s, s′, σ, φ, λ)) = CE((s, sf , σ, φ, λ)) if

(s, sf , σ, φ, λ) ∈ E

By a careful analysis of the successful runs of A∗ and their weights, it can be
shown that ‖A∗‖ = ‖A‖∗, which implies the result.

7 Recognizability Implies Rationality

In this section, we show that any n-clock series recognized by a WTA A is
rational by solving a system of equations induced by A. The solution of the
system corresponds to the rational clock series. Before we present the actual
result, we give some lemmas. Let A = (S, S0, Sf , E, C) be a WTA. For any
two locations s, s′ ∈ S, we set As,s′ = (S, {s}, {s′}, E, C). The following lemma
states how we can compute ‖A‖.

Lemma 10. If A = (S, S0, Sf , E, C) is a WTA, then

‖A‖ =
∑

(s0,sf )∈S0×Sf

‖As0,sf
‖



A Kleene-Schützenberger Theorem for Weighted Timed Automata 153

The next lemma shows that for the behaviour of any As,s′ , we can give an
equivalent linear equation. This can be proved by decomposing any successful
run of As,s′ after the first discrete transition and replacing the first component by
the corresponding monomial WTA, using laws of associativity and distributivity.

Lemma 11. Let A = (S, S0, Sf , E, C) be a WTA, and assume that
sf ∈ Sf is fixed. Then, for any s ∈ S,

‖As,sf
‖ =

⎧
⎪⎨

⎪⎩

∑

(s,s′,σ,φ,λ)∈E

‖A〈Cs,k,σ,φ,λ〉‖ · ‖As′,sf
‖ + � if s = sf

∑

(s,s′,σ,φ,λ)∈E

‖A〈Cs,k,σ,φ,λ〉‖ · ‖As′,sf
‖ otherwise

where k = CE((s, s′, σ, φ, λ)).

The objective of these lemmas is to provide the basis for building a system of
linear equations that represents the behaviour of a given WTA A. The solution
of this system correesponds to a rational clock series that is equivalent to the
behaviour of A. However, we need to show that it is guaranteed that there is
such a solution. The next lemma supplies us with an even stronger result, namely
that there is a unique solution.

Lemma 12. Let S, S1, S2 ∈ Kn〈〈Σ,�≥0〉〉, S1 be proper. Then the equation
S = S1 · S + S2 has the unique solution T = S∗1 · S2.

Finally, we present the crucial property between recognizable and rational clock
series. For proving it, we use Lemmas 10, 11 and 12.

Proposition 2. KF−rec
n 〈〈Σ,�≥0〉〉 ⊆ KF−rat

n 〈〈Σ,�≥0〉〉.

8 Timed Series

As mentioned in Sect. 3, we use the clock semantics for defining a natural con-
catenation operation. However, research in the real-time community focuses on
timed languages rather than clock languages. In this section, we show that a
Kleene-Schützenberger theorem can be given for the corresponding class of fps,
so-called timed series.

Timed Series. An fps S : (Σ × �≥0)∗ → K is called a timed series. We
denote the set of timed series by K〈〈(Σ × �≥0)∗〉〉. We say that a timed series
S ∈ K〈〈(Σ × �≥0)∗〉〉 is recognizable if there is a WTA A such that S = ‖A‖T .
The set of recognizable timed series will be denoted by Krec〈〈(Σ × �≥0)∗〉〉.

Projection. The use of timed semantics rather than clock semantics sacri-
fices some significant information concerning the values of the clock variables
that precludes us from defining the notion of rationality for timed series in the
same way as for clock series. Therefore, we use the approach of Bouyer and



154 M. Droste and K. Quaas

Petit [16], and introduce a projection that maps clock series to timed series.
Let π : (�1+n

≥0 )(Σ × �
1+n
≥0 )∗ → (Σ × �≥0)∗ be the partial function defined by

π((t0, ν0)(σ1, t1, ν1)...(σk, tk, νk)) = (σ1, t1)...(σk, tk) if (t0, ν0) = (0, 0n), unde-
fined otherwise. We extend π to a function π̄ : Krec

n 〈〈Σ,�≥0〉〉 → Krec〈〈(Σ ×
�≥0)∗〉〉 : S �→ π̄(S) where

(π̄(S), wT ) =
∑

wC∈(�1+n
≥0 )(Σ×�1+n

≥0 )∗
π(wC )=wT

(S, wC)

for any timed word wT ∈ (Σ × �≥0)∗. Notice that the sum in the equation is
finite: for any recognizable timed word, there is only a finite number of n-clock
words wC in π−1(wT ) such that (‖A‖, wC) �= 0, because there is only a finite
number of runs on any clock word wC .

Rational Timed Series. A timed series S ∈ K〈〈(Σ × �≥0)∗〉〉 is rational if
it can be defined by a single application of π̄ to a rational n-clock series T ∈
Krat

n 〈〈Σ,�≥0〉〉, i.e., S = π̄(T ). We use Krat〈〈(Σ × �≥0)∗〉〉 to mean the set of
rational timed series.

The following lemma gives the relation between recognizable timed series and
recognizable clock series.

Lemma 13. Let A be a WTA and wT ∈ (Σ × �≥0)∗ be a timed word. Then
(‖A‖T , wT ) =

(
π̄(‖A‖C), wT

)
.

Corollary 2. Krat〈〈(Σ × �≥0)∗〉〉 = Krec〈〈(Σ × �≥0)∗〉〉.

Proof. The definition of rational timed series and Lemma 13 ensure that both
rational and recognizable timed series correspond to a single application of π̄ to
a rational (recognizable, respectively) n-clock series. This and Theorem 1 imply
the result.

9 Conclusion

We have presented a new definition of WTA for modelling consumption of re-
sources, and we have obtained a Kleene-Schützenberger theorem. Our definition
over a semiring is more general than definitions given in the literature so far
and emphasizes the relation to weighted automata. The Kleene-Schützenberger
theorem for WTA provides an alternative characterization of the possible be-
haviours of WTA. The crucial point for obtaining this result was to find new
normalization techniques that allow for the construction of Cauchy product- and
Kleene star-WTA. We point out that due to the cost functions assigned to the
locations it is not possible to use standard normalization techniques for weighted
automata.

Apart from being a fundamental theoretical result, Kleene’s theorem is also
of practical interest. Kleene’s theorem for the set of regular languages is used
for automata-based verification purposes: the rational expression is considered



A Kleene-Schützenberger Theorem for Weighted Timed Automata 155

to be the specification of the system, which, by the Kleene theorem, can be
transformed into an equivalent finite automaton. It is a fascinating challenge to
investigate whether our result can be used in the same manner.

In our paper, we have shown that WTA are closed under addition, Cauchy
product and Kleene star iteration. Moreover, the corresponding constructions are
effective. It is of great practical interest whether we get similar positive results for
other standard properties and decidability problems. In particular, we want to
investigate the emptiness problem, i.e., given a WTA A, whether ‖A‖ = �. There
is a good reason to hope for a positive result, as both the emptiness problem
of timed automata and weighted automata is decidable, where the latter result
applies to weighted automata where the semiring is a field.

Another interesting direction for future work is to consider whether there is
a Büchi-type theorem for WTA, i.e., are weighted timed automata expressively
equivalent to some weighted timed version of monadic second-order logic. This
should combine methods of Wilke [31] and Droste and Gastin [19]. The present
closure results for rational operations provide a promising starting point.

References

1. Alur, R., Bernadsky, M., Madhusudan, P.: Optimal reachability in weighted timed
games. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004.
LNCS, vol. 3142, pp. 122–133. Springer, Heidelberg (2004)

2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata.
In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS,
vol. 2034, pp. 49–62. Springer, Heidelberg (2001)

4. Alur, R., Madhusudan, P.: Decision problems for timed automata: A survey. In:
Bernardo, M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 1–24.
Springer, Heidelberg (2004)

5. Asarin, E., Caspi, P., Maler, O.: A Kleene theorem for timed automata. In: LICS
1997, pp. 160–171. IEEE Computer Society Press, Los Alamitos (1997)

6. Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of the
ACM 49(2), 172–206 (2002)

7. Asarin, E., Dima, C.: Balanced timed regular expressions. In: Vogler, W., Larsen,
K.G. (eds.) MTCS. ENTCS, vol. 68, pp. 16–33. Elsevier, Amsterdam (2002)

8. Behrmann, G., Fehnker, A., Hune, T., Larsen, K., Pettersson, P., Romijn, J., Vaan-
drager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto,
M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–
161. Springer, Heidelberg (2001)

9. Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.): HSCC 2001. LNCS,
vol. 2034. Springer, Heidelberg (2001)

10. Berstel, J., Reutenauer, C.: Rational Series and their Languages. Springer, New
York, USA (1988)

11. Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability
problem on weighted timed automata. Formal Methods in System Design 31(2),
135–175 (2007)



156 M. Droste and K. Quaas

12. Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted
timed automata. Inf. Process. Lett. 98(5), 188–194 (2006)

13. Bouyer, P., Brinksma, E., Larsen, K.G.: Optimal infinite scheduling for multi-priced
timed automata. Formal Methods in System Design (to appear, 2007)

14. Bouyer, P., Larsen, K.G., Markey, N.: Model-checking one-clock priced timed au-
tomata. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 108–122. Springer,
Heidelberg (2007)

15. Bouyer, P., Petit, A.: Decomposition and composition of timed automata. In: Wie-
dermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644,
pp. 210–219. Springer, Heidelberg (1999)

16. Bouyer, P., Petit, A.: A Kleene/Büchi-like theorem for clock languages. J. Autom.
Lang. Comb. 7(2), 167–186 (2001)

17. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: A
model-checking tool for real-time systems. In: Hu, A.J., Vardi, M.Y. (eds.) CAV
1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

18. Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking weighted timed automata.
In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS,
vol. 3253, pp. 277–292. Springer, Heidelberg (2004)

19. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput.
Sci. 380(1–2), 69–86 (2007)

20. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning.
Journal of AI Research 27, 235–297 (2006)

21. Henzinger, T.: The theory of hybrid automata. In: LICS 1996, pp. 278–292. IEEE
Computer Society Press, Los Alamitos (1996)

22. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid
systems. International Journal on Software Tools for Technology Transfer 1(1–2),
110–122 (1997)

23. Kristoffersen, K., Larsen, K., Pettersson, P., Weise, C.: VHS Case Study 1 - Ex-
perimental Batch Plant using UPPAAL, BRICS, University of Aalborg, Denmark
(May 1999)

24. Kuich, W., Salomaa, A.: Semirings, Automata, Languages. EATCS Monographs
on Theoretical Computer Science, vol. 5. Springer, Berlin (1986)

25. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

26. Larsen, K.G., Rasmussen, J.I.: Optimal conditional reachability for multi-priced
timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 234–
249. Springer, Heidelberg (2005)

27. Niebert, P., Yovine, S.: Computing optimal operation schemes for chemical plants
in multi-batch mode. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS,
vol. 1790, Springer, Heidelberg (2000)

28. Illum Rasmussen, J., Larsen, K.G., Subramani, K.: Resource-optimal scheduling
using priced timed automata. In: Jensen, K., Podelski, A. (eds.) TACAS 2004.
LNCS, vol. 2988, pp. 220–235. Springer, Heidelberg (2004)

29. Salomaa, A., Soittola, M.: Automata-Theoretic Aspects of Formal Power Series.
Springer, New York (1978)

30. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4, 245–270 (1961)

31. Wilke, T.: Specifying Timed State Sequences in Powerful Decidable Logics and
Timed Automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT
1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)



Robust Analysis of Timed Automata

Via Channel Machines�

Patricia Bouyer1,2,��, Nicolas Markey1, and Pierre-Alain Reynier3,� � �

1 LSV, CNRS & ENS de Cachan, France
2 Oxford University Computing Laboratory, UK

3 Université Libre de Bruxelles, Belgium
{bouyer,markey}@lsv.ens-cachan.fr, reynier@ulb.ac.be

Abstract. Whereas formal verification of timed systems has become
a very active field of research, the idealised mathematical semantics of
timed automata cannot be faithfully implemented. Several works have
thus focused on a modified semantics of timed automata which ensures
implementability, and robust model-checking algorithms for safety, and
later LTL properties have been designed. Recently, a new approach has
been proposed, which reduces (standard) model-checking of timed au-
tomata to other verification problems on channel machines. Thanks to
a new encoding of the modified semantics as a network of timed sys-
tems, we propose an original combination of both approaches, and prove
that robust model-checking for coFlat-MTL, a large fragment of MTL, is
EXPSPACE-Complete.

1 Introduction

Verification of real-time systems. In the last thirty years, formal verification of
reactive systems has become a very active field of research in computer science.
It aims at checking that (the model of) a system satisfies (a formula expressing)
its specifications. The importance of taking real-time constraints into account in
verification has quickly been understood, and the model of timed automata [2]
has become one of the most established models for real-time systems, with a
well-studied underlying theory, the development of mature model-checking tools
(Uppaal [21], Kronos [11], ...), and numerous success stories.

Implementation of real-time systems. Implementing mathematical models on
physical machines is an important step for applying theoretical results on prac-
tical examples. This step is well-understood for many untimed models that have
been studied (e.g., finite automata, pushdown automata). In the timed setting,
while timed automata are widely-accepted as a framework for modelling real-
time aspects of systems, it is known that they cannot be faithfully implemented

� Partly supported by project DOTS (ANR-06-SETIN-003).
�� Partly supported by a Marie Curie fellowship (European Commission).

� � � Partly supported by a Lavoisier fellowship (French Ministry of Foreign Affairs).

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 157–171, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



158 P. Bouyer, N. Markey, and P.-A. Reynier

on finite-speed CPUs [12]. Studying the “implementability” of timed automata
is thus a challenging question of obvious theoretical and practical interest.

A semantical approach. In [16], a new semantics for timed automata is defined
that takes into account the digital aspects of the hardware on which the automa-
ton is being executed. A timed automaton is then said to be implementable if,
under this new semantics, the behaviours of this automaton satisfies its specifi-
cations. In order to study it efficiently, this semantics is over-approximated by
the AASAP (for Almost ASAP), which consists in “enlarging” the constraints
on the clocks by some parameter δ. For instance, “x ∈ [a, b]” is transformed into
“x ∈ [a−δ, b+δ]”. Implementability can be ensured by establishing the existence
of some positive δ for which the AASAP semantics meets the specification. The
decidability of this “robust model-checking” problem for specifications given as
LTL formula has already been solved (first basic safety properties in [14] and
then full LTL [9]) using a graph algorithm on the region automaton abstraction.

Timed temporal logics. Until recently [23], linear-time timed temporal logics were
mostly considered as undecidable, and only MITL, the fragment without punc-
tuality of MTL [20], was recognised as really tractable and useful [3]. Very re-
cently [7], another fragment of MTL, called coFlat-MTL, has been defined, whose
model-checking is EXPSPACE-Complete. The decidability of this logic relies on
a completely original method using channel machines.

Our contribution. Inspired by the channel machine approach of [7], we propose
a new techniques to robust model-checking of linear-time timed temporal logics.
It is based on the construction of a network of timed systems which captures
the AASAP semantics, and which can be expressed as a channel machine. Based
on this approach, we prove that the robust model-checking of coFlat-MTL is
EXPSPACE-Complete, i.e., not more expensive than under the classical seman-
tics. It is worth noticing that coFlat-MTL includes LTL, our result thus encom-
passes the previously shown decidability results in that framework.

Related work. Since its definition in [16], the approach based on the AASAP
semantics has received much attention, and even other kind of perturbations
like the drift of clocks, have been studied [26,15,4,17]. In the case of safety
properties and under some natural assumptions, this approach is equivalent to
constraint enlargement and relies on similar techniques, as proved in [15]. Also,
several works have proposed a symbolic, zone-based approach to the classical
region-based algorithm for robustness [13,27,17]. This approach using the AASAP
semantics contrasts with a modelling-based solution proposed in [1], where the
behaviour of the platform is modelled as a timed automaton. Last, many other
notions of “robustness” have been proposed in the literature in order to relax
the mathematical idealisation of the semantics of timed automata [19,22,6,5].
Those approaches are different from ours, since they roughly consist in dropping
“isolated” or “unlikely” executions. Also note that robustness issues have also
been handled in the untimed case, but are even further from our approach [18].



Robust Analysis of Timed Automata Via Channel Machines 159

Outline of the paper. We introduce the setting in Section 2. Section 3 contains
our construction: we first turn the robust semantics of timed automata into
networks of timed systems (Section 3.1), which are then encoded as channel
automata (Section 3.2). We then explain how the resulting channel automata
are used for Bounded-MTL and coFlat-MTL model-checking (Section 3.3). By
lack of space, proofs are omitted and can be found in the research report [10].

2 Preliminaries

We present here the model of timed automata, some linear-time timed temporal
logics, and the model of channel automata, which is central to our approach.

2.1 Timed Automata

Let X be a finite set of clock variables. We denote by G(X) the set of clock
constraints generated by the grammar g ::= g ∧ g | x ∼ k, where x ∈ X , k ∈ N,
and ∼ ∈ {≤,≥}. A (clock) valuation v for X is an element of RX+ . If v ∈ RX+
and t ∈ R+, we write v + t for the valuation assigning v(x) + t to every clock
x ∈ X . If r ⊆ X , v[r ← 0] denotes the valuation assigning 0 to every clock in r
and v(x) to every clock in X \ r.

A timed automaton is a tuple A = (L, �0, X, I,Σ, T ) where L is a finite set
of locations, �0 ∈ L is an initial location, X is a finite set of clocks, I : L →
G(X) labels each location with its invariant, Σ is a finite set of actions, and
T ⊆ L× G(X)×Σ × 2X × L is the set of transitions. Given a parameter value
δ ∈ R≥0, whether a valuation v ∈ RX+ satisfies a constraint g within δ, written
v |=δ g, is defined inductively as follows:��

�
v |=δ x ≤ k iff v(x) ≤ k + δ
v |=δ x ≥ k iff v(x) ≥ k − δ
v |=δ g1 ∧ g2 iff v |=δ g1 and v |=δ g2

Following [16], we define a parameterised semantics for A as a timed transition
system �A�δ = 〈S, S0, Σ,→δ〉. The set S of states of �A�δ is {(�, v) ∈ L × RX+ |
v |=δ I(�)}, with S0 = {(�0, v0) | v0(x) = 0 for all x ∈ X}. A transition in �A�δ is
composed either of a delay move (�, v) d−→δ (�, v + d), with d ∈ R+, when both v

and v+d satisfy the invariant I(�) within δ, or of a discrete move (�, v) σ−→δ (�′, v′)
when there exists a transition (�, g, σ, r, �′) ∈ T with v |=δ g, v′ = v[r ← 0], and
v′ |=δ I(�′). The graph �A�δ is thus an infinite transition system. Notice that, in
the definitions above, the standard semantics of timed automata can be recovered
by letting δ = 0. In that case, we omit the subscript δ.

A run of �A�δ is an infinite sequence (�0, v0) d0−→δ (�0, v0+d0) σ0−→δ (�1, v1) d1−→δ

(�1, v1 + d1) . . . where for each i ≥ 0, di ∈ R+. A timed word w is an infinite
sequence (σi, ti)i∈N where σi ∈ Σ and ti ∈ R+ for each i ≥ 0, and such that the
sequence (ti)i∈N is non-decreasing and diverges to infinity. The timed word w

is read on the run (�0, v0) d0−→δ (�0, v0 + d0) σ0−→δ (�1, v1) d1−→δ (�1, v1 + d1) . . .



160 P. Bouyer, N. Markey, and P.-A. Reynier

whenever ti =
�
j≤i dj for every i ∈ N. We write L(�A�δ) for the set of timed

words that can be read on a run of �A�δ starting in (�0, v0). More generally, we
write L(�A�

(�,v)
δ ) for the set of timed words than can be read starting from (�, v).

Since our results rely on the results of [14,9], we require that our timed au-
tomata satisfy the following requirements: (i) constraints in guards and invari-
ants only involve non-strict inequalities; (ii) all the clocks are always bounded
by some constant M ; (iii) all the cycles in the region graph are progress cy-
cles, i.e., all the clocks are reset along those cycles. In addition, we require that
the timed automata are non-blocking, in the sense that from every state, an ac-
tion transition will eventually become firable: for every (�, v) ∈ L×RX+ such that

v |=0 I(�), there exists d ∈ RX+ and σ ∈ Σ such that (�, v) d−→0 (�, v+d) σ−→0 (�′, v′)
for some (�′, v′) ∈ L× RX+ .

2.2 Implementability and Robustness of Timed Automata

The parameterised semantics defined above (referred to as “enlarged semantics”
in the sequel), has been defined in [16] in order to study the implementability
of timed systems. Indeed, timed automata are governed by a mathematical, ide-
alised semantics, which does not fit with the digital, imprecise nature of the
hardware on which they will possibly be implemented. An implementation se-
mantics has thus been defined in [16] in order to take the hardware into account:
that semantics models a digital CPU which, every δP time units (at most), reads
the value of the digital clock (updated every δL time units), computes the values
of the guards, and fires one of the available transitions. We write �A�δP ,δL for the
resulting transition system, and L(�A�δP ,δL) for the corresponding set of timed
words. Given a (linear-time) property P , i.e., a set of accepted timed words,
a timed automaton A is said to be implementable w.r.t. P iff L(�A�δP ,δL) ⊆ P
for some positive values of δP and δL.

As proved in [16], the enlarged semantics simulates the implementation se-
mantics as soon as δ > 4δP + 3δL. As a consequence, it is sufficient to check the
existence of δ > 0 such that L(�A�δ) ⊆ P in order to ensure implementability
of A w.r.t. P . We follow this idea in the sequel, and study the robust satis-
faction relation: a timed automaton robustly satisfies a linear-time property P ,
written A |≡ P , whenever L(�A�δ) ⊆ P for some δ > 0.

2.3 Some Subclasses of Metric Temporal Logic

Linear-time properties are often defined via temporal logic formulae. In this
paper, we focus on subclasses of MTL (Metric Temporal Logic) [20].

Fix a finite, non-empty alphabet Σ. The syntax of MTL over Σ is defined by
the following grammar:

MTL  ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUI ϕ | ϕ�UI ϕ

where σ ∈ Σ, and I is an interval of R+ with bounds in N∪{∞}. MTL formulae
are interpreted over timed words. Let w = (σi, ti)i≥0 be a timed word, and p ∈ N.



Robust Analysis of Timed Automata Via Channel Machines 161

The (pointwise) semantics of MTL is defined recursively as follows (we omit
Boolean operations):

w, p |= σ ⇔ σp = σ

w, p |= ϕUI ψ ⇔ ∃i > 0 s.t. w, p+ i |= ψ, tp+i − tp ∈ I
and ∀0 < j < i, w, p+ j |= ϕ

w, p |= ϕ�UI ψ ⇔ w, p |= ¬
�

(¬ϕ) UI (¬ψ)
�
.

If w, 0 |= ϕ, we write w |= ϕ. Following the discussion above, we write A |≡ ϕ if,
for some δ > 0, we have w |= ϕ for every w ∈ L(�A�δ).

Additional operators, such as tt (true), ff (false), ⇒, ⇔, F , G and X , are
defined in the usual way: FI ϕ ≡ ttUI ϕ, GI ϕ ≡ ff�UI ϕ, and XI ϕ ≡ ffUI ϕ.
We also use pseudo-arithmetic expressions to denote intervals. For example, ‘= 1’
denotes the singleton {1}.

Following [7], we identify the following syntactic fragments of MTL: LTL [25]
can be considered as the fragment of MTL in which modalities are not constrained
(i.e., where R+ is the only constraining interval); Bounded-MTL is the fragment
of MTL in which all interval constraints are bounded: observe that Bounded-MTL
disallows unconstrained modalities, and is in particular not suitable to express
invariance properties (the most basic type of temporal specifications). The frag-
ment coFlat-MTL1 has then been defined to remedy this deficiency:

coFlat-MTL  ϕ ::= σ | ¬σ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUJ ϕ | ϕUI ψ | ϕ�UJ ϕ | ψ �UI ϕ

where J ranges over the set of bounded intervals, I over the set of all intervals,
and the underlined formula ψ ranges over LTL.

One immediately sees that coFlat-MTL subsumes both LTL and Bounded-MTL,
but it is not closed under negation. However, it is closed under invariance, and
can then express e.g. bounded response-time or even richer formulae such as
G (request⇒F≤5 (acquire∧F=1 release)).

2.4 Channel Automata

Channel automata are an interesting formalism for reasoning about alternating
timed automata, which has been used in [7] to prove the EXPSPACE-membership
of the model-checking problem for coFlat-MTL. We only give the definition and
necessary results here, and refer to [10] for some more intuition.

A channel automaton with renaming and occurrence testing (CAROT for short)
is a tuple C = (S, s0, Σ, δ, F ), where S is a finite set of control states, s0 ∈ S is
the initial control state, F ⊆ S is a set of accepting control states, Σ is a finite
alphabet, δ ⊆ S ×Op × S is the set of transition rules, where

Op = {σ!, σ? | σ ∈ Σ} ∪ {zero?(σ) | σ ∈ Σ} ∪ {R | R ⊆ Σ ×Σ}
is the set of operations. Given a rule τ = (s, α, s′) ∈ δ, we define op(τ) = α.
1 We do not explain this terminology here, and refer to [7] for deeper considerations.



162 P. Bouyer, N. Markey, and P.-A. Reynier

Intuitively, operations σ! and σ? are the classical write and read operations,
zero?(σ) is a guard for testing the occurrence of σ in the channel, and R ⊆ Σ×Σ
is interpreted as a global renaming. An end-of-channel marker can be used to
count the number of times the whole channel is read: it suffices to add, from each
state of the CAROT, an outgoing transition reading �, immediately followed by a
transition writing �. That way, there is always a unique copy of � on the channel
(except when it has just been read). The number of transitions writing � along a
computation 
 is the number of cycles of 
, denoted by cycles(
). In the sequel,
the CAROTs are assumed to contain the end-of-channel marker �, and to have
all their states equipped with a loop reading and writing that symbol.

We consider in the sequel a restricted version of the reachability problem for
CAROTs, where we impose a bound on the “time” (measured here as the number
of cycles of the channel): the cycle-bounded reachability problem for CAROTs is
defined as follows: given a CAROT C, an input word w ∈ Σ∗, and a cycle bound h,
does C have an accepting computation 
 on w with cycles(
) � h?

In [7], a non-deterministic procedure is presented to check the existence of an
accepting cycle-bounded computation using only polynomial space in the value
of the cycle bound and in the size of the CAROT:

Theorem 1. The cycle-bounded reachability problem for CAROTs is solvable in
polynomial space in the size of the channel automaton, the size of the input word,
and the value of the cycle bound.

Remark. Note that the algorithm could easily be adapted to cope with the cycle-
bounded reachability between two global states (i.e., control state and content
of the channel): it suffices to first set the initial content of the channel, and to
add transitions that would, from any point, run one more cycle of the channel
and store its whole content in the location.

3 Robust Model-Checking of coFlat-MTL

In this section, we prove the main results of this paper, namely that the ro-
bust model-checking problem can be expressed using CAROTs, and then that
the robust model-checking problem of coFlat-MTL is EXPSPACE-Complete.
EXPSPACE-Hardness is a consequence of the EXPSPACE-Hardness of the satisfi-
ability problem for Bounded-MTL [7]. EXPSPACE-membership is more involved
and will be done in several steps:

1. We first construct a family of networks of timed systems that captures the
enlarged semantics of timed automata (Subsection 3.1).

2. We then transform this family of networks into a CAROT, that will simulate
the joint behaviours of those networks of timed systems with an alternat-
ing timed automaton representing the property we want to robustly verify
(Subsection 3.2).

3. Finally, we use the CAROT to design a decidability algorithm for the robust
model-checking problem, first for Bounded-MTL, and then for coFlat-MTL
(Subsection 3.3).



Robust Analysis of Timed Automata Via Channel Machines 163

For the rest of the paper, we fix a timed automaton A = (L, �0, X, I,Σ, T ).

3.1 From Robustness to Networks of Timed Systems

In this subsection, we transform the robust model-checking problem into a
model-checking problem in an infinite family of timed systems. The correctness
of the transformation relies on simulation relations between timed transition
systems: given two timed transition systems Ti = (Si, Σ,→i) for i = 1, 2, we say
that T2 simulates T1 whenever there exists a non-empty relation R ⊆ S1 × S2

such that (s1, s2) ∈ R and s1
α−→1 s

′
1 with α ∈ Σ∪R+ implies s2

α−→2 s
′
2 for some

s′2 ∈ S2 with (s′1, s
′
2) ∈ R. We then write T1 � T2.

Let n be an integer; we denote by Bn the timed network composed of the
following components (which are not standard timed automata because of the
use of disjunction and fractional parts in the guards):
• for each 0 ≤ i < n, Bi is the timed automaton

�i

[xi≤1]

xi=1,ε,xi:=0

Fig. 1. Automaton Bi

depicted on Fig. 1, where xi is a fresh clock not
belonging to X , and [xi ≤ 1] is an invariant for-
bidding the clock xi become larger than 1. That
way, this automaton is forced to fire its transition
when the value of xi reaches 1. We call such an
automaton a Δ-automaton in the sequel. In the
following, we will take indices of clocks xi modulo n, and in particular xi+1 = x0

whenever i = n− 1.
• the timed automaton B, built from A by modifying the guards and invariants
as follows: each constraint of the form x ≤ k is replaced with

(x < k + 1) ∧
�
x > k ⇒

�
0≤i<n

{x} ≤ xi+1 < xi−1

�

and each constraint of the form x ≥ k is replaced with

(x > k − 1) ∧
�
x < k ⇒

�
0≤i<n

{x} ≥ xi−1 > xi+1

�

We need to explain when a valuation v satisfies these “extended” guards.
Boolean operators are handled in the natural way, and {x} is intended to denote
the fractional part of the value of clock x.

It naturally defines a timed transition system �Bn�, as the synchronised prod-
uct (synchronised because of the time) of all components. Denoting by Xn =
X ∪ {xi | 0 ≤ i < n} the set of clocks of Bn, a configuration of �Bn� can be de-
scribed by a pair (�, v) where � ∈ L and v ∈ RXn

+ (each Δ-automaton has a single
location). We write un for the valuation over Xn assigning 0 to clocks in X and i

n
to every clock xi for 0 ≤ i < n. The initial configuration of this timed network is
the pair (�0, un). Delay and action transitions are defined naturally in the syn-
chronised products of all the components. However in the following we will hide
ε-moves due to the components Bi. Thus, in �Bn�, we write (�, v) t=⇒ (�, v′) for an



164 P. Bouyer, N. Markey, and P.-A. Reynier

interleaving of delay transitions (which sum up to t) and of ε-moves in the Bi’s.
For uniformity, we write σ=⇒ for σ-moves in �Bn�. In the sequel, simulation re-
lations assume the relation ⇒ in �Bn�, and the simple transition relation →δ

in �A�δ. In the same way, the intended language accepted by �Bn� should ignore
ε-transitions. In other words, it should also be defined using the relation ⇒ as
the transition relation:

L(�Bn�) = {w = (σi, ti)i∈N | ∃(�0, un) d0=⇒ (�0, u′)
σ0=⇒ (�1, u′′)

d1=⇒ · · · ∈ �Bn�
s.t. ∀i ∈ N, ti =

	
j≤i

dj}

Lemma 2. For every n ≥ 3, �A� 1
n
� �Bn� � �A� 2

n
.

With the previous definition, the simulation results can be stated in terms of
language inclusion (as initial states are preserved by the exhibited simulation
relations): for every n ≥ 3, L(�A� 1

n
) ⊆ L(�Bn�) ⊆ L(�A� 2

n
).

Theorem 3. Let ϕ ∈ MTL. Then, A |≡ ϕ ⇔ ∃n ≥ 3 s.t. �Bn� |= ϕ.

3.2 From Networks of Timed Systems to CAROTs

Extending the approach of [7], the CAROT we build is such that it accepts
joint executions of the network of timed systems we just built (and not of a
single timed automaton as in [7]) and of the alternating timed automaton corre-
sponding to the negation of the coFlat-MTL formula we want to verify. In order
to handle arbitrarily many components in the network, and to deal with “ex-
tended” guards (i.e., with disjunctions and fractional parts), the construction
attached to the network of timed systems needs to be deeply modified. In a first
step, we describe a CAROT that only encodes the behaviours of the network of
timed systems.

Let M be the maximal constant appearing in the automaton A. Then M + 1
is larger than or equal to the maximal constant of any Bn. We assume that the
clocks of A (and Bn) take their values in [0,M + 1] ∪ {⊥}, where ⊥ is a special
value (intended to represent any value larger than M + 1). We write Reg for the
set {0, 1, . . . ,M + 1,⊥} and Λ = ℘(L×X × Reg).

A configuration (�, v) ∈ L× R
Xn
+ of the network of timed systems is encoded

as the element C(�,v) = {(�, x, v(x)) | x ∈ Xn}, and partitioned into a sequence of
disjoint subsets C0, C1, ..., Cp, C⊥, obtained using standard region techniques.
More precisely, C0 (resp. C⊥) contains elements whose fractional part is 0 (resp.
whose value is ⊥) and the others Ci gather elements with the same fractional
part and are sorted according to the increasing order of fractional parts. We then
let H(C(�,v)) =



reg(C0), reg(C⊥), reg(C1)reg(C2) . . . reg(Cp)

�
∈ Λ × Λ × Λ∗,

where we write reg(C) for {(�, x, reg(v)) | (�, x, v) ∈ C}, with reg(v) the largest
element of Reg smaller than or equal to v.

Using the abstraction function H , it is possible to define a discrete transition
system T nH which abstracts away precise timing information, but which simulates



Robust Analysis of Timed Automata Via Channel Machines 165

the behaviours of Bn. The abstraction function also provides an equivalence rela-
tion≡ on configurations: C ≡ C′ iffH(C) = H(C′). Extending straightforwardly
a result of [24] (regions are compatible with our extended guards), we have:

Lemma 4. The equivalence relation ≡ is a time-abstract2 bisimulation.

The CAROT we will build is based on the above discrete transition system.
More precisely, the intended encoding of a configuration in the CAROT is the
following: the integral values of the clocks of A are stored in the discrete state
of the CAROT, as well as the sets C0 and C⊥, and the current location �. The
other Ci’s are stored on the channel, from C1 (recently written on the channel)
to Cp (the next item to be read from the channel).

In order to use the same CAROT to simulate the network of timed system with
any number of Δ-automata, we abstract the name of clocks xi in our encoding,
representing them on the channel by a new symbol Δ. Since, at any time, at
most one of the xi’s can have integral value, and since we only need to know the
order of the xi’s in order to evaluate guards of Bn, the amount of information
to be stored in the location of the CAROT does not depend on the number of
Δ-automata in the network.

Example 5. Consider for instance a configuration C encoded by the word

H(C) =


{(�, x, 3), (�, x2, 0)}, {(�, z,⊥)}, {(�, x0, 0)} · {(�, y, 1), (�, x1, 0)}

�
.

We assume that the maximal constant M is 3. The encoding of the delay-
successor of C is obtained by cycling around the letters (except the last one) of
the word (and increasing the values of the regions accordingly). Writing ∅ for
the empty set, the first delay successor of H(C) is


∅, {(�, z,⊥)}, {(�, x, 3), (�, x2, 0)} · {(�, x0, 0)} · {(�, y, 1), (�, x1, 0)}
�
.

The next delay successor is

{(�, y, 2), (�, x1, 0)}, {(�, z,⊥)}, {(�, x, 3), (�, x2, 0)} · {(�, x0, 0)}

�
.

Note that, in that second delay transition, we have reset clock x1 when it has
reached 1, and the integral part of y has increased to 2. The configuration H(C)
would be encoded as depicted on Fig. 2 (where we write to the left and read from
the right of the channel). With respect to the channel, the first delay transition
is performed through the write operation ‘〈xΔ〉!’. As in [7], it is worth noticing
that a cycle of the CAROT corresponds to one time unit elapsing.

Furthermore, to simulate the extended guards used in Bn, we need some
additional information about the position of clocks of A w.r.t. symbols Δ. As we
have already seen, a clock x verifies a constraint {x} ≤ xi+1 < xi−1 iff its
fractional part is smaller than one of the two smallest clocks xj . In our simulation,
this corresponds as being “before” the second symbol Δ on the channel. And
2 This means that precise delays of time-elapsing transitions are abstracted away.



166 P. Bouyer, N. Markey, and P.-A. Reynier

〈 Δ 〉 〈 y Δ 〉

On the channel: In the location:

location �, H(C)0 = {x,Δ}
�x� = 3, �y� = 1, �z� = ⊥, �Δ� = 0

Fig. 2. Encoding of a configuration in a CAROT

symmetrically for constraint {x} ≥ xi−1 > xi+1. We thus have to store in the
control part of the CAROT which clocks are “before” (resp. “after”) the two first
(resp. last) symbols Δ. Whereas this can easily be done for the clocks that have
been recently written on the channel, this is not possible for the clocks lying at
the head of the channel (this would require to store the position of each clock
w.r.t. each symbol Δ). Instead, we use non-determinism to allow the CAROT
make predictions about the content of the head of the channel, and then we
verify when reading clocks from the channel that these predictions were correct.

For lack of space, we cannot present the formal construction of the CAROT,
but report to [10]. We write CA for the resulting CAROT, T nCA for the transition
system associated with CA and restricted to configurations with correct predic-
tions and n occurrences of Δ on the channel (or in the location), and ≈ for the
relation that describes which configuration (d, c) of T nCA (a control state together
with a channel content) corresponds to a configuration of T nH . The correctness
of the construction relies on the following lemmas.

Lemma 6. For any n ≥ 3, the transition systems T nH and T nCA are bisimilar.

Lemma 7. Let 
 be a time-divergent execution in �Bn�. Then any computation
in CA simulating 
 has correct predictions.3

Let (dn, cn) be the configuration of CA encoding the initial configuration of Bn,
i.e., such that (dn, cn) ≈ H(�0, un). Lemmas 4, 6 and 7 then yield:

Theorem 8. Let n ≥ 3. CA has a time-divergent4 computation starting in
(dn, cn) iff L(�Bn�) �= ∅.

The second part of the construction of the CAROT for encoding the robust
model-checking problem consists in adding the part related to the temporal for-
mula ϕ (in MTL). This part will be handled in a very similar way as in [7],
we thus simply sketch the construction. First, we build the one-clock alternat-
ing timed automaton A¬ϕ corresponding to ¬ϕ. Then, we build the product
of the CAROT CA with a CAROT simulating the behaviour of A¬ϕ. The re-
sulting CAROT, say CA,¬ϕ, running from the initial configuration (dϕ,n, cϕ,n)
corresponding via ≈ to the initial configuration of Bn × A¬ϕ, simulates joint
behaviours of Bn and A¬ϕ. The accepting condition for CA,¬ϕ is the Büchi con-
dition given by ‘flattening’ A¬ϕ. The results of [7] combined with our above
results yield:
3 Intuitively, this is because delay transitions force predictions checking.
4 That is with infinitely many delay transitions.



Robust Analysis of Timed Automata Via Channel Machines 167

Theorem 9. Let n ≥ 3 and ϕ ∈ MTL. CA,¬ϕ has a time-divergent accepting
computation starting in (dϕ,n, cϕ,n) iff �Bn� �|= ϕ.

Remark. A rough bound on the size of the CAROT CA,¬ϕ isO


|A|3·2O(M·|ϕ|+|X|)�,

where |ϕ| is the number of subformulae of ϕ. The size of the alphabet of CA,¬ϕ is
in O(|X |). As proved in [7], if CA,¬ϕ has an h-cycle-bounded accepting execution,
then there is a bound N0, which depends on the size of CA,¬ϕ and h, such that
there exists an h-cycle-bounded accepting execution of length no more than
N0. We do not give the precise value of this bound (see [10] instead), but it is
exponential in h, which is itself exponential in the size of the input.

3.3 From CAROTs to Robust Model Checking

We first solve the robust model-checking problem for Bounded-MTL, and then
turn to the more involved logic coFlat-MTL. Both rely on the previously proved
equivalences:

A �|≡ ϕ iff ∀n ≥ 3,
�CA,¬ϕ has a time-divergent accepting

computation starting in (dϕ,n, cϕ,n)

Robust model-checking for Bounded-MTL. The algorithm to decide the
robust model-checking problem for Bounded-MTL formula relies on the fact that
the truth value of a Bounded-MTL formula ϕ along a run 
 only depends on the
first h time units of 
, where h is the sum of the constants appearing in ϕ [7].
In A¬ϕ, after having read a prefix of duration h time units, we thus always end
up in a sink state, that we report as accepting in the CAROT.

Moreover, the non-blocking assumption made on A implies the following
property:

Lemma 10. Let A be a timed automaton, and δ > 0. Given (�, v) a configura-
tion of A such that v |=δ I(�), we have that L(�A�

(�,v)
δ ) �= ∅.

Hence, robustly model-checking A against a Bounded-MTL property ϕ will be
reduced to searching, for every n ≥ 3, for a time-bounded accepting prefix in
T nCA,¬ϕ

, and verifying that the reachable configuration is with correct predictions.
Indeed, applying the previous lemma, we already know that we will be able to
extend this finite prefix into a time-diverging run witnessing ¬ϕ as soon as the
prefix is correctly chosen (meaning it ends up in a accepting state of the CAROT).

We define the following property, for any integer n:

P(n): “CA,¬ϕ has an h-cycle-bounded accepting computation
with correct predictions starting in (dϕ,n, cϕ,n)”

Then our problem somehow amounts to checking that for every n ≥ 3, property
P(n) holds. This is some kind of “universality” checking of the CAROT, where
we universally quantify on the initial number of Δ’s on the channel. This is
achieved using the following two lemmas:



168 P. Bouyer, N. Markey, and P.-A. Reynier

Lemma 11. Let n, n′ ∈ N be such that n′ ≥ 2n ≥ 6. Then P(n′)⇒ P(n).

Proof. We have seen that

�Bn′
� �

(Lemma 2)
�A 2

n′ � �
( 2

n′ ≤ 1
n

)

�A 1
n
� �

(Lemma 2)
�Bn�.

Also, for m ≥ 3, the CAROT CA,¬ϕ, when restricted to configurations with
correct predictions, is time-abstract bisimilar to the product of Bm with A¬ϕ.
Finally, the respective initial configurations are in the relation ≈. ��
Lemma 12. Let N ≥ 2 ·N0. Then P(N)⇒ ∀n ∈ N, ∃n′ ≥ n s.t. P(n′).

Proof (Sketch). Using the notion of computation table introduced in [7], we
prove a pumping lemma for CAROTs. Indeed, the height of the computation
table is bounded by h; the number of “sliding windows” of such tables is thus
bounded. Hence, once the table is large enough, it is possible to duplicate one
of its fragments, building new computation tables encoding computations over
larger inputs (corresponding to configurations (dϕ,n

′
, cϕ,n

′
) for integers n′ arbi-

trarily larger than n). ��
Thanks to those lemmas, it suffices to only look for an h-cycle-bounded execution
starting in one of the configurations (dϕ,N , cϕ,N) (for any N ≥ 2 ·N0) in order
to ensure the existence of an accepting execution for any number of Δ’s:

Corollary 13. Let N ≥ 2 ·N0. Then P(N)⇔ ∀n ≥ 3, P(n).

Theorem 14. The model-checking problem for Bounded-MTL is EXPSPACE-
Complete (and PSPACE-Complete if constants of the formula are given in unary).

Proof. The hardness parts follow from the same hardness results for
Bounded-MTL satisfiability [7].

The upper bound follows from the previous study. However, since the size of
the CAROT is doubly exponential, the non-deterministic algorithm of Theorem 1
has to be applied on-the-fly, without explicitly building the CAROT. Since the
number N0 of different sliding windows of height h is also doubly-exponential in
the size of the input, our non-deterministic algorithm will also have a counter,
and will stop as soon as the counter reaches N0. This all can be achieved within
exponential space.

If the constants of the formula are unary-encoded, then h is linear in the size
of the input formula, and N0 is simply exponential in the size of the input. The
same algorithm then uses only polynomial space. ��

Robust model-checking for coFlat-MTL. The case of coFlat-MTL is more
involved than that of Bounded-MTL. The reason is that, unlike Bounded-MTL,
the truth value of a coFlat-MTL formula ϕ along a run 
 does not only depend on
a prefix of 
 of bounded duration. Instead, we have the following decomposition
lemma, which follows from [7, Theorem 12]:



Robust Analysis of Timed Automata Via Channel Machines 169

Lemma 15. Let � be an accepting run of �A�δ× �A¬ϕ�. Then it can be decom-
posed as �1 ·�2 ·�3 · · ·�2m where there is a finite automaton F¬ϕ 5 s.t.:

(i) the duration of �2i−1 (for 1 ≤ i ≤ m) is bounded by h = (2M + 3 + W ·
2|ϕ|) · (|ϕ| · 2|ϕ|),

(ii) the duration of �2i (for 1 ≤ i ≤ m) is at least 2|ϕ| · (2W + 1), and along
that portion, the behaviour of A¬ϕ is that of F¬ϕ,

(iii) the Büchi condition of F¬ϕ is satisfied along �2m, and
(iv) 2m ≤ |ϕ| · 2|ϕ|,
where W is the number of states of the region automaton of A × F¬ϕ. Odd-
numbered segments are called the active parts, while even-numbered ones are
said inactive.

This decomposition lemma inspires a decidability algorithm, where we mod-
ularly check the existence of runs not satisfying ϕ by distinguishing between
active and inactive parts of the runs. Indeed, given a sequence (
δ)δ>0, using
combinatorics arguments, it is possible to twist them so that, for δ > 0 small
enough (say δ ≤ δ0), all 
δ look very similar (that is, roughly the junction points
between active and inactive parts are close to each other and belong to the same
region). Conversely, if we are given a witnessing run 
δ0 , and if we consider the
junction points of that run, for each inactive (resp. active) part, it is possible for
every δ > 0 to build an inactive (resp. active) portion of a run joining the two
junction points. The construction of an inactive portion of a run partly relies on
approximation results proved in [15,8], and the construction of an active portion
of a run relies on a result similar to Corollary 13. The complete proof is rather
technical and gathers in an original way many results of [15,8,7].

An informal version of the decidability algorithm is the following, and can be
schematised as on Figure 3:

– Guess the junction points of the active and inactive parts
– For each active part, check that the two guessed junction points are reachable

in CA,¬ϕ in a cycle-bounded manner6 (here, we need to prove a result similar
to Corollary 13)

– For each inactive and bounded active part, check that the two junction points
are “robustly” reachable (using results of [15,8])

– For the last unbounded active part, check that the automaton A × F¬ϕ,
from last junction point, does not robustly satisfy the acceptance condition
of F¬ϕ interpreted as a co-Büchi condition (using the algorithm of [9]).

We can conclude with the main result of the paper:

Theorem 16. The robust model-checking problem for coFlat-MTL is EXPSPACE-
Complete.

5 Intuitively, F¬ϕ is obtained as the flattening of the untimed part of A¬ϕ, see [10].
6 The bound on the number of cycles is that of (i) in the above decomposition lemma.



170 P. Bouyer, N. Markey, and P.-A. Reynier

�1 �2 �3 �4 �5 �6 �7 �8

≥2|ϕ|·(2W+1)≤h

Active (odd) parts:
cycle-bounded
reachability in CA.

Inactive (even) parts:
robust reachability
in A × F¬ϕ.

Final (even) part:
robust co-Büchi condition
of F¬ϕ in A × F¬ϕ.

Fig. 3. Global view of our algorithm

4 Conclusion

In this paper, we have proposed a new approach to robust model-checking of
timed systems based on channel machines: we construct a family of networks of
timed systems such that robustly verifying a formula in a timed automaton re-
duces to the verification of the formula in one of the members of the family; Then
we encode the behaviour of this family of timed systems using channel machines.
We have applied this approach to coFlat-MTL, a rather expressive fragment of
MTL, and prove that it can be decided in EXPSPACE, which is moreover opti-
mal. The logic coFlat-MTL subsumes LTL, thus it is the more general specification
language for which robust model-checking has been proved decidable.

Our correctness proofs heavily rely on technical lemmas proved in [15,8] and is
unfortunately not fully CAROT-based. As future works, we plan to study robust
reachability directly on the CAROT encoding the extended semantics, in order
to develop a fully CAROT-based algorithm for coFlat-MTL.

References

1. Altisen, K., Tripakis, S.: Implementation of timed automata: An issue of semantics
or modeling? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829,
pp. 273–288. Springer, Heidelberg (2005)

2. Alur, R., Dill, D.: A theory of timed automata. Theor. Comp. Sci. 126(2), 183–235
(1994)

3. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality.
J. ACM 43(1), 116–146 (1996)

4. Alur, R., La Torre, S., Madhusudan, P.: Perturbed timed automata. In: Morari,
M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 70–85. Springer, Heidelberg
(2005)

5. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Almost-sure model
checking of infinite paths in one-clock timed automata. Research Report LSV-07-
29, ENS Cachan, France (2007)

6. Baier, C., Bertrand, N., Bouyer, P., Brihaye, T., Größer, M.: Probabilistic and topo-
logical semantics for timed automata. In: Arvind, V., Prasad, S. (eds.) FSTTCS
2007. LNCS, vol. 4855, pp. 179–191. Springer, Heidelberg (2007)

7. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality (109–
118). In: Proc. 22nd Ann. Symp. Logic in Computer Science (LICS 2007), pp.
109–118. IEEE Comp. Soc. Press, Los Alamitos (2007)

8. Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of timed automata.
Research Report LSV-05-06, ENS Cachan, France (2005)



Robust Analysis of Timed Automata Via Channel Machines 171

9. Bouyer, P., Markey, N., Reynier, P.-A.: Robust model-checking of timed automata.
In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 238–
249. Springer, Heidelberg (2006)

10. Bouyer, P., Markey, N., Reynier, P.-A.: Robust analysis of timed automata via
channel machines. Research Report LSV-07-32, ENS Cachan, France (2007)

11. Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a
model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS,
vol. 1427, pp. 546–550. Springer, Heidelberg (1998)

12. Cassez, F., Henzinger, T.A., Raskin, J.-F.: A comparison of control problems for
timed and hybrid systems. In: Tomlin, C.J., Greenstreet, M.R. (eds.) HSCC 2002.
LNCS, vol. 2289, pp. 134–148. Springer, Heidelberg (2002)

13. Daws, C., Kordy, P.: Symbolic robustness analysis of timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 143–155. Springer,
Heidelberg (2006)

14. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementabil-
ity of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and
FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)

15. De Wulf, M., Doyen, L., Markey, N., Raskin, J.-F.: Robustness and implementabil-
ity of timed automata. Tech. Report 2004.30, Centre Fédéré en Vérification, Bel-
gium (December 2005)

16. De Wulf, M., Doyen, L., Raskin, J.: Almost ASAP semantics: From timed models
to timed implementations. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS,
vol. 2993, pp. 296–310. Springer, Heidelberg (2004)

17. Dima, C.: Dynamical properties of timed automata revisited. In: Raskin, J.-F.,
Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 130–146. Springer,
Heidelberg (2007)

18. French, T., McCabe-Dansted, J.C., Reynolds, M.: A temporal logic of robustness.
In: Konev, B., Wolter, F. (eds.) FroCos 2007. LNCS (LNAI), vol. 4720, pp. 193–205.
Springer, Heidelberg (2007)

19. Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler,
O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)

20. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2(4), 255–299 (1990)

21. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. J. Software Tools for
Technology Transfer 1(1–2), 134–152 (1997)

22. Ouaknine, J., Worrell, J.: Revisiting digitization, robustness and decidability for
timed automata. In: Proc. 18th Ann. Symp. Logic in Computer Science (LICS
2003), IEEE Comp. Soc. Press, Los Alamitos (2003)

23. Ouaknine, J., Worrell, J.: On the decidability of metric temporal logic. In: Proc.
19th Ann. Symp. Logic in Computer Science (LICS 2005), pp. 188–197. IEEE
Comp. Soc. Press, Los Alamitos (2005)

24. Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal
Logic over finite words. Logical Methods in Comp. Sci. 3(1-8), 1–27 (2007)

25. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Ann. Symp. Founda-
tions of Computer Science (FOCS 1977), pp. 46–57. IEEE Comp. Soc. Press, Los
Alamitos (1977)

26. Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H.
(eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)

27. Swaminathan, M., Fränzle, M.: A symbolic decision procedure for robust safety of
timed systems. In: Proc. 14th Intl Symp. Temporal Representation and Reasoning
(TIME 2007), p. 192. IEEE Comp. Soc. Press, Los Alamitos (2007)



The Common Fragment of ACTL and LTL

Miko�laj Bojańczyk�

Warsaw University

Abstract. The paper explores the relationship between tree languages
definable in LTL, CTL, and ACTL, the fragment of CTL where only
universal path quantification is allowed. The common fragment of LTL
and ACTL is shown to be strictly smaller than the common fragment
of LTL and CTL. Furthermore, an algorithm is presented for deciding
if an LTL formula can be expressed in ACTL. This algorithm uses an
effective characterization of level 3/2 of the concatenation hierarchy for
infinite words, also a new result.

Two of the most commonly used logics in verification are LTL and CTL. The
first is a linear time logic, a formula of LTL describes a property of words. To
describe properties of trees, one applies universal path quantification: an LTL
formula is valid in a tree if it is valid in all paths. CTL, on the other hand, is a
branching time logic. A formula of CTL refers explicitly to the branching in the
tree, by using both universal and existential path quantification.

What is the relationship between the two logics? Which LTL definable prop-
erties can be defined in CTL, and which CTL definable properties can be defined
in LTL? In other words, what is the common fragment of CTL and LTL?

There is a well known algorithm, which given an automaton on infinite trees,
determines if its language can be defined in LTL (basically, a tree constructed
by mixing paths of different trees accepted by the automaton, must still be ac-
cepted by the automaton; furthermore, the appropriate word language must be
aperiodic). For tree languages defined in CTL* there is also a simple charac-
terization of Clarke and Draghilescu: a CTL* formula is equivalent to an LTL
formula, if and only if it is equivalent to the one obtained by removing the path
quantifiers [3]. Maidl [6] has shown that if the input is given as a CTL formula,
then problem of LTL definability becomes PSPACE complete.

The converse question, however, remains an open problem: is it decidable if
a given LTL formula can be equivalently written as a CTL formula? A second,
more general, problem is to decide if an arbitrary regular language of infinite
trees can be defined in CTL. It seems a good idea to begin with the first problem
before tackling the second one.

If an LTL formula with universal path semantics can be defined by a CTL
formula, then why should the CTL formula use existential modalities, such as
“exists a successor with ϕ”? Shouldn’t it be enough to consider ACTL formulas,
where only universal path quantification is used? The first result of this paper is
� Author supported by Polish government grant no. N206 008 32/0810.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 172–185, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Common Fragment of ACTL and LTL 173

that, possibly surprisingly, this assumption is wrong. Indeed, a very simple LTL
property, “all paths belong to (ab)∗a(ab)∗cω”, can be defined in CTL but not
ACTL. Intuitively speaking, to catch the extra a on every path, existential path
quantification is needed.

Therefore, two distinct questions can be investigated: which LTL properties
can be defined in CTL, and which LTL properties can be defined in ACTL.
The other main result of this paper is an effective characterization of the second
common fragment: one can decide if an LTL formula ϕ can be expressed in
ACTL. This problem has already been considered in [6], where it was shown
that a necessary and sufficient condition for ACTL definability is that ¬ϕ, when
seen as a word language, can be recognized by a certain restricted type of Büchi
automaton. This condition, however, was not known to effective, i.e. there was
no algorithm that decided if ¬ϕ could be recognized by the restricted Büchi
automaton.

The second contribution of this paper is such an algorithm. It is easy to see
that the restricted Büchi automata defined in [6] are equivalent to ω-regular lan-
guages on level 3/2 of the concatenation hierarchy, i.e. finite unions of
expressions

A∗0a1A
∗
1a2 · · ·A∗k−1akA

ω
k .

Therefore, deciding if an LTL formula can be defined in ACTL boils down to test-
ing if an ω-regular language belongs to level 3/2 of the concatenation hierarchy.
This problem was known to be decidable for finite words [1,2,8]. We generalize
this result to infinite words. In the process, we also present a simplified proof for
finite words.

The paper is organized as follows. In Section 1, we show that the common
fragment of LTL and CTL is strictly larger than the common fragment of LTL
and ACTL. Section 2 gives an effective characterization of those LTL proper-
ties that can be defined in ACTL. Finally, in Section 4, we present concluding
remarks. These concern mainly the common fragment of LTL and CTL, about
which little is known.

1 The Common Fragment of CTL and LTL Needs
Existential Modalities

Trees in this paper are unordered, infinite and unranked. In other words, a tree
is a connected directed graph with nodes of indegree at most one, but outdegree
at least one. The last condition is so that every (maximal) path in the tree is
infinite. Trees are labeled.

The results in this paper would also apply to finite trees, or transition systems.
Some of the results would be cleaner for finite trees, we will come back to this
at the end of the paper.

LTL is a linear time temporal logic. An LTL formula specifies a property of
an infinite word. (When we say a word position satisfies ϕ, we mean that the



174 M. Bojańczyk

suffix beginning in that position satisfies ϕ.) The modalities are: ϕUψ (there is
a position with ψ, and all preceding positions satisfy ϕ), Xϕ (the second word
position satisfies ϕ) and Gϕ (all positions in the word satisfy ϕ). Furthermore,
boolean connectives and label tests (the formula a describes words that begin
with a) are allowed. Kamp’s theorem [5] says that LTL has the same expressive
power as first-order logic with the linear order on word positions. An LTL formula
can be evaluated in a tree, it is said to be valid if all maximal paths in the tree
satisfy it. In this sense, very simple tree properties, such as “some node in the
tree has label a”, cannot be defined in LTL. In the following, we will indicate
whether an LTL formula is understood to define a word language, or a tree
language.

CTL [4] is a temporal branching time logic, i.e. its modalities explicitly quan-
tify over tree paths, possibly existentially. A CTL formula specifies a property of
a tree. As with LTL, when we say a formula holds in a tree node (or equivalently,
on a position on a path in the tree), we mean that the subtree of that node sat-
isfies the formula. The modalities are: AϕUψ (on every path, there is a position
with ψ, and all preceding positions on the path satisfy ϕ), AXϕ (every succes-
sor of the root satisfies ϕ) and AGϕ (on every path, every position satisfies ϕ).
Furthermore, boolean connectives and label tests (the formula a describes trees
whose root has label a) are allowed. Existential quantification can be simulated
using negation. In other words, CTL is obtained from LTL by adding universal
path quantification next to every modality. In particular, over trees with only
one path, i.e. where all nodes have exactly one successor, CTL has the same ex-
pressive power as LTL. In general, however, the two logics diverge, for instance
CTL cannot express FGa (on every path, finitely many non a labels).

ACTL is the fragment of CTL that does not allow negation, i.e. where only
universal path quantification is allowed. (Here, the atomic propositions are node
labels, so they are mutually exclusive; if they are are not exclusive then negation
is allowed next to atomic propositions.) Clearly, ACTL is a proper fragment of
CTL; for instance, the CTL property “some node has label a” is not definable
in ACTL.

The main result in this section is:

Theorem 1. The language L = “all paths belong to (ab)∗a(ab)∗cω” is definable
in CTL and LTL, but not ACTL.

This result is somewhat surprising: the language L talks about all paths, while
the corresponding CTL formula must quantify existentially over paths. This
example shows that ideas significantly different from those in [6] are needed to
understand the common fragment of LTL and CTL.

Before proceeding with the proof, we would like to remark the similarity of
this “paradox” with a result for first-order logic over finite binary trees. In [9],
Potthof showed that the language “all paths belong to (aa)∗” is definable in
first-order logic over finite binary trees, even though the word language (aa)∗ is
not definable in first-order logic over words. His technique was similar to the one
invoked below, in that it used properties of “maximal” nodes.

We will now prove Theorem 1.



The Common Fragment of ACTL and LTL 175

Lemma 1. The language L is definable in CTL.

Proof
It is easy to show that the language “all paths belong to (ab)∗cω” is definable
in CTL. Let ϕa be such a formula; we will use it below. Likewise we will use a
formula ϕb for the language “all paths belong to b(ab)∗cω”.

The formula for the language L is a conjunction of several properties. First, we
have to manage the way c’s are used. Formula (1) says that every path contains
some c, and every time c appears, all subsequent nodes are c’s; finally, only b
nodes can have a c successor:

AFc ∧ AG(c⇒ AGc) ∧ AG(a⇒ AX(a ∨ b)). (1)

Formula (2) says that the tree does not contain two consecutive b’s:

AG(b⇒ AX(a ∨ c)). (2)

Formula (3) says that on every path, two consecutive a’s can be found at most
once:

¬EF(a ∧ EX(a ∧ (EF(a ∧ EXa))). (3)

So far, we have stayed within ACTL. The above three properties guarantee that
every path in the tree is either in (ab)∗cω or in (ab)∗a(ab)∗cω, as long as the
root has label a. We now need to eliminate the paths of the first type. First, we
enforce the root label, and say that at least one path is not in (ab)∗cω

a ∧ ¬ϕa. (4)

Note that already here, we go beyond ACTL, since ϕa is negated. The more
important property, however, says there is no node x such that: some path
beginning in x has two consecutive a’s, and some successor of x satisfies ϕa or
ϕb, depending on the label of x. This expressed by the formula:

¬EF(EF(a ∧ EXa) ∧ (a⇒ EXϕb) ∧ (b⇒ EXϕa)) (5)

Here again we go beyond ACTL. We claim that a tree belongs to L if and only
if it satisfies the conjunction of formulas (1)-(5).

The left-to-right implication is proved as follows. Let t be a tree in L. Clearly
(1)-(4) have to be satisfied. For (5), we need to show that every node x fails the
property:

EF(a ∧ EXa) ∧ (a⇒ EXϕb) ∧ (b⇒ EXϕa).

We only consider the case when the node x has label a, the other is done in a
similar way. Let then x be a node with label a that satisfies EF(a ∧ EXa). By
(1)-(4), the path leading up to x must belong to (ab)∗. In particular, no successor
of x can be the beginning of a path in (ab)∗cω, not to mention having all paths
of this form (which is what EXϕa says).



176 M. Bojańczyk

We now take the right-to-left implication. Let then t be a tree that satisfies
formulas (1)-(4). We claim that if t is outside L, then the formula (5) fails. By
(1)-(4), the tree has paths of the form (ab)∗cω, and of the form (ab)∗a(ab)∗cω.
Let X be the set of nodes, which lie on the intersection of some path of the form
(ab)∗a(ab)∗cω and some other path of the form (ab)∗cω. By AGc, the prefix-closed
set X does not contain an infinite path, therefore it has some maximal element,
i.e. a node x ∈ X without proper descendants in X . (Since nodes may have
infinite outdegree, there may be no common bound on the depth of nodes from
X , but this is not a problem here, since we only need one maximal node.) We
claim that the maximal node x witnesses the failure of (5), i. e. x satisfies

EF(a ∧ EXa) ∧ (a⇒ EXϕb) ∧ (b⇒ EXϕa).

We only consider the case where x has label b. By maximality of x, there must be
a successor y such that all paths that pass through y belong to (ab)∗cω; otherwise
y would belong to X . The node y witnesses EXϕa (note that y may have label
c, and only c’s in its subtree). Since the path leading to x belongs to (ab)∗ and
x is on some path in (ab)∗a(ab)∗cω, there must be two consecutive a’s on some
path that begins in x. �

We now show that the language L is not definable in ACTL. We will use a
characterization of Maidl from [6], slightly restated:

Theorem 2. Let L ⊆ Aω be a language of infinite words. The following are
equivalent:

– The tree language “all paths belong to L” is definable in ACTL;
– The complement of L is a finite union of languages of the form

A∗0a1A
∗
1a2 · · ·A∗n−1anA

ω
n

a1, . . . , an ∈ A, A1, . . . , An+1 ⊆ A. (6)

Languages that are finite unions of expressions as in (6) are also known as
languages on level 3/2 of the concatenation hierarchy, see [7] for a more thorough
description of this and other levels. Therefore, the second condition in the above
theorem is the same as saying the complement of L belongs to level 3/2.

The original statement in [6] was not in terms of level 3/2, but in terms of
1-weak Büchi automata. A 1-weak Büchi automaton is a Büchi automaton where
the states are ordered, and a transition can only go down in the order, or stay
in the same state. A level 3/2 expression can easily be translated into a 1-weak
Büchi automaton, by using nondeterminism of the automata. The translation
in the other direction is no more difficult: the subexpressions A∗i correspond to
staying in the same state for some time; while Aωn corresponds to an infinite
self-loop in an accepting state. The finite union corresponds to the finitely many
possible paths in the order.

Lemma 2. The language L is not definable in ACTL.



The Common Fragment of ACTL and LTL 177

Proof
Towards a contradiction with Theorem 2, assume that the complement of L is
defined by an finite union of expressions as in (6). Let n be the size of the largest
of these expressions. Since (ab)n+1cω is outside L, it must be captured by one
of the expressions:

(ab)n+1cω ∈ A∗0a1A
∗
1a2 · · ·A∗m−1amA

ω
m.

Since m ≤ n, it is fairly easy to see that the word (ab)ja(ab)n+1−jcω ∈ L will
also be captured by the same expression, a contradiction. �
In the next section we give an algorithm that decides if a word language can be
defined on level 3/2; therefore the above proof could be replaced by just running
the algorithm on L (and reading the output “no”).

We remark that a third equivalent condition can be added to Theorem 2:
the word language L is defined by a Π2 formula, i.e. a first order formula with
a quantifier prefix ∀∗∃∗, where the signature allows label tests, and the linear
order on word positions.

2 Effective Characterization of Level 3/2 for Infinite
Words

In this section give show that the following problem is decidable:

Input: a regular word language L ⊆ A∗ (resp. L ⊆ Aω).
Question: is L on level 3/2 of the concatenation hierarchy?

The case when L is a language of finite words—when L ⊆ A∗—is treated in
Section 2.2, while the infinite case—when L ⊆ Aω—is treated in Section 2.3.

The result on finite words is not new. The first proof is due to Arfi [1,2] and
uses a difficult result of Hashiguchi. A different proof was presented by Pin and
Weil in [8], one of the advantages being a better complexity for the algorithm.
Instead of just citing these results, we present a complete proof below. There are
two reasons. The first reason is that although the proof in [8] is self-contained, it
does use a number of involved and general algebraic concepts. The proof below is
specifically tailored to level 3/2, although the underlying ideas are similar to [8],
in particular the use of Simon’s factorization forests. The second reason is that
we are actually interested in infinite words, for which the result has not yet been
shown. Although the infinite case turns out to be a straightforward adaptation
of the finite one, its proof would be difficult to understand without the finite
case.

The proof will use an algebraic language, especially monoids and morphisms.
Recall that a monoid is a set S together with an associative concatenation op-
eration, denoted multiplicatively. Furthermore, there is an identity element. An
example of a monoid is the free monoid over A, i.e. the set A∗ of all words over
the alphabet A (the identity element is the empty word). Finite monoids are used
to recognize regular languages, just as automata. In order to recognize a regular



178 M. Bojańczyk

language L ⊆ A∗, we use a morphism α : A∗ → S. (A morphism is a function
that preserves concatenation, and the identity element). A morphism is said to
recognize L, if membership w ∈ L depends only on the value α(w) ∈ S. In other
words, L = α−1(α(L)). Languages recognized by morphisms into finite monoids
are exactly the same ones as those recognized by finite automata, so morphisms
and monoids can be used as a different way of describing regular languages. For
each regular language, there is a syntactic morphism, whose target monoid is
the smallest monoid that can be used to recognize the language. This morphism
corresponds to the two-sided Myhill-Nerode equivalence of the language.

An important concept will be the non-connected subword relation. If S is a
monoid, and s, t ∈ S, we write s � t if for some s1, . . . , sn, t0, . . . , tn ∈ S we have

s = s1 · · · sn t = t0s1t1 · · · tn−1snsn.

This relation is transitive in the free monoid, but need not be transitive in
general.

When characterizing level 3/2, we will use a result of Simon about “factor-
ization forests”. We present this result in a slightly different, but equivalent,
way than the original paper [10]. As mentioned previously, the Simon result was
already used in [8]; in this sense our approach to characterizing level 3/2 is not
new. The Simon result is presented in the next section, while Sections 2.2 and 2.3
apply it to describing level 3/2.

2.1 Typed Regular Expressions

In this section, we present regular expressions that are well typed for a mor-
phism. Before looking at the formal definition, consider first the language “even
number of a′s”, over an alphabet {a, b}. This language is described by the regular
expression

(
(b∗a)(b∗a)b∗

)∗
.

Consider now a morphism α : {a, b}∗ → {0, 1}, which recognizes the language by
counting the number of a’s modulo two. It so happens that the regular expression
presented above is well-typed for this morphism, i.e. for every subexpression we
can indicate the appropriate value assigned by α:

b : 0 b∗ : 0 a : 1 b∗a : 1 (b∗a)(b∗a) : 0
(
(b∗a)(b∗a)b∗

)∗ : 0

Not every regular expression is well typed with respect to every morphism. How-
ever, a consequence of the factorization forest theorem of Simon says that every
regular language recognized by a morphism α can be defined by a regular ex-
pression that is well typed with respect to α. The rest of this section presents
this result in more detail.

To simplify notation, we do not distinguish between regular expressions and
the languages they describe. In particular, we will denote expressions using the
same letters as languages, i.e. L, K and M . Fix a morphism α : A∗ → S. An
α-typed regular expression L is like a regular expression, but each subexpression



The Common Fragment of ACTL and LTL 179

must be typed by a value in the monoid S. The Kleene star is only allowed in
the form L+ with nonempty iterations, and furthermore L+ is only allowed if
L is typed by an idempotent (an element s with ss = s). The formal inductive
definition follows:

– Any single word w ∈ A∗ is an α-typed expression typed by α(s).
– If L,K are α-typed expressions both typed by s ∈ S, then L ∪ K is an
α-typed expression also typed by s.

– If L,K are α-typed expressions typed by s, t ∈ S respectively, then LK is
an α-typed expression typed by st.

– If L is an α-typed expression typed by s ∈ S, and s is idempotent, then L+

is an α-typed expression also typed by s.

The following result is a straightforward consequence of Simon’s factorization
forests theorem [10]:

Theorem 3. Let α : A∗ → S be a morphism. For any s ∈ S, the language
α−1(s) can be defined by an α-typed expression. In particular, any language
recognized by α can be defined by a finite union of α-typed expressions.

2.2 Characterization of Level 3/2 for Finite Words

In this section give show that the following problem is decidable:

Input: a regular word language L ⊆ A∗.
Question: is this language on level 3/2 of the concatenation hierarchy?

For the sake of completeness, in the theorem below we also include the equiv-
alence between level 3/2 of the concatenation hierarchy and level Σ2 of the
first-order quantification hierarchy, a special case of a result by Thomas [11].
Recall that a sentence of Σ2 is a first order sentence with quantifier prefix ∃∗∀∗.
A sentence defines the set of words where it holds, in a given word quantification
is over word positions. The signature contains the linear order on word positions
(but not the successor), and label tests. For instance, the following Σ2 sentence
defines the language a∗ba∗ca∗:

∃x1, x2∀y x1 < x2 ∧ b(x1) ∧ c(x2) ∧ (
y = x1 ∧ y = x2 ⇒ a(y)

)

The key point in the algorithm will be a type of pumping relation that is
complete for level 3/2, i.e. all languages on level 3/2 are closed under this type
of pumping and, conversely, all languages closed under this type of pumping are
on level 3/2. Consider the following rewriting rule (on words in A∗):

w1w2 →α w1vw2 if α(v) � α(w1) = α(w2) = α(w1w2). (7)

(Recall that � is the non-connected subword relation.) We call this a rule, but
it is more properly called a rule scheme, since there are infinitely many words
w1, w2, v with the above properties. Let ⇒α be the rewriting system generated
by this rule, i.e. w ⇒α v holds if v can be obtained from w by applying the



180 M. Bojańczyk

rule→α to infixes a number, possibly zero, of times. We will treat this rewriting
system as a pumping relation. We define clα(L) to be the set of words w such
that v ⇒α w holds for some v ∈ L.

Theorem 4. For a regular language L of finite words, the following are
equivalent:

1. L is definable by a sentence of Σ2;
2. L is on level 3/2 of the concatenation hierarchy, i.e. equivalent to a finite

union of expressions A∗0a1A
∗
1 · · ·A∗n−1anA

∗
n;

3. L = clα(L) holds for α the syntactic morphism of L.

We do not yet show that this characterization is effective, this is the subject of
Section 3.

The implication from 2 to 1 is immediate, while the implication from 1 to 3
can be shown using a standard Ehrenfeucht-Fraisse argument. We concentrate
on the implication from 3 to 2.

Lemma 3. For every α-typed expression L, there is level 3/2 expression K with
L ⊆ K ⊆ clα(L).

Before we proving this lemma, we show how it gives the implication from 3 to 2 in
Theorem 4. Let L ⊆ A∗ be a language whose syntactic morphism is α : A∗ → S,
and which satisfies L = clα(L). By Theorem 3, L can be defined as a union of
α-typed expressions L1 ∪ · · · ∪Ln. Let K1, . . . ,Kn be the languages obtained by
applying the lemma to L1, . . . , Ln. We claim that the union of the languages Ki

is the same as L, which concludes the proof. Indeed,

L =
⋃
Li ⊆

⋃
Ki ⊆

⋃

α

cl(Li) = cl(L) = L.

Proof
The proof is by induction on the α-expression. The induction base is trivial.
Concatenation is a consequence of closure of level 3/2 expressions under con-
catenation and of

cl(L1) · cl(L2) ⊆ cl(L1 · L2).

Union is solved the same way. Only the step L+ remains. Let e ∈ S be the
idempotent that types the expression L, and let K be the level 3/2 expression
obtained by applying the induction assumption to L. We need to find a language
M for L+. We set:

M = K ∪KB∗K where B = {b ∈ A : α(b) � e}
Clearly the expression for M is on level 3/2. It remains to show that M satisfies:

L+ ⊆M ⊆ cl(L+).

By definition of B, we have L ⊆ B∗, and hence the left inclusion holds. Only
the right inclusion M ⊆ cl(L+) remains. Let then w be a word in M . The
more difficult case is when w = w1w2w3, with w1, w3 ∈ K and w2 ∈ B∗. By



The Common Fragment of ACTL and LTL 181

assumption on K ⊆ cl(L), there are words v1, v3 ∈ L with v1 ⇒α w1 and
v3 ⇒α w3. The desired conclusion—actually, a stronger result: M ⊆ clα(LL)—
follows by

v1v3 ⇒α v1w2v3 ⇒α w1w2w3

The first rewriting uses α(w2) � e, which follows by definition of w2 and idem-
potency of e. The second rewriting follows by the assumption on v1, v3. �

2.3 Characterization of Σ2 for Infinite Words

In this section we will be working with infinite words (ω-words). Our approach
will be the same, in particular we will need to use a syntactic monoid α : A∗ → S
for a language of infinite words. What is a syntactic monoid for a language L ⊆
Aω of infinite words? It is also obtained by using a Myhill-Nerode congruence.
Two finite v, v′ words are called L-equivalent if both:

– For every u ∈ A∗ and w ∈ Aω, either both or none of uvw, uv′w are in L.
– For every u,w ∈ A∗, either both or none of u(vw)ω , u(v′w)ω are in L.

It turns out that L-equivalence is a congruence on A∗, and the mapping that as-
signs a word its L-equivalence class is a semigroup morphism, called the syntactic
morphism of an infinite language. See [7] for more details.

We will follow the same approach as in the previous section, by introducing
a rewriting relation. This relation will work on infinite words. It is generated
by two types of rule. The first type is the same one as in the previous section,
i.e. the rule (7), which is used to rewrite finite infixes of the infinite word. The
second rule works on infinite suffixes of the word:

wω →α wuv
ω if α(u), α(v) � α(w) and α(w) is idempotent. (8)

We denote by ⇒ω
α the rewriting system generated by both rules (7) and (8). We

write clωα(L) for the closure of L ⊆ Aω under this rewriting system.

Theorem 5. For a regular language L of infinite words, the following are
equivalent:

1. L is definable by a sentence of Σ2;
2. L is on level 3/2 of the concatenation hierarchy, i.e. equivalent to a finite

union of expressions A∗0a1A
∗
1 · · ·A∗n−1anA

ω
n ;

3. L = clωα(L) holds for α the syntactic morphism of L.

Proof
As for Theorem 4, we only We only do the proof for the implication from 3 to 2.

Let X be the set of pairs (s, e) ∈ S2 such that e is an idempotent, and some
word of the form uvω belongs to L, with α mapping u, v to s, e respectively. We
first claim that the following equality holds:

L =
⋃

(s,e)∈X
α−1(s)α−1(e)Aωe , (9)



182 M. Bojańczyk

where Ae is the set of letters that may appear in a word mapped to e. For the left
to right inclusion, fix some word w ∈ L. Using the (infinite) Ramsey theorem,
this word can be decomposed as w = w0w1w2 · · · , with all the words w1, w2, . . .
being mapped by α to the same idempotent e. If s is the value α(w0), then we
clearly have (s, e) ∈ X . Furthermore, clearly all the letters in w2, w3, . . . belong
to Ae, which shows that the word w belongs to the right side of (9).

Consider now the right to left inclusion (9). Let uvw be a word belonging to the
right hand side, i.e. with α(u) = s, α(v) = e and w ∈ Aωe for some (s, e) ∈ X . As
above, there is a decomposition w = w0w1 · · · with all the words w1, w2, . . . being
mapped to the same element by α. Since all the words w1, w2, · · · are equivalent,
it suffices to show that uvw0w

ω
1 belongs to L. By assumption wi ∈ A∗e , we have

α(wi) � e for i = 0, 1. Therefore, we have L � uvω ⇒ω
α uvw0w

ω
1 , and the right

hand side of the rewriting must belong to L.
The rest of the reasoning is as in the case for finite words. For each (s, e) ∈ X ,

we treat α−1(s)α−1(e) as a language Ls,e of finite words. Using Lemma 3, we
show that the closure clα(Ls,e) of each such language is defined by a level 3/2
expression. As in the previous section, we get an expression for a language that
is between L and clα(L), this expression must then describe L itself. �

3 Complexity

In this section, we show that the conditions in Theorems 4 and 5 can be effectively
checked. To the author’s best knowledge, the result below is the first criterion
that can be checked in polynomial time with respect to a finite automaton, and
not just a semigroup.

Theorem 6. Given a deterministic finite automaton over finite words, one can
decide in polynomial time if the language it recognizes belongs level 3/2 of the
concatenation hierarchy.

Proof
We assume that all states in the automaton are reachable. However, the automa-
ton need not be minimal. The automaton state assumed after reading the word
w when beginning in state p is denoted below by pw. Consider the following
property, which can be viewed as a forbidden pattern:

(*) Let p, q be states such that for some words v � w, pw = p, qw = q and
pv = q hold. Every word accepted from p is also accepted from q.

We first claim that (*) is equivalent to condition 3 in Theorem 4. Then, we wil
show that (*) can be checked in polynomial time.

We begin with the left to right implication in the claim. Take a language L
recognized by an automaton where (*) holds, and let α be the syntactic morphism
of L. We need to show that the language is closed under applying the rule →α.
In other words, we need to show that for any words w1, w2, v ∈ A∗ with

α(v) � α(w1) = α(w2) = α(w1w2)



The Common Fragment of ACTL and LTL 183

and for any two words u1, u2 ∈ A∗, we have:

u1w1w2u2 ∈ L ⇒ u1w1vw2u2 ∈ L.
By assumption, there is some word w ∈ A∗ with v � w and α(w) = α(w1). Recall
that for any function δ : Q→ Q there is some power k ∈ N such that δk = δ2k.
Since α(w1) = α(w1)α(w1), we may pick the word w so that its transformation
on states is idempotent, i.e. qw = qww holds for all w. By assumption on w,
and therefore also ww, being equivalent to w1, w2 under the morphism α, it is
sufficient to show

u1(ww)(ww)u2 ∈ L ⇒ u1(ww)v(ww)u2 ∈ L.
Let p be the state assumed by the automaton after reading u1w, and let q be
the state pvw. By assumption on w we have p = pw and q = qw. Since we
have vw � ww and q = pvw, we can use the assumption (*) to obtain that any
word accepted from p is also accepted from q. But the result follows, since p
(resp. q) is the state assumed by the automaton after reading the word on the
left (resp. right) hand side of the implication, wihtout the u2 suffix.

We now show the right to left implication of the claim. Let then p, q and v, w
be as in the assumption of (*). Let v0 a word after reading which the automa-
ton assumes state p, which exists by assumption on all states being accessible.
For some power k, we have α(wk) = α(wk)α(wk). This allows us to use the
assumption assumption (7) to obtain

v0w
kwku ∈ L ⇒ v0w

kvwku ∈ L for all u ∈ A∗.
Since p (resp. q) is the state assumed by the automaton after reading the word on
the left (resp. right) hand side of the implication, wihtout the u suffix, we obtain
the desired conclusion of (*): any word accepted from state p is also accepted
from state q.

We now show that condition (*) can be tested in polynomial time. The basic
idea is that a standard dynamic algorithm for verifying forbidden patterns can
be adapted to use the non-connected subword relation �. The polynomial time
algorithm runs as follows. In a first step, it calculates the tuples of states

X = {(p, p′, q, q′, r, r′) : p′ = pw, q′ = qw, r′ = rv holds for some v � w}.
This calculation can be done in polynomial time by a least fix-point algorithm:
we begin with the tuples that correspond to word pairs v � w of length at
most 1, and then apply the rule

(p, p′, q, q′, r, r′), (p′, p′′, q′, q′′, r′, r′′) ∈ X ⇒ (p, p′′, q, q′′, r, r′′) ∈ X
until X saturates. Once X has been calculated, we identify the pairs (p, q) such
that (p, p, q, q, p, q) belongs to X . For each such pair, we verify that all words
accepted from p are also accepted from q. �
The same idea can be used for the infinite case:



184 M. Bojańczyk

Theorem 7. Given a deterministic parity automaton over infinite words, one
can decide in polynomial time if the language it recognizes belongs level 3/2 of
the concatenation hierarchy.

Proof
The proof follows the same lines as for finite words, with the difference that we
need to check the second rewriting rule (8). This corresponds to the following
pattern:

(**) Let p be a state and w a word with pw = p, furthermore assume that the
top priority labeling the cycle pw is even. For every words v, u � w, the
word vω is accepted from state pwu.

�
A problem with the above theorem is that the input automaton is deterministic
parity, and not nondeterministic Büchi, as often used in verification. We do not
know if the algorithm can be adapted to nondeterministic automata, or if the
exponential blowup due to determinization is indeed necessary.

The above theorem, when combined with Theorem 2, shows that the common
fragment of ACTL and LTL is decidable:

Theorem 8. It is decidable if a regular tree language belongs to the common
fragment of ACTL and LTL.

Proof
Let K be the tree language, given e.g. by a parity tree automaton. We first find
if there is a word language L ⊆ Aω such that K is the same as “on all paths
L”. This language, if it exists, can be easily calculated. If the language does not
exist, K is clearly not in the common fragment. Otherwise, we we use Theorem 7
to test if if the complement Aω \L is on level 3/2 of the concatenation hierarchy.
By Theorem 2, this is equivalent to definability in ACTL. �

4 Concluding Remarks on CTL

Probably the most interesting remaining problem is this: what are the tree lan-
guages that can be defined in CTL? Is there an effective characterization? The
most commonly cited tree property that cannot be defined in CTL is “on some
path, there are infinitely many a’s”. However, the weakness of CTL appears not
only in infinitary behavior, and a lot of combinatorially interesting phenomena
appear already in finite trees. For instance, the property “the prefix of some path
is (ab)∗c” cannot be defined in CTL; both over finite and infinite trees (this pro-
vides a finitary language that can be expressed in LTL, but not CTL). For finite
trees, there are algebraic tools to examine regular languages, such as syntactic
objects and morphisms. Even with these tools, it is a nontrivial task to ana-
lyze CTL, for instance to show nondefinability of the (ab)∗c language referred to
above. But for infinite trees, the situation is exponentially worse, mainly because



The Common Fragment of ACTL and LTL 185

there is no reasonable notion of a canonical representation of a tree language, or
even a deterministic automaton model! Therefore, it seems a good idea to first
understand the expressive power of CTL over finite trees, without tackling both
finitary and infinitary aspects at the same time.

References

1. Arfi, M.: Polynomial operations on rational languages. In: Brandenburg, F.J.,
Wirsing, M., Vidal-Naquet, G. (eds.) STACS 1987. LNCS, vol. 247, pp. 198–206.
Springer, Heidelberg (1987)

2. Arfi, M.: Opérations polynomiales et hiérarchies de concaténation. Theor. Comput.
Sci. 91(1), 71–84 (1991)

3. Clarke, E.M., Draghicescu, I.A.: Expressibility results for linear-time and
branching-time logics. In: REX Workshop, pp. 428–437 (1988)

4. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

5. Kamp, J.A.: Tense Logic and the Theory of Linear Order. PhD thesis, Univ. of
California, Los Angeles (1968)

6. Maidl, M.: The common fragment of CTL and LTL. In: Foundations of Computer
Science, pp. 643–652 (2000)

7. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier, Amsterdam (2004)
8. Pin, J.-É., Weil, P.: Polynomial closure and unambiguous product. Theory Comput.

Systems 30, 1–30 (1997)
9. Potthoff, A.: First-order logic on finite trees. In: Mosses, P.D., Schwartzbach, M.I.,

Nielsen, M. (eds.) TAPSOFT 1995. LNCS, vol. 915, pp. 125–139. Springer, Heidel-
berg (1995)

10. Simon, I.: Factorization forests of finite height. Theoretical Computer Science 72,
65–94 (1990)

11. Thomas, W.: Classifying regular events in symbolic logic. Journal of Computer and
System Sciences 25, 360–375 (1982)



The Complexity of CTL∗ + Linear Past

Laura Bozzelli

1 Università di Napoli Federico II, Via Cintia, 80126 - Napoli, Italy

Abstract. We investigate the complexity of satisfiability and finite-state
model-checking problems for the branching-time logic CTL∗

lp, an exten-
sion of CTL∗ with past-time operators, where past is linear, finite, and
cumulative. It is well-known that CTL∗

lp has the same expressiveness
as standard CTL∗, but the translation of CTL∗

lp into CTL∗ is of non-
elementary complexity, and no elementary upper bounds are known for
its satisfiability and finite-state model checking problems. In this paper,
we provide an elegant and uniform framework to solve these problems,
which non-trivially extends the standard automata-theoretic approach
to CTL∗ model-checking. In particular, we show that the satisfiability
problem for CTL∗

lp is 2Exptime-complete, which is the same complexity
as that of CTL∗, but for the existential fragment of CTL∗

lp, the prob-
lem is Expspace-complete, hence exponentially harder than that of the
existential fragment of CTL∗. For the model-checking, the problem is al-
ready Expspace-complete for the existential and universal fragments of
CTL∗

lp. For full CTL∗
lp, the proposed algorithm runs in time polynomial

in the size of the Kripke structure and doubly exponential in the size of
the formula. Thus, the exact complexity of model-checking full CTL∗

lp

remains open: it lies somewhere between Expspace and 2Exptime.

1 Introduction

Temporal logics provide a fundamental framework for the description of dynamic
behavior of reactive systems [Pnu77]. Usually, in standard temporal logics such
as CTL∗ [EH86], CTL [CE81] and LTL [Pnu77], the modalities only refer to
the future of the current time. On the other hand, it is well-known that temporal
logics combining past and future modalities make some specifications easier to
write and more natural, and for standard linear-time temporal logics, these ex-
tensions do not increase the complexity of basic decision problems [Var88]. For
the branching-time setting, there are essentially two possible views regarding
the nature of the past. In the first view, past is branching and each moment in
time may have several possible futures and several possible pasts. In the second
view, past is linear and each moment in time may have several possible futures
and a unique past. Usually, the past is assumed to be finite (since program com-
putations have a definite starting time) and cumulative (i.e., the history of the
current situation increases with time and is never forgotten). However, the linear
past (rather that branching-past) approach is more suited to the specification
of dynamic behavior because it considers states in a computation tree, while

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 186–200, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Complexity of CTL∗ + Linear Past 187

the branching-past approach consider machine states (where past is not very
meaningful to specify behavioral constraints) [LS95].

For the future (regular) branching-time temporal logic CTL∗, the most sim-
ple linear-past extension is the logic PCTL∗ [HT87], obtained by adding the
past counterparts of the standard linear-time modalities ‘next’ and ‘until’. How-
ever, since the semantics of the path quantifiers in PCTL∗ is the same as for
CTL∗ (i.e., path quantification ranges over paths that starts in the current node
of the computation tree), the usage of past-time modalities is very limited. In
other terms, past cannot go beyond the present. It is not surprising then, that
PCTL∗ has the same expressivity and complexity as CTL∗. A more interesting
and meaningful linear past extension of CTL∗ is the logic CTL∗lp [KP95]. CTL∗lp
has the same syntax as PCTL∗. However, path quantification is ‘memoryful’,
i.e., it ranges over paths that start at the root and visits the current node. CTL∗lp
is as expressive as CTL∗, but the translation of CTL∗lp into CTL∗ is of non-
elementary complexity, and no elementary upper bounds are known for its sat-
isfiability and finite-state model checking problems [KP95, LS95, LS00, KV06].
More recently, Kupferman and Vardi [KV06] introduce a memoryful variant of
CTL∗, called mCTL∗, which unifies CTL∗ and the Pistore-Vardi logic [PV03].
This new logic has the same syntax as CTL∗. The unique difference is the adding
of a special proposition present which is needed to emulate the ability of CTL∗

to talk about the ‘present’. By letting path quantification to range over paths
that start at the root, an mCTL∗ formula can refer to events that happen in
the past. However, since mCTL∗ do not contain explicit past-time operators,
the ability to refer to the past is limited. The logic mCTL∗ is as expressive
as CTL∗, but while satisfiability for mCTL∗ is 2Exptime-complete, not harder
than that of CTL∗, its model checking problem is Expspace-complete, exponen-
tially harder than that of CTL∗ (and this last result holds also for the fragment
mCTL∗− obtained by disallowing the special atom present). Moreover, mCTL∗−
can be linearly translated into CTL∗lp and mCTL∗ can be linearly translated
into the extension of CTL∗lp with the special atom present.

Our contribution. In this paper, we study the complexity of the satisfiabil-
ity and (finite-state) model checking problems for CTL∗lp and its existential
and universal fragments ECTL∗lp and ACTL∗lp. The existential (resp., univer-
sal) fragment consists of formulas where the only allowed path quantifier is the
existential (resp., universal) one, assuming that formulas are written in posi-
tive normal form. We also consider the extension CTL∗lp+ of CTL∗lp obtained
by adding the special atom present and its existential and universal fragments
ECTL∗lp+ and ACTL∗lp+. Our results are summarized in Figure 1 in which we
also recall the well-known results about the complexity of the considered prob-
lems for CTL∗ and its existential and universal fragments (see, e.g., [KV00]).
For the satisfiability problem, the complexity for CTL∗lp and CTL∗lp+ is the
same as that of CTL∗, i.e. 2Exptime-complete. However, for the universal and
existential fragments of the considered logics, the situation is quite different.
While the complexity of ACTL∗lp is the same as that of ACTL∗ (i.e., Pspace-
complete), for the fragments ECTL∗lp, ECTL∗lp+, and ACTL∗lp+, the problem is



188 L. Bozzelli

significantly harder being Expspace-complete. For the model checking problem,
the complexity is already Expspace-complete for the existential and universal
fragments of CTL∗lp. For full CTL∗lp and CTL∗lp+, our algorithm runs in time
polynomial in the size of the Kripke structure and doubly exponential in the size
of the formula. Thus, the exact complexity of model-checking full CTL∗lp and
CTL∗lp+ remains open: it lies somewhere between Expspace and 2Exptime.

The upper bounds of the considered problems are established by a uniform
automata-theoretic framework which non-trivially generalizes the standard one
for CTL∗ [KVW00], and is based on the translation of CTL∗lp+ formulas, with
a single exponential blow-up, into a two-way extension of the symmetric version
of hesitant alternating (finite-state) tree automata (HAA, for short) [KVW00].
Two-way symmetric alternating tree automata (two-way SAA, for short), and
in particular, two-way (symmetric) HAA, operate on arbitrary (also infinite-
branching) Σ-labelled trees for a given alphabet Σ. However, SAA cannot dis-
tinguish between the different children of a node, and send copies to the children
of the current input node in either a universal or an existential manner. More-
over, two-way SAA can send copies to the parent (if any) of the current node.

The key aspects of our approach which enable us to solve partially the open
problems regarding the complexity of CTL∗lp are the following:

– the complementation result for tree languages accepted by alternating tree
automata based on the construction of the dual automaton [MS87], holds
also for pointed tree languages (i.e., languages consisting of pairs (T, x) where
T is a labelled tree and x is a T -node) accepted by two-way SAA. This is
a consequence of determinacy of (finitely-coloured) parity games, that holds
also when a vertex in the underlying graph has infinite successors [Zie98].

– We show that parity two-way SAA can be linearly translated in the full
modal μ-calculus (with both backward and forward modalities), which sat-
isfies the bounded-degree tree-model property [Var98]. As a consequence
nonemptiness of parity two-way SAA can be linearly reduced to nonempti-
ness of standard parity two-way alternating tree automata operating on com-
plete n-ary trees [Var98], where n is the size of the given two-way SAA.

– The ability of combining both forward and backward moves in two-way HAA
is restricted in such a way in every run each (infinite) path has a suffix which
is fully downward. This allows us to solve the model checking problem for this
class of automata by a direct construction. In particular, for the existential
fragments of the considered logics, the model checking for the correspond-
ing two-way HAA can be reduced to nonemptiness of 1-letter (one–way)
HAA (over infinite words) [KVW00]. For full CTL∗lp instead, we obtain an
extended version of 1-letter HAA in which the ‘universal requirement’ for
universal components of the automaton is relaxed. This explains our dif-
ficulty in obtaining membership in Expspace for model checking of full
CTL∗lp. However, the extended 1-letter HAA obtained in the construction
have a special structure, but actually we do not know if this is sufficient to
solve nonemptiness with the same complexity as for 1-letter HAA.

The full version of this paper can be asked to the author by e-mail.



The Complexity of CTL∗ + Linear Past 189

Satisfiability Model checking

CTL∗ 2Exptime-complete Pspace-complete

ACTL∗ ECTL∗ Pspace-complete Pspace-complete

CTL∗
lp+ CTL∗

lp 2Exptime-complete ∈2Exptime

ACTL∗
lp+ ECTL∗

lp+ ECTL∗
lp Expspace-complete Expspace-complete

ACTL∗
lp Pspace-complete Expspace-complete

Fig. 1. Summary of known and new results

2 Linear-Past Branching-Time Temporal Logic

In this section we recall syntax and semantics of the linear-past branching-time
temporal logic CTL∗lp [KP95] and its extension, denoted CTL∗lp+, obtained by
adding the special atomic proposition present [KV06], which intuitively allows
to refer to the ‘present’. We also define the problems addressed in this paper.

Let N be the set of natural numbers. A tree T is a prefix closed subset of N∗.
The elements of T are called nodes and the empty word ε is the root of T . For
x ∈ T , the set of children of x (in T ) is children(x, T ) = {x · i ∈ T | i ∈ N}, and
the branching degree of x is the cardinality (possibly infinite) of children(x, T ).
The tree T is infinite if each its node has at least a child. A path of T is an
infinite sequence π = x0x1 . . . of T -nodes such that xi+1 ∈ children(xi, T ) for
each i ≥ 0. Let π(i) be the ith node of π. For x ∈ T , an x-path is a path starting
from x. For an alphabet Σ, a Σ-labelled tree is a pair 〈T, V 〉 where T is a tree
and V : T → Σ. For x ∈ T , the pair (〈T, V 〉, x) is called pointed Σ-labelled tree.

The logic CTL∗lp+ combines both branching-time and linear-time operators.
A path quantifier, E (“for some path”) or A (“for all paths”), can be followed by
an arbitrary linear-time formula over the usual future linear temporal operators
X+ (“forward next”), U + (“forward until”), and G+ (“forward always”), and
their past counterparts X−, U−, and G−. As in standard CTL∗, for a given finite
set of atomic propositions AP , there are two types of formulas in CTL∗lp+: state
formulas ϕ, whose satisfaction is related to a specific node of a 2AP -labelled
tree, and path formulas ξ, whose satisfaction is related to a specific path. Their
syntax (in positive normal form) is defined as follows:

ϕ := � | prop | ¬ prop | ϕ ∧ ϕ | ϕ ∨ ϕ | E ξ | A ξ

ξ := ϕ | present | ¬ present | ξ ∧ ξ | ξ ∨ ξ | Xdirξ | ¬X−� | ξ U dirξ | Gdirξ

where � denotes true, prop ∈ AP , present /∈ AP and dir ∈ {+, −}. We also
use the classical shortcut Fdirξ for dir ∈ {+, −} (“backward and forward eventu-
ally”) which stands for � U dirξ. The set of state formulas ϕ forms the language
CTL∗lp+.1 CTL∗lp is the fragment of CTL∗lp+ obtained by disallowing the atom
present. We also study the existential fragment ECTL∗lp (resp., ECTL∗lp+) and

1 Note that the given syntax is complete since the dual Ũ
dir

of the until operator

U dir can be expressed as follows: ξ1 Ũ
dir

ξ2 ≡ Gdirξ2 ∨ (ξ2 U dir(ξ1 ∧ ξ2)).



190 L. Bozzelli

the universal fragment ACTL∗lp (resp., ACTL∗lp+) of CTL∗lp (resp., CTL∗lp+)
obtained by disallowing the path quantifier A and E, respectively.

CTL∗lp+ formulas are interpreted over 2AP -labelled infinite trees. Fix a 2AP -
labelled infinite tree 〈T, V 〉 and let π be an ε-path of T , x ∈ T , and k, k0 ∈ N.
For a state formula ϕ, we write x |= ϕ to mean that ϕ holds at node x. Similarly,
for a path formula ξ, we write (π, k, k0) |= ξ to indicate that ξ holds at position
k along the ε-path π of 〈T, V 〉, where k0 is the reference position (intuitively,
the ‘present’). Formally, we have the following (we omit the rules for atoms in
AP and boolean connectives, which are standard):

x |= Eξ iff there is an ε-path π = x0x1 . . . and k ≥ 0 such that
xk = x and (π, k, k) |= ξ

x |= Aξ iff for each ε-path π = x0x1 . . . such that xk = x for
some k ≥ 0, we have (π, k, k) |= ξ

(π, k, k0) |= ϕ iff π(k) |= ϕ
(π, k, k0) |= present iff k = k0

(π, k, k0) |= X+ξ iff (π, k + 1, k0) |= ξ
(π, k, k0) |= X−ξ iff k > 0 and (π, k − 1, k0) |= ξ
(π, k, k0) |= ξ1 U +ξ2 iff ∃ n ≥ k. (π, n, k0) |= ξ2 and ∀ k ≤ i < n. (π, i, k0) |= ξ1

(π, k, k0) |= ξ1 U−ξ2 iff ∃ n ≤ k. (π, n, k0) |= ξ2 and ∀ n < i ≤ k. (π, i, k0) |= ξ1

(π, k, k0) |= G+ξ iff ∀ n ≥ k. (π, n, k0) |= ξ
(π, k, k0) |= G−ξ iff ∀ n ≤ k. (π, n, k0) |= ξ

For a CTL∗lp+ formula ϕ, we denote by Lp(ϕ) the set of pointed 2AP -labelled
infinite trees (〈T, V 〉, x) such that x |= ϕ. Note that while in standard CTL∗,
path quantification ranges over paths that start in the current node, in CTL∗lp+
path quantification ranges over paths that start at the root and visit the current
node. For example, AG+EF−(ξ ∧ ¬X−�), when viewed as a formula of CTL∗

extended with backward modalities, is unsatisfiable. When viewed as a CTL∗lp+
formula, it holds iff for each node x of the given tree, the partial path from the
root to x can be extended to a path (initially) satisfying ξ.

In the following we also consider the linear temporal logic PLTL+ (LTL
+ Past + present) corresponding to CTL∗lp+ formulas which do not contain
occurrences of A and E. PLTL+ is interpreted on pointed (infinite) words over
2AP , i.e. pairs (w, k) such that w ∈ (2AP )ω and k ∈ N. The satisfaction relation
(w, k, k0) |= ξ, meaning that ξ holds at position k of w w.r.t. the reference
position k0, is defined similarly to the relation (π, k, k0) |= ξ′ for path formulas ξ′

of CTL∗lp+. Let Lp(ξ) be the set of pointed words (w, k) such that (w, k, k) |= ξ.
A Kripke structure over AP is a tuple K = 〈S, s0, Δ, L〉, where S is a finite set

of states, s0 ∈ S is an initial state, Δ ⊆ S × S is a transition relation that must
be total, and L : S → 2AP maps each state s to the set of atomic propositions
true in s. The Kripke structure K induces a 2AP -labelled tree, denoted by CTK,
which corresponds to the unwinding of K from s0 (defined in the usual way).

We address the following problems for CTL∗lp+ (and its mentioned fragments):

– the satisfiability problem is to decide, given a CTL∗lp+ formula ϕ over AP ,
whether (〈T, V 〉, ε) ∈ Lp(ϕ) for some 2AP -labelled infinite tree 〈T, V 〉;



The Complexity of CTL∗ + Linear Past 191

– the (finite-state) model checking problem is to decide, given a Kripke struc-
ture K and a CTL∗lp+ formula ϕ over AP , whether (CTK, ε) ∈ Lp(ϕ).

3 Alternating Finite–State Automata for Linear Past

In order to solve satisfiability and model-checking for CTL∗lp+ and its fragments,
we propose an extension of the automata-theoretic approach to branching-time
model checking [KVW00]. In particular, we consider two-way symmetric alter-
nating (finite-state) tree automata (two-way SAA), and more specifically we
focus on a subclass of such automata. One–way SAA were first introduced in
[Wil99] and operate on arbitrary Σ-labeled infinite trees (whose nodes can have
infinite branching degrees) for a given alphabet Σ. SAA cannot distinguish be-
tween the different children of a node, and send copies to the children of the
current input node in either a universal or an existential manner. Moreover,
two-way SAA can send copies to the parent (if any) of the current node. In
order to formally define such a class of automata, we need additional notation.

For a set X , B+(X) denotes the set of positive boolean formulas over X , built
from elements in X using ∨ and ∧ (we also allow the formulas true and false).
A subset Y of X satisfies θ ∈ B+(X) iff the truth assignment that assigns true
to the elements in Y and false to the elements of X \ Y satisfies θ; Y exactly
satisfies θ if Y satisfies θ and every proper subset of Y does not satisfy θ.

A two-way SAA is a tuple A = 〈Σ, Q, q0, δ, Acc〉, where Σ is the input al-
phabet, Q is a finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ →
B+

(
({�, �} × Q)∪ ({↑} × Q × {true, false})

)
is the transition function, and

Acc is an acceptance condition. Intuitively, a target of a move of A is encoded by
an element in ({�, �}×Q)∪ ({↑} × Q × {true, false}). An atom (�, q) means
that a copy of A in state q moves to some child of the current node, while an
atom (�, q) means that for each child x of the current node, a copy of A in state
q is sent to node x. Finally, an atom (↑, q, b) can be chosen iff either the current
node is not the root or b = true. In the first case, a copy of A in state q is sent
to the parent of the current node. A one-way SAA is a two-way SAA whose
transition function satisfies δ(q, a) ∈ {�, �} × Q for each (q, σ) ∈ Q × Σ.

For a pointed Σ-labelled infinite tree (〈T, V 〉, x0), a run of A over (〈T, V 〉, x0)
is a Q × T -labelled tree r = 〈Tr, Vr〉, where each node of Tr labelled by (q, x)
describes a copy of A that is in state q and reads the node x of T . Moreover,
we require that r(ε) = (q0, x0) (initially, A is in state q0 reading node x0),
and for each y ∈ Tr with r(y) = (q, x), there is a (possibly empty) set H ⊆
({�, �}×Q)∪ ({↑}×Q×{true, false}) exactly satisfying δ(q, V (x)) such that
H does not contain atoms (↑, q′, false) if x = ε, and children(y, Tr) satisfies the
following for each at ∈ H :
- if at = (�, q′), then ∃x′ ∈ children(x, T ), ∃y′ ∈ children(y, Tr). r(y′) = (q′, x′);
- if at = (�, q′), then ∀x′ ∈ children(x, T ), ∃y′ ∈ children(y, Tr). r(y′) = (q′, x′);
- if at = (↑, q′, b) and x = x′ · i, then ∃y′ ∈ children(y, Tr). r(y′) = (q′, x′).

For a path π = y0y1 . . . of the run r = 〈Tr, Vr〉, let inf(π) be the set of states
in Q that appear in Vr(y0)Vr(y1) . . . infinitely often. We say that π is accepting



192 L. Bozzelli

iff inf(π) satisfies the acceptance condition Acc of A. The run r = 〈Tr, Vr〉
is accepting iff each its path is accepting. Here, we consider parity acceptance
conditions, specified by mappings2 Ω : Q → N assigning to each state q ∈ Q
an integer (called priority). A path π trough a run satisfies Ω if the smallest
priority of the states in inf(π) is even. The index of a parity two-way SAA with
parity acceptance condition Ω is the cardinality of the set {Ω(q) | q ∈ Q}.

For a two-way SAA over Σ, the pointed language Lp(A) of A is the set of
pointed Σ-labeled infinite trees PT such that A has an accepting run over PT .
The language L(A) is the set of Σ-labelled trees 〈T, V 〉 s.t. (〈T, V 〉, ε) ∈ Lp(A).

Given a parity two-way SAA A = 〈Σ, Q, q0, δ, Ω〉, the dual automaton of A
is the parity two-way SAA Ã = 〈Σ, Q, q0, δ̃, Ω̃〉, where for each q ∈ Q, Ω̃(q) =
Ω(q) + 1, and for each (q, σ), δ̃(q, σ) is obtained from δ(q, σ) by switching �

and �, switching ∨ and ∧, and switching true and false. If, for example,
δ(q, σ) = (�, p) ∨ (↑, q, true), then δ̃(q, σ) = (�, p) ∧ (↑, q, false).

We can give a game-theoretic interpretation of acceptance in two-way SAA A
by (finitely coloured) parity games. Since the determinacy result for such a class
of games holds also when the number of successors of a vertex in the underlying
graph is infinite [Zie98], by a readaptation of the proof given in [MS87], it follows
that the dual automaton of A accepts the complement of Lp(A), i.e., the set of
pointed Σ-labeled infinite trees PT /∈ Lp(A).

Proposition 1. The dual automaton of a parity two-way SAA A accepts the
complement of Lp(A).

As we will see in order to capture CTL∗lp+ formulas, it suffices to consider a
subclass of parity two-way SAA of index 3 corresponding to a two-way exten-
sion of hesitant alternating tree automata (HAA) introduced in [KVW00] as an
optimal automata-theoretic framework for CTL∗. Formally, a two-way HAA is
a two-way SAA A = 〈Σ, Q, q0, δ, Acc〉 satisfying the following conditions. As in
weak alternating automata, there is a partition of Q into disjoint sets Q1, . . . , Qm

(called components of A) and a partial order ≤ on these sets such that transi-
tions from a state in Qi lead to states in either the same Qi or components Qj

such that Qj < Qi (partial order requirement). Moreover, each component Qi is
classified either as transient, existential, or universal, and the following holds:

1. for each transient set Qi and q ∈ Qi, δ(q, σ) contains no states of Qi;
2. for each existential component Qi and q ∈ Qi, if δ(q, a) is rewritten in

disjunctive normal form, then there is at most one (forward) atom (c, q′)
with q′ ∈ Qi in each disjunct. Moreover, c = � (existential requirement);

3. for each universal component Qi and q ∈ Qi, if δ(q, a) is rewritten in con-
junctive normal form, then there is at most one (forward) atom (c, q′) with
q′ ∈ Qi in each conjunct. Moreover, c = � (universal requirement);

4. Acc consists of a pair 〈G, B〉 of sets of states interpreted as the parity con-
dition Ω〈G,B〉 of index 3 assigning 0 to the states in Q∃ ∩ G, assigning 1 to
the states in (Q∃ \ G) ∪ (Q∀ ∩ B), and assigning 2 to the remaining states,
where Q∃ (resp., Q∀) is the set of existential (resp., universal) states.

2 We use the symbol Ω instead of Acc to specify such acceptance conditions.



The Complexity of CTL∗ + Linear Past 193

5. in addition for a two-way HAA A, we require that Q is also partitioned
into a set Q+ of positive states and a set Q− of negative states such that:
(i) q0 ∈ Q+, (ii) for each atom (↑, q, b) (backward choice) occurring in δ,
q ∈ Q−, and for each atom (c, q) (forward choice) occurring in δ, q ∈ Q+,
and (iii) for each component Qi and negative state q− ∈ Qi, δ(q−, σ) does
not contain atoms of the form (�, q) or (�, q) with q ∈ Qi.

The partial order requirement and Condition 1 ensure that every path π of a
run of A gets trapped within some existential or universal component Qi. Then,
by Condition 4, the path satisfies the acceptance condition Acc = 〈G, B〉 iff
either Qi is an existential set and inf(π) ∩ G �= ∅ (Büchi condition), or Qi is a
universal set and inf(π)∩B = ∅ (co-Büchi condition). Condition 5 ensures that
every path π get trapped in Q+, and in particular from a certain point on, π
becomes fully downward, i.e. there is a suffix of π such that each node along this
suffix is obtained from the previous by applying a forward choice (corresponding
to an atom of the form (c, q) with c ∈ {�, �}). The depth of A is the number of
components of A. The two-way HAA A is existential if each its component is
not universal, and is strictly existential if its transition function does not contain
atoms of the form (�, q). Note that the dual automaton Ã = 〈Σ, Q, q0, δ̃, Ω̃〈G,B〉〉
of A is still a two-way HAA. Indeed, the components of Ã are the same as
A (with the same partial order) with the difference that a component that is
existential in A is universal in Ã, and vice versa. Moreover, Condition 5 continue
to hold (the sets of positive states and negative states of Ã are the same as A).
Finally, it is easy to show that the parity condition Ω̃〈G,B〉, when interpreted on
runs of Ã, is equivalent to the parity condition Ω〈B,G〉 associated with 〈B, G〉.
Thus, by Proposition 1 we obtain the following result.

Proposition 2. The dual automaton of a two-way HAA A is a two-way HAA
accepting the complement of Lp(A).

We address the following problems for the class of two-way HAA:
- the nonemptiness problem is to decide, for a two-way HAA, whether L(A) �= ∅;
- the (finite-state) model checking problem is to decide, given a Kripke structure

K over AP and a two-way HAA A over 2AP , whether CTK ∈ L(A).
In the following, we also consider (one-way) HAA on infinite words over a

1-letter alphabet (1-letter HAA). Note for such a class of automata, choices
represented by atoms (�, q) and (�, q) are equivalent, and thus the transition
function can be given as a mapping δ : Q → B+(Q), where Q is the set of states.

3.1 Decision Procedures for Two-Way HAA

Model checking. We reduce the model checking problem for two-way HAA
to the nonemptiness problem of extended 1-letter HAA corresponding to 1-
letter HAA in which the universal requirement for universal components (see
Condition 3 in the definition of HAA) is relaxed.



194 L. Bozzelli

Theorem 1. For a Kripke structure K over AP of size n and a two-way HAA
A over 2AP with depth d and size m, one can build an extended 1-letter HAA AK
with depth d and size O(n ·m ·2O(m)) s.t. L(AK) �= ∅ iff CTK ∈ L(A). Moreover,
if A is an existential two-way HAA, then AK is an existential 1-letter HAA.

Proof. Let K = 〈S, s0, Δ, L〉 and A = 〈Σ, Q, q0, δ, 〈G, B〉〉 with Σ = 2AP . Es-
sentially, the 1-letter extended HAA AK guesses a run of A over (CTK, ε) and
checks that it is accepting. At a given node x of a run of AK, AK keeps track by
its finite control of the following information: (i) the positive state q+ associated
with the current ‘positive’ copy of A in the guessed run, (ii) the state s of K
associated with the node xcurr of CTK which is read by the current copy of A,
and (iii) the guessed set P− of negative states of A associated with the copies of
A which read xcurr and belong to the subrun starting from the current copy of
A. Note that since A is a two-way HAA, P− cannot contain states in compo-
nents Qi of A that are upper in the partial order than the q+-component. The
paths of a run of AK correspond to the downward paths of the simulated run of
A over (CTK, ε). Since A is a two-way HAA, each infinite path of a run of A
has a suffix which is downward. Thus, a run of AK keeps track of all meaningful
information associated with the corresponding simulated run of A over (CTK, ε).

The extended 1-letter HAA AK = 〈{a}, QK, q0
K, δK, 〈GK, BK〉〉 is formally

defined as follows. Let Q1, . . . , Qd be a fixed total ordering of the components
of A extending the partial order ≤ of A, and let Q+ (resp., Q−) be the set of
positive states (resp., negative states) of A. For a state q ∈ Qi, let index(q) := i,
and for q ∈ Q, let Π(q) = {P− ⊆ Q− | ∀q− ∈ P−, index(q−) ≤ index(q)}.

A state of AK is either of the form (q+, s, Pup, root) ∈ Q+ × S × 2Q− × {0, 1}
or of the form (q+, s, Pup, Pcurr, root) ∈ Q+ × S × 2Q− × 2Q− × {0, 1} such that
Pcurr ∈ Π(q+), where: (i) q+ represents the state associated with the current
‘positive’ copy of A which reads a node x of the computation tree of K labelled
by state s, (ii) Pcurr represents the guessed set of negative states of A associated
with the copies of A which read x and belong to the ‘subrun’ of A starting from
the current copy, (iii) Pup represents the set of negative states of A associated
with the copies of A which read the parent node y of x and belong to the ‘subrun’
of A associated with a positive copy (reading y) which has generated (in one step
or many steps) the current copy, (iv) root is a flag which is 1 iff the current node
x of CTK is the root. The initial state is q0

K = (q0, s0, ∅, 1). The components
of AK are Q′1, . . . , Q

′
d with Q′i ≤ Q′j iff i ≤ j, where Q′i is the set of states

(q+, s, Pup, root) or (q+, s, Pup, Pcurr, root) such that q+ ∈ Qi. Moreover, Q′i is
existential if Qi is either existential or transient, and is universal otherwise.

The transition function δK is defined as follows:

1. δK(q+, s, Pup, root) =
∨

Pcurr∈Π(q+)(q+, s, Pup, Pcurr, root);
2. δK(q+, s, Pup, Pcurr, root)=θ(q+ , s, Pup, Pcurr)∧

∧
q−∈Pcurr

θ(q−, s, Pup, Pcurr),
where θ(q, s, Pup, Pcurr) is obtained from δ(q, L(s)) as follows:
– each atom (�, p+) (resp., (�, p+)) occurring in δ(q, L(s)) is replaced with∧

s′∈succK(s)(p+, s′, Pcurr, 0) (resp.,
∨

s′∈succK(s)(p+, s′, Pcurr, 0));
– each atom (↑, p−, b) in δ(q, L(s)) is replaced with true if either root = 0

and p− ∈ Pup or root = 1 and b = true, and with false otherwise.



The Complexity of CTL∗ + Linear Past 195

where succK(s) denotes the set of successors of s in K.
The acceptance condition 〈GK, BK〉 is defined as follows:

– GK = {(q+, s, Pup, root), (q+, s, Pup, Pcurr, root) | q+ ∈ G};
– BK = {(q+, s, Pup, root), (q+, s, Pup, Pcurr, root) | q+ ∈ B}.

Note that δK satisfies the partial order requirement. Moreover, a path of a
run of AK cannot be trapped within an existential component Q′i corresponding
to a transient component of A. Also, Condition 5 in def. of two-way HAA en-
sures that an existential component of AK satisfies the existential requirement
corresponding to condition 2 in def. of HAA. However, if A contains universal
components, then the universal components of AK do not satisfy the universal
requirement due to the nondeterministic choice of the set Pcurr in the transitions
from states of the form (q+, s, Pup, root). Thus, if A is existential, then AK is an
existential 1-letter HAA. Otherwise, AK is an extended 1-letter HAA. ��

In [KVW00] it is shown that nonemptiness of 1-letter HAA (hence, also 1-letter
existential HAA) of depth d and size n can be solved in space O(d log2 n). Since
extended 1-letter HAA are also 1-letter parity alternating automata over infinite
words of index 3, and for such class of automata, nonemptiness can be solved in
cubic time [KV98], by Theorem 1, we obtain the following upper bounds for the
model checking of two-way HAA and two-way existential HAA.

Theorem 2. Given a Kripke structure K over AP of size n and a two-way
HAA A over 2AP with depth d and size m, the model checking problem for K
and A can be solved in time O(n3 · m3 · 2O(m)). Moreover, if A is existential,
then the same problem can be solved in space O(d · log2(n · m · 2O(m))).

Nonemptiness problem. For the nonemptiness problem of two-way HAA and,
more in general, parity two-way SAA, we obtain the following result.

Theorem 3. The nonemptiness problem of parity two-way SAA (hence, also
two-way HAA ) is in Exptime.

Proof. We can show that for a parity two-way SAA A over Σ of size n and index
h, it is possible to build a formula ϕA of the full modal μ-calculus (with both
forward and backward modalities) over Σ [Var98] such that ϕA has size bounded
by 2n and for each Σ-labelled tree LT , LT ∈ L(A) iff LT is a tree-model of ϕA.
Since a formula ϕ of the full μ-calculus is satisfiable iff there is a tree-model of
ϕ whose branching degrees are bounded by the size of ϕ [Var98], it follows that
for the given parity two-way SAA A over Σ of size n and index h, L(A) �= ∅
iff L(A) ∩ Υ2n(Σ) �= ∅, where Υ2n(Σ) denotes the set of Σ-labelled trees whose
branching degrees are bounded by 2n. Now, let ⊥ be a symbol non in Σ. We can
encode a labelled tree LT in Υ2n(Σ) as a Σ ∪{⊥}-labelled complete 2n-ary tree
〈{1, . . . , 2n}∗, V 〉 as follows: first, for each node x of LT with i children (note that
i ≤ 2n), we add 2n−i new children and label these new nodes with ⊥; finally, for
each node x labelled by ⊥, we add recursively 2n children labelled by ⊥. Then,
starting from A, it is easy to construct a standard parity two-way alternating



196 L. Bozzelli

tree automaton [Var98] (parity two-way ATA) A′ operating on Σ ∪{⊥}-labelled
complete 2n-ary trees having the same index as A and size linear in the size of
A, and such that A′ accepts all and only the trees encoding Σ-labelled trees in
L(A) ∩ Υ2n(Σ). Hence, L(A′) �= ∅ iff L(A) �= ∅. Since nonemptiness of parity
two-way ATA of size n, index h over k-ary trees can be solved in time 2O(n2·k·h)

[Var98], Theorem 3 follows. ��
However, for nonemptiness of strictly existential two-way HAA A, we can do
better. Indeed, the transition function of A does not contain atoms of the form
(�, q) corresponding to universal choices. Thus, the only forward choices are
existential (nondeterminism). Moreover, the automaton cannot distinguish be-
tween the different children of the current input node. Thus, if A is one-way, then
it actually corresponds to a nondeterministic tree automaton, hence nonempti-
ness can be trivially reduced to nonemptiness of 1-letter HAA. If instead A is
two-way, then we need to keep track only of the downward paths of a run of A.
These observations enable us to solve nonemptiness for A by a direct reduction
to nonemptiness of an (existential) 1-letter HAA AW having the same depth as
A and exponential size. Thus, we obtain the following result.

Theorem 4. Nonemptiness of strictly existential two-way HAA is in Pspace.

4 Decision Procedures for CTL∗
lp+ and Its Fragments

In this section we describe an automata-theoretic approach to solve satisfia-
bility and model-checking for CTL∗lp+ based on the translation (with a single
exponential blow-up) of CTL∗lp+ formulas ϕ into equivalent two-way HAA Aϕ

accepting the set of pointed labelled trees satisfying ϕ. Before illustrating this,
we need a preliminary result concerning the translation of the linear temporal
logic PLTL+ into a simple variant of two-way Büchi word automata [Var88].

A simple two-way Büchi (nondeterministic) word automaton (Büchi SNWA,
for short) is a tuple A = 〈Σ, Q, Q0, ρ, F−, F+〉, where Σ is the input alphabet, Q
is a finite set of states, Q0 ⊆ Q is a set of initial states, ρ : Q×Σ ×{+, −} → 2Q

is a transition function, and F− and F+ are sets of accepting states. A run of A
over a pointed word (w, i), where w = w(0)w(1) . . ., is a pair r = (r−, r+) such
that r+ = q+

i , q+
i+1 . . . is an infinite sequence of states, r− = q−i , q−i−1 . . . q−0 q−−1

is a finite sequence of states, and: (i) q+
i = q−i ∈ Q0; (ii) for each h ≥ i,

q+
h+1 ∈ ρ(q+

h , w(h), +); and (iii) for each 0 ≤ h ≤ i, q−h−1 ∈ ρ(q−h , w(h), −).
Thus, starting from the initial position i in the input pointed word (w, i), the

automaton splits in two copies: the first one moves forwardly along the suffix
of w starting from position i and the second one moves backwardly along the
prefix w(0) . . . w(i). The run r = (r−, r+) is accepting if q−−1 ∈ F− and r+ visits
infinitely often some state in F+. A pointed word (w, i) is accepted by A if
there is an accepting run of A over (w, i). By a readaptation of the standard
translation of LTL into Büchi word automata [VW94], we obtain the following.

Proposition 3. Given a PLTL+ formula ξ over AP , one can construct a Büchi
SNWA over 2AP of size 2O(|ξ|) accepting the set of pointed words satisfying ξ.



The Complexity of CTL∗ + Linear Past 197

Theorem 5. For a CTL∗lp+ formula ψ over AP , one can build a two-way HAA

Aψ over 2AP of size 2O(|ψ|) and depth O(|ψ|) such that Lp(Aψ) = Lp(ψ). Also,
if ψ is a ECTL∗lp+ formula, then Aψ is a strictly existential two-way HAA.

Proof. We need some definitions. A CTL∗lp+ formula ϕ is trivial if either ϕ = p
or ϕ = ¬p, where p ∈ AP . For two CTL∗lp+ formulas ϕsub and ϕ, ϕsub is maximal
in ϕ if ϕsub is a strict state subformula of ϕ and there is an occurrence of ϕsub in ϕ
s.t. there is no occurrence of a strict state subformula of ϕ which strictly contains
the considered occurrence of ϕsub. We denote by max(ϕ) the set of all formulas
maximal in ϕ. For example, max(A

(
(X+¬p)U +(EX−¬p)

)
) = {¬p, EX−¬p}.

As in the case of the one-way HAA for CTL∗ [KVW00], we construct the two-
way HAA Aψ by induction on the structure of ψ. With each state subformula ϕ
of ψ, we associate a two-way HAA Aϕ over Σ = 2AP of size 2O(|ϕ|) and depth
O(|ϕ|) such that Lp(Aϕ) = Lp(ϕ). For the base of the induction, either ϕ = p
or ϕ = ¬p, where p ∈ AP . In both cases, Aϕ has one state q0, which is positive
and transient, acceptance condition 〈∅, ∅〉, and transition function δ defined as
follows. In the first case (ϕ = p), δ(q0, σ) = true if p ∈ σ, and δ(q0, σ) = false if
p /∈ σ. In the second case (ϕ = ¬p), δ(q0, σ) = true if p /∈ σ, and δ(q0, σ) = false
if p ∈ σ. Now, assume that ϕ is a non-trivial state subformula of ψ (induction
step). Let max(ϕ) = {ϕ1, . . . , ϕn}. By the induction hypothesis for each 1 ≤
i ≤ n, we can construct a two-way HAA Aϕi = 〈Σ, Qi, qi

0, δ
i, 〈Gi, Bi〉〉 of size

2O(|ϕi|) and depth O(|ϕi|) such that Lp(Aϕi) = Lp(ϕi). We assume that the
state sets of the two-way HAA Aϕ1 ,. . .,Aϕn are disjoint (otherwise, we rename
the states). We construct a two-way HAA Aϕ composed from Aϕ1 ,. . .,Aϕn as
follows. Since ϕ is in positive normal form, there are only the following cases:

– ϕ = ϕ1 ∧ ϕ2 (n = 2). We define Aϕ = 〈Σ, Q1 ∪ Q2 ∪ {q0}, q0, δ, 〈G1 ∪
G2, B1 ∪ B2〉〉, where q0 is a new (positive) state and δ is defined as follows.
For states in Q1 and Q2, δ agrees with δ1 and δ2, respectively (recall that Q1

and Q2 are disjoint). For the state q0 and for each σ ∈ Σ = 2AP , δ(q0, σ) =
δ1(q1

0 , σ) ∧ δ2(q2
0 , σ). Thus, from the initial node of the pointed input tree

and in the initial state q0, Aϕ sends all the copies sent (initially) by both
Aϕ1 and Aϕ2 . The singleton {q0} constitutes a transient component, with
the ordering {q0} > Q′ for all components Q′ of Aϕ1 and Aϕ2 . Evidently,
Lp(Aϕ) = Lp(Aϕ1) ∩ Lp(Aϕ2). Moreover, by the induction hypothesis, we
have that Lp(Aϕ) = Lp(ϕ), and Aϕ has size 2O(|ϕ|) and depth O(|ϕ|).

– ϕ = ϕ1 ∨ ϕ2. The construction of Aϕ is similar to the previous case with
the difference that now δ(q0, σ) = δ1(q1

0 , σ) ∨ δ2(q2
0 , σ).

– ϕ = Eξ. Let max(ϕ) = {ϕ1, . . . , ϕn} and let ÂP = {p1, . . . , pn} be a set of
fresh propositions. Moreover,let ξ̂ be the PLTL+ formula over ÂP obtained
from the path formula ξ by replacing each occurrence of ϕi in ϕ which is
maximal in ϕ with proposition pi. Since ξ̂ and ξ are in positive normal form
and ξ̂ does not contain subformulas of the form ¬pi for each pi ∈ ÂP , it
easily follows that for each pointed 2AP -labelled tree (〈T, V 〉, x),



198 L. Bozzelli

Claim 1: (〈T, V 〉, x) |= Eξ if and only if there is a ε-path of T π =
x0x1 . . . xk . . . with xk = x and an infinite word w over 2ÂP such that
(w, k, k) |= ξ̂ and for each i ≥ 0 and ph ∈ w(i), (〈T, V 〉, xi) |= ϕh.

Claim 1 suggests the following construction. First, we build a two-way
HAA AEξ̂ over Σ̂ = 2ÂP accepting Lp(Eξ̂) as follows. Let A′

ξ̂
=

〈Σ̂, Q, Q0, ρ, F−, F+〉 be the Büchi SNWA accepting the set of infinite pointed
words over Σ̂ satisfying ξ̂ (whose existence is guaranteed by Proposition 3).
Then, AEξ̂ = 〈Σ̂, Q̂, q̂0, δ̂, 〈F̂ , ∅〉〉 extends A′

ξ̂
to trees by simulating it along

a single path. Formally, Q̂ = {q̂0} ∪ (Q × {+, −}), F̂ = F+ × {+}, where
{q̂0}∪(Q×{+}) is the set of positive states and Q×{−} is the set of negative
states. The transition function δ̂ is defined as follows, where for each p ∈ Q,
bp denotes true if p ∈ F−, and bp denotes false otherwise:

• δ̂((q, +), σ̂) =
∨

p∈ρ(q,σ̂,+)(�, (p, +));
• δ̂((q, −), σ̂) =

∨
p∈ρ(q,σ̂,−)(↑, (p, −), bp);

• δ̂(q̂0, σ̂) =
∨

q0∈Q0

∨
q∈ρ(q0,σ̂,+)

∨
p∈ρ(q0,σ̂,−)[(�, (q, +)) ∧ (↑, (p, −), bp)].

Note that Q̂ constitutes a single existential component (in particular, AEξ̂

is an existential two-way HAA). Intuitively, starting from the initial node
x of the input tree, AEξ̂ guesses an ε-path π = x0x1 . . . xk . . . such that
xk = x and simulates an infinite run (r−, r+) of A′

ξ̂
over the pointed word

(V (x0)V (x1) . . . , k) by simulating r− by backward moves along the prefix
x0x1 . . . xk of π and by simulating r+ by existential moves along the suffix
xkxk+1 . . . of π. Thus, AEξ̂ accepts all the pointed Σ̂-labelled trees satisfying

Eξ̂. Now, we define Aϕ as follows. Intuitively, Aϕ simulates AEξ̂ and starts
additional copies of the HAA Aϕi . According to Claim 1 these copies guar-
antee that whenever AEξ̂ assumes that proposition pi labels the current node
along the guessed path, then formula ϕi holds at this node.

Formally, Aϕ = 〈Σ, Q̂∪
⋃n

i=1 Qi, q̂0, δ, 〈F̂ ∪
⋃n

i=1 Gi,
⋃n

i=1 Bi〉〉, where for
states in

⋃n
i=1 Qi, the transition function δ agrees with the corresponding

δi. For q ∈ Q̂ and σ ∈ Σ, δ(q, σ) =
∨

σ̂∈Σ̂

(
δ̂(q, σ̂) ∧

∧
pi∈σ̂ δi(qi

0, σ)
)
.

Each conjunction in δ(q, σ) corresponds to a label σ̂ ∈ Σ̂. Some copies
of Aϕ (those originated from δ̂(q, σ̂)) proceed as AEξ̂ when it reads σ̂. The
other copies guarantee that for each pi ∈ σ̂, ϕi holds at the current node.
The set Q̂ constitutes an existential component, with the ordering Q̂ > Q′

for each component Q′ of Aϕi (i = 1, . . . , n). Correctness of the construction
follows from Claim 1 and the induction hypothesis. Since the SNWA A′

ξ̂

has size 2O(|ξ̂|), Aϕi has size 2O(|ϕi|) and depth O(|ϕi|), and the size of Σ̂ is
2O(|max(ϕ)|), it holds that Aϕ has size 2O(|ϕ|) and depth O(|ϕ|).

– ϕ = Aξ. We have that Aξ ≡ ¬E¬ξ. Let Eξ′ be the positive normal form of
E¬ξ (note that |Eξ′| = O(|E¬ξ|)). By ind. hyp. we can construct a two-way
HAA AEξ′ over Σ of size 2O(|Eξ′|) = 2O(|ϕ|) and depth O(|Eξ′|) = O(|ϕ|)
such that Lp(AEξ′) is the complement of Lp(ϕ). By Proposition 2, the dual
of AEξ′ is a two-way HAA accepting Lp(ϕ) of size 2O(|ϕ|) and depth O(|ϕ|).



The Complexity of CTL∗ + Linear Past 199

Note that if ψ is a ECTL∗lp+ formula, then there is no state subformula of ψ of
the form Aξ, and the construction given for the cases ϕ = ϕ1 ∨ ϕ2, ϕ = ϕ1 ∧ ϕ2,
and ϕ = Eξ ensures that Aψ is a strictly existential two-way HAA. ��

Now, we can prove the main results of this paper.

Theorem 6 (Model-checking). Model-checking of CTL∗lp+ can be solved in
time polynomial in the size of the structure and doubly exponential in the size of
the formula. Moreover, for the existential and universal fragments of CTL∗lp+
and CTL∗lp, the problem is Expspace-complete and can be solved in space log-
arithmic in the size of the structure and exponential in the size of the formula.

Proof. The first part follows from Theorems 2 and 5. For the second part,
since ACTL∗lp+ (resp., ACTL∗lp) is the dual of ECTL∗lp+ (resp., ECTL∗lp) and
co-Expspace = Expspace, it suffices to prove the result for ECTL∗lp+ and
ECTL∗lp. The upper bounds follows from Theorems 2 and 5. The lower bound
for ECTL∗lp, (hence, the lower bound for ECTL∗lp+ follows) can be proved by a
reduction from the word problem for Expspace-bounded Turing machines. ��

Theorem 7 (Satisfiability). Satisfiability of CTL∗lp+ and CTL∗lp is
2Exptime-complete. Moreover, for the fragment ACTL∗lp, the problem is
Pspace-complete, and for the fragments ACTL∗lp+, ECTL∗lp, ECTL∗lp+, it is
Expspace-complete.

Proof. 2Exptime-completeness for satisfiability of CTL∗lp+ and CTL∗lp directly
follows from Theorems 3 and 5 and 2Exptime-hardness of satisfiability of stan-
dard CTL∗ [VS85] (note that CTL∗ can be trivially linearly translated into
CTL∗lp). For the logic ACTL∗lp, it suffices to observe that a ACTL∗lp formula ϕ
is satisfiable iff the PLTL formula [ϕ] is (initially) satisfiable, where [ϕ] is ob-
tained from ϕ by omitting all its (universal) path quantifiers. Thus, satisfiability
of ACTL∗lp is linearly reducible to satisfiability of PLTL. Since the converse
also holds, and satisfiability of PLTL is PSPACE-complete [Var88], the result
for ACTL∗lp follows. For the fragments ACTL∗lp+, ECTL∗lp, ECTL∗lp+, the
lower bounds are proved by a reduction from the word problem for Expspace-
bounded Turing machines. For the upper bounds, membership in Expspace for
ECTL∗lp and ECTL∗lp+ follows from Theorems 4 and 5. Finally, it remains to
prove membership in Expspace for the universal fragment ACTL∗lp+ Ḟirst, we
extend the linear temporal logic PLTL+ by a new unary modality R (which
reads as ‘reset’), whose semantics is defined as follows: for a given word w,
(w, i, k) |= Rξ iff (w, i, i) |= ξ. Intuitively, the modality R emulates the ability
of the path quantifiers of CTL∗lp+ to ‘reset’ the present. We denote by RLTL
the extension of PLTL+ with R. Fix an ACTL∗lp+ formula ϕ and let [ϕ] be the
RLTL formula obtained from ϕ by replacing each occurrence of the path quan-
tifier A with R. Evidently, ϕ is satisfiable iff [ϕ] is satisfiable. Thus, it suffices to
show that satisfiability of RLTL is in Expspace. This is proved by a transla-
tion, with a single exponential blow-up, of RLTL into Büchi two-way alternating
word automata (with ε-moves). By [Var98], these automata can be converted,



200 L. Bozzelli

with a single exponential blow-up, into parity nondeterministic word automata
whose nonemptiness problem is in NLogspace. Hence, the result follows. ��

References

[CE81] Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization
skeletons using branching time temporal logic. In: Kozen, D. (ed.) Logic
of Programs 1981. LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982)

[EH86] Emerson, E.A., Halpern, J.Y.: Sometimes and not never revisited: On
branching versus linear time. Journal of the ACM 33(1), 151–178 (1986)

[HT87] Hafer, T., Thomas, W.: Computation tree logic CTL* and path quantifiers
in the monadic theory of the binary tree. In: Ottmann, T. (ed.) ICALP
1987. LNCS, vol. 267, pp. 269–279. Springer, Heidelberg (1987)

[KP95] Kupferman, O., Pnueli, A.: Once and For All. In: Proc. 10th LICS, pp.
25–35. IEEE Comp. Soc. Press, Los Alamitos (1995)

[KV98] Kupferman, O., Vardi, M.Y.: Weak alternating automata and tree au-
tomata emptiness. In: Proc. 30th STOC, pp. 224–233. ACM, New York
(1998)

[KV00] Kupferman, O., Vardi, M.Y.: An automata-theoretic approach to modular
model checking. ACM Trans. Program. Lang. Syst. 22(1), 87–128 (2000)

[KV06] Kupferman, O., Vardi, M.Y.: Memoryful branching-time logic. In: Proc.
21th LICS, pp. 265–274. IEEE Comp. Soc. Press, Los Alamitos (2006)

[KVW00] Kupferman, O., Vardi, M.Y., Wolper, P.: An Automata-Theoretic Ap-
proach to Branching-Time Model Checking. J. ACM 47(2), 312–360 (2000)

[LS95] Laroussinie, F., Schnoebelen, P.: A hierarchy of temporal logics with past.
Theoretical Computer Science 148(2), 303–324 (1995)

[LS00] Laroussinie, F., Schnoebelen, P.: Specification in CTL+past for verifica-
tion in CTL. Information and Computation 156(1–2), 236–263 (2000)

[MS87] Muller, D.E., Schupp, P.E.: Alternating Automata on Infinite Trees. The-
oretical Computer Science 54, 267–276 (1987)

[Pnu77] Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th
IEEE Symposium on Foundations of Computer Science, pp. 46–57 (1977)

[PV03] Pistore, M., Vardi, M.Y.: The planning spectrum - one, two, three, infinity.
In: Proc. 18th LICS, pp. 234–243. IEEE Comp. Soc. Press, Los Alamitos
(2003)

[Var88] Vardi, M.Y.: A temporal fixpoint calculus. In: Proc. 15th Annual POPL,
pp. 250–259. ACM, New York (1988)

[Var98] Vardi, M.Y.: Reasoning about the past with two-way automata. In:
Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443,
pp. 628–641. Springer, Heidelberg (1998)

[VS85] Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal
logics of programs. In: Proc. 17th STOC, pp. 240–251 (1985)

[VW94] Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Informa-
tion and Computation 115(1), 1–37 (1994)

[Wil99] Wilke, T.: CTL+ is exponentially more succinct than CTL. In: Pandu
Rangan, C., Raman, V., Ramanujam, R. (eds.) FST TCS 1999. LNCS,
vol. 1738, pp. 110–121. Springer, Heidelberg (1999)

[Zie98] Zielonka, W.: Infinite games on finitely coloured graphs with applications
to automata on infinite trees. Theor. Comput. Sci. 200(1–2), 135–183
(1998)



Footprints in Local Reasoning

Mohammad Raza and Philippa Gardner

Department of Computing,
Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

{mraza,pg}@doc.ic.ac.uk

Abstract. Local reasoning about programs exploits the natural local behaviour
common in programs by focussing on the footprint - that part of the resource
accessed by the program. We address the problem of formally characterising and
analysing the footprint notion for abstract local functions introduced by Calcagno,
O’Hearn and Yang. With our definition, we prove that the footprints are the only
essential elements required for a complete specification of a local function. We
also show that, for well-founded models (which is usually the case in practice),
a smallest specification always exists that only includes the footprints, thus for-
malising the notion of small axioms in local reasoning. We also present results
for the non-well-founded case, and introduce the natural class of one-step local
functions for which the footprints are the smallest safe states.

Keywords: Footprints, Hoare Logic, Local Reasoning, Separation Logic.

1 Introduction

Local reasoning about programs focusses on the collection of resources directly acted
upon by the program. It has recently been introduced and used to substantial effect in
local Hoare reasoning about memory update. Researchers previously used Hoare rea-
soning based on First-order Logic to specify how programs interacted with the whole
memory. O’Hearn, Reynolds and Yang instead introduced local Hoare reasoning based
on Separation Logic [13,10]. The idea is to reason only about the local parts of the
memory—the footprints—that are directly accessed by a program. Intuitively, the foot-
prints form the pre-conditions of the small axioms, which provide the smallest complete
specification of the program. All the true Hoare triples are derivable from the small ax-
ioms and the general Hoare rules. In particular, the frame rule extends the reasoning to
properties about the rest of the heap which has not been changed by the command.

O’Hearn, Reynolds and Yang originally introduced Separation Logic to solve the
problem of how to reason about the mutation of data structures in memory. They have
applied their reasoning to several memory models, including heaps based on pointer
arithmetic [13], heaps with permissions [4], and the combination of heaps with variable
stacks which views variables as resource [5,15]. In each case, the basic soundness and
completeness results for local Hoare reasoning are essentially the same. For this rea-
son, Calcagno, O’Hearn and Yang [9] recently introduced abstract local functions over
abstract resource models (separation algebras), generalising their specific examples of
local imperative commands for manipulating memory models. They develop Abstract

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 201–215, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



202 M. Raza and P. Gardner

Separation Logic to provide local Hoare reasoning about such local functions, and give
general soundness and completeness results.

We believe that the general concept of a local function is a fundamental step to-
wards establishing the theoretical foundations of local reasoning, and Abstract Sepa-
ration Logic is an important generalisation of the local Hoare reasoning systems now
widely studied in the literature. However, Calcagno, O’Hearn and Yang do not char-
acterise the footprints and small axioms in this general theory, which is a significant
omission. O’Hearn, Reynolds and Yang, in one of their first papers on the subject [13],
state the local reasoning viewpoint as:

‘to understand how a program works, it should be possible for reasoning and
specification to be confined to the cells that the program actually accesses. The
value of any other cell will automatically remain unchanged.’

A complete understanding of the foundations of local Hoare reasoning therefore re-
quires a formal characterisation of the footprint notion. O’Hearn tried to formalise
footprints in his work on Separation Logic (personal communication with O’Hearn).
His intuition was that the footprints should be the smallest states on which the program
is safe, and the small axioms arising from these footprints should give rise to a complete
specification using the general rules for local Hoare reasoning. However, Yang discov-
ered this notion of footprint does not work, since it does not always yield complete
specifications. In this paper, we resolve this problem, providing a definition of footprint
which does give rise to complete specifications.

Consider the local program1

AD ::= x := new(); dispose(x)

This allocate-deallocate program allocates a new cell, stores its address value in the
stack variable x, and then deallocates the cell. It is local because all its atomic con-
stituents are local. This tiny example captures the essence of a common type of pro-
gram; there are many programs which, for example, create a list, work on the list, and
then destroy the list.

The smallest heap on which the AD program is safe is the empty heap emp. The
specification using this pre-condition is:

{emp} AD {emp} (1)

We can extend our reasoning to larger heaps by applying the frame rule: for example,
extending to a one-cell heap with arbitrary address l and value v gives

{l �→ v} AD {l �→ v} (2)

However, axiom (1) does not give the complete specification of the AD program. In fact,
it captures very little of the spirit of allocation followed by de-allocation. For example,
the following triple is also true:

{l �→ v} AD {l→ v ∧ x �= l} (3)

1 Yang’s example was the ‘allocate-deallocate-test’ program ADT ::= ‘x := new();dispose(x); if
(x=1) then z:=0 else z:=1;x=0’. Our AD program provides a more standard example of
program behaviour.



Footprints in Local Reasoning 203

This triple (3) is true because, if l is already allocated, then the new address cannot be
l and hence x cannot be l. It cannot be derived from (1). However, the combination of
axiom (1) and axiom (3) for arbitrary one-cell heaps does provide the smallest complete
specification. This example illustrates that O’Hearn’s intuitive view of the footprints as
the minimal safe states just does not work for common imperative programs.

In this paper, we introduce the definition of the footprint of a local function. For
our AD example, our definition identifies emp and the arbitrary one-cell heaps l �→ v
as footprints, as expected. We prove the general result that, for any local function, the
footprints are the only elements which are essential to specify completely the behaviour
of this function. For well-founded resource, which is almost always the case in practice,
we show that the footprints are also always sufficient: that is, a complete specification
always exists that only uses the footprints. We also explore results for non-well-founded
resource: for models without negativity (no inverse elements except the identity), such
as heaps with permissions, either the footprints are sufficient (such as for the write com-
mand in the permissions model) or there is no smallest complete specification (such as
for the read command in the permissions model); for models with negativity, we show
that there can exist smallest complete specifications based on elements which are not
essential and hence not footprints. Finally, we identify a natural class of local functions,
which we call one-step local functions, which satisfy O’Hearn’s original intuition re-
garding footprints. For well-founded resource, the one-step local functions are precisely
the local functions whose footprints are the smallest safe states.

2 Background

This is a background section that describes the separation algebras, local functions and
Hoare reasoning introduced in [9]. Further details and motivation can be found in [9].

Definition 1 (Separation Algebra). A separation algebra is a cancellative, partial
commutative monoid (Σ, •, u). Σ is a set, and • is a partial binary operator with unit
u which satisfies the familiar axioms of associativity, commutativity and unit, using
a partial equality on Σ where either both sides are defined and equal, or both are
undefined. It also satisfies the cancellative property stating that, for each σ ∈ Σ, the
partial function σ • (·) : Σ �→ Σ is injective. Separateness (#) and substate (�)
relations are given by σ0#σ1 iff σ0 • σ1 is defined and σ0 � σ2 iff ∃σ1. σ2 = σ0 • σ1.

Examples of separation algebras include multisets under union (with unit ∅), the natural
numbers with addition (with unit 0), heaps as finite partial functions from locations to
values ([9] and example 1), heaps with permissions [9,4], and the combination of heaps
and variable stacks enabling us to model programs with variables as local functions
([9], [15] and example 1). These example all have an intuition of resource, with σ1 •σ2

intuitively giving more resource than just σ1 and σ2 for σ1, σ2 �= u. However, there
are also examples that do not conform to this resource intuition, such as {a, u} with
a • a = u. We shall overload notation, using Σ to denote (Σ, •, u).

Lemma 1 (Subtraction). For σ1, σ2 ∈ Σ, if σ1 � σ2 then there exists a unique ele-
ment σ2 − σ1 ∈ Σ such that (σ2 − σ1) • σ1 = σ2.



204 M. Raza and P. Gardner

Following [9], we model commands on separation algebras as functions of the form
f : Σ → P (Σ)�, where 
 is an extra top element added to the powerset. The range
P (Σ)� is used to model non-determinism and faulting: elements can map either to
a set of elements (to allow for non-determinism) or 
 (which represents faulting and
returning an error). Mapping to the empty set represents divergence (non-termination).

Definition 2. Define the set P (Σ)� = P (Σ) ∪ {
} with the standard subset relation
extended with a new greatest element
: that is, p � 
 for all p ∈ P (Σ)�. It is a total
commutative monoid with {u} as the unit and a binary operator ∗ given by:

p ∗ q = {σ0 • σ1 | σ0#σ1 ∧ σ0 ∈ p ∧ σ1 ∈ q} if p, q ∈ P (Σ)
= 
 otherwise

For functions f : Σ → P (Σ)�, f � g iff f(σ) � g(σ) for all σ ∈ Σ.

Intuitively, we think of a command acting on resource to be local if whenever the com-
mand executes safely on any resource element, then any more resource that may be
added will not be affected by the command. This intuition was first formalised in [19]
(for the RAM model) with the following constraints:

– Safety monotonicity: if the command is safe on some resource element, then it does
not fault when more resource is added.

– Frame property: if the command is safe on some resource element, then any addi-
tional resource will remain unchanged after execution if the execution terminates.

In the abstract setting of [9] which we use in this paper, these two restrictions were
amalgamated into the following succinct definition of a local function.

Definition 3 (Local Function). A local function on Σ is a total function f : Σ →
P (Σ)� which satisfies the locality condition:

σ#σ′ implies f(σ′ • σ) � {σ′} ∗ f(σ)

f faults on σ when it is not sufficient resource for safe execution (f(σ) = 
). Adding
more resource may make the execution safe (f(σ′•σ) � f(σ) = 
). Safety monotonic-
ity follows since if f is safe on σ (f(σ) � 
) then f(σ′ • σ) is also safe (f(σ′ • σ) �
{σ′} ∗ f(σ) � 
). The frame property follows by the fact that σ′ is preserved by f .

Example 1 (Local functions on separation algebras).

1. Heap dispose command. We model heaps by the separation algebra (H, •, uH),
where H = L ⇀fin V al are finite partial functions from a set of locations to a
set of values, the partial operator • is the union of partial functions with disjoint
domains, and the unit uH is the empty function. For h ∈ H , let dom(h) be the
domain of h. We write l �→ v for the partial function with domain {l} that maps
l to v. For h1, h2 ∈ H , if h2 � h1 then h1 − h2 = h1 |dom(h1)−dom(h2), and is
undefined otherwise. For h ∈ H , the dispose[l] command that deletes the cell at
location l in h is given by

dispose[l](h) =
{ {h− (l �→v)} h � (l �→v) for some v

 otherwise



Footprints in Local Reasoning 205

The function is local: if h �� (l �→ v) then dispose[l](h) = 
, and dispose[l](h′ •
h) � 
. Otherwise, dispose[l](h′ • h) = {(h′ • h)− (l �→v)} � {h′} ∗ {h− (l �→
v)} = {h′} ∗ dispose[l](h).

2. AD command. The AD command x := new(); dispose(x) described in the intro-
duction can be modelled as a local function on a separation algebra that includes
the heap and the variable stack. We use the algebra H × S with H as before and
S = V ar ⇀fin V al. The • operator in this case combines states with disjoint heap
and stack domains, and is undefined otherwise. The unit is (uH , uS), where uS is
the empty stack. Although this approach is limited to disjoint reference to stack
variables, this constraint can be lifted by enriching the separation algebra with per-
missions [4]. However, this added complexity can be avoided for the discussion in
this paper. For a state h ∈ H × S, let loc(h) denote the set of heap locations in h.

AD(h) =
{ {h′ • (uH , x �→w) | w �∈ loc(h′)} h = h′ • (uH , x �→v) for some v

 otherwise

The function is local: if h �= h′ • (uH , x �→v) for some h′ and v, thenAD(h) = 
,
and for any h′′,AD(h′′ •h) � 
. Otherwise, h = h′ •(uH , x �→v) for some h′ and
v. Then for any h′′, AD(h′′ • h) = {h′′ • h′ • (uH , x �→w) | w �∈ loc(h′′ • h′)} �
{h′′} ∗ {h′ • (uH , x �→w) | w �∈ loc(h′)} = {h′′} ∗AD(h).

3. Operations on Integers. We consider the separation algebra of integers under ad-
dition with identity 0. It can be seen that any ‘adding’ function f(x) = {x + c}
that adds a constant c is local, while a function that multiplies by a constant c,
f(x) = {cx}, is non-local.

We now present the local Hoare reasoning framework for local functions on separation
algebras. We treat predicates simply as subsets of the separation algebra.

Definition 4. A predicate p over Σ is an element of the powerset P (Σ).

Note that the top element 
 is not a predicate and that the ∗ operator, although defined
on P (Σ)� × P (Σ)� → P (Σ)�, acts as a binary connective on predicates. We have
the distributive law for union: (

⊔
X) ∗ p =

⊔{x ∗ p | x ∈ X} where X ⊆ P (Σ). The
same is not true for intersection in general, but does hold for precise predicates.

Definition 5 (Precise Predicates). A predicate p ∈ P (Σ) is precise iff, for every σ ∈
Σ, there exists at most one σp ∈ p such that σp � σ.

{l �→ v | v ∈ V al} for some l is precise, while {l �→ v | l ∈ Loc} for some v is not.
Also, any singleton predicate {σ} is precise.

Lemma 2 (Precision Characterization). A predicate p is precise iff, for all X ⊆
P (Σ), (

�
X) ∗ p =

�{x ∗ p | x ∈ X}.
In the introduction we discussed the intuition of how the footprints are expected to cor-
respond to the smallest safe states. We will return to this point in section 6, employing
the notion of a saturated predicate, which is one that is always falsified on bigger states.
Saturated can also be called ‘anti-intuitionistic’, because an intuitionistic predicate is
one that is never falsified on bigger states. Every precise predicate is also saturated.



206 M. Raza and P. Gardner

Definition 6 (Saturated predicate). A predicate p ∈ P (Σ) is saturated if for every
σ ∈ p, there is no σ′ in p such that σ ≺ σ′.
Our Hoare reasoning system is a slight adaptation of Abstract Separation Logic [9], the
difference being that we emphasise the notion of a specification as a tuple of pre- and
post- conditions, rather than the usual Hoare triples that include the function. A triple
is then equivalent to saying that a function f satisfies a tuple (p, q), written f |= (p, q).
This approach is very similar to the notion of the specification statement (a Hoare triple
with a ‘hole’) introduced in [11], which is used in refinement calculi, and was also used
to prove completeness of a local reasoning system in [19].

Definition 7 (Specification). Let Σ be a separation algebra. A statement on Σ is a
tuple (p, q), where p, q ∈ P (Σ) are predicates representing pre- and post- conditions.
A specification φ on Σ is a set of statements. We let ΦΣ = P (P (Σ) × P (Σ)) be
the set of all specifications on Σ. We shall exclude the subscript when it is clear from
the context. The domain of a specification is defined as D(φ) =

⊔{p | (p, q) ∈ φ}.
Domain equivalence is defined as φ ∼=D ψ iff D(φ) = D(ψ).

Thus the domain is the union of the preconditions of all the statements in the specifica-
tion. It is one possible measure of size: how much of Σ the specification is referring to.
We also adapt the notions of precise and saturated predicates to specifications.

Definition 8. A specification is saturated iff its domain is saturated. It is precise iff its
domain is precise.

Definition 9 (Satisfaction). A local function f satisfies a statement (p, q), written f |=
(p, q), iff, for all σ ∈ p, f(σ) � q. f satisfies a specification φ ∈ Φ, written f |= φ, iff
f |= (p, q) for all (p, q) ∈ φ.

Definition 10 (Semantic consequence). Let p, q, r, s ∈ P (Σ) and φ, ψ ∈ Φ. Each
judgement (p, q) |= (r, s), φ |= (p, q), (p, q) |= φ, and φ |= ψ holds iff all local
functions that satisfy the left hand side also satisfy the right hand side.

Proposition 1 (Order Characterization). f � g iff, for all p, q ∈ P (Σ), g |= (p, q)
implies f |= (p, q).

For every specification φ, there is a ‘best’ local function satisfying φ (lemma 3). This is
of the same nature as the best local action of [9], except that we generalise to specifica-
tions rather than statements (single pre- and post-condition pairs).

Definition 11 (Best local action). For a specification φ ∈ Φ, the best local action of
φ, written bla[φ], is the function of type Σ → P (Σ)� defined by

bla [φ](σ) =
�

σ′�σ,σ′∈p,(p,q)∈φ
{σ − σ′} ∗ q

Lemma 3. Let φ ∈ Φ. The following hold:

– bla[φ] is local
– bla[φ] |= φ
– if f is local and f |= φ then f � bla[φ].



Footprints in Local Reasoning 207

(p, q)

(p ∗ r, q ∗ r)

p′ � p (p, q) q � q′

(p′, q′)

(pi, qi), all i ∈ I
(⊔

i∈I
pi,

⊔
i∈I

qi

)
(pi, qi), all i ∈ I, I �= ∅

(�
i∈I

pi,
�

i∈I
qi

)

Frame Consequence Union Intersection

Fig. 1. Inference Rules for local Hoare reasoning

Lemma 4. For φ ∈ Φ and p, q ∈ P (Σ), bla[φ] |= (p, q)⇔ φ |= (p, q).

The inference rules of the proof system are given in figure 1. The system is sound and
complete with respect to the satisfaction relation; the proof uses lemmas 3 and 4.

Definition 12 (Proof-theoretic consequence). For statements p, q, r, s and specifica-
tions φ, ψ, each of the judgements (p, q) � (r, s), φ � (p, q), (p, q) � φ, and φ � ψ
holds iff the right-hand side is derivable from the left-hand side by the rules in figure 1.

Theorem 1 (Soundness and Completeness). φ |= (p, q)⇔ φ � (p, q).

3 Properties of Specifications

We discuss certain properties of specifications as a prerequisite for our main discussion
on footprints in Section 4. We introduce the notion of a complete specification for a
local function: a specification from which all properties that hold for the function can
be derived in the proof system. However, a function may have many complete speci-
fications, so we introduce a canonical form for specifications. We show that of all the
complete specifications of a local function, there exists a unique canonical complete
specification for every domain. As discussed in the introduction, an important notion
of local reasoning is the small specification which completely describes the behaviour
of a local function by mentioning only the footprint. Thus, as a prerequisite to inves-
tigating their existence, we formalise small specifications as complete specifications
with the smallest possible domain. Similarly, we define big specifications as complete
specifications with the biggest domain.

Definition 13 (Complete Specification). A specification φ ∈ Φ is a complete specifi-
cation for f , written complete(φ, f), iff, for all p, q ∈ P (Σ),f |= (p, q)⇔ φ |= (p, q).
Let Φcomp(f) be the set of all complete specifications of f.

φ is complete for f whenever the tuples that hold for f are exactly the tuples that follow
fromφ. This also means that any two complete specficationsφ andψ for a local function
are semantically equivalent, that is, φ �� ψ. The following proposition illustrates how
the notions of best local action and complete specification are closely related.

Proposition 2. For all φ ∈ Φ and local functions f , complete(φ, f)⇔ f = bla [φ].

Any specification is therefore only complete for a unique local function, which is its
best local action. However, a local function may have lots of complete specifications.
We therefore introduce a canonical form for specifications.



208 M. Raza and P. Gardner

Definition 14 (Canonicalisation). The canonicalisation of a specification φ is defined
as φcan = {({σ}, bla[φ](σ)) | σ ∈ D(φ)}. A specification is in canonical form if it
is equal to its canonicalisation. Let Φcan(f) denote the set of all canonical complete
specifications of f.

Proposition 3. For any specification φ, we have φ �� φcan.

Thus, the canonicalisation of a specification is logically equivalent to the specifica-
tion. The following corollary shows that all complete specifications that have the same
domain have a unique canonical form, and specifications of different domains have dif-
ferent canonical forms.

Corollary 1. Φcan(f) is isomorphic to the quotient set Φcomp(f)/ ∼=D, under the
equality-preserving isomorphism that maps [φ]∼=D

to φcan.

Definition 15 (Small and Big specifications). φ is a small specification for f iff φ ∈
Φcomp(f) and there is no ψ ∈ Φcomp(f) such that D(ψ) � D(φ). A big specification is
defined similarly.

Small and big specifications are thus the specifications with the smallest and biggest
domains respectively. The question is if/when small and big specifications exist. The
following result shows that a canonical big specification exists for every local function.

Proposition 4 (Big Specification). For any local function f , the canonical big specifi-
cation for f is given by φbig(f) = {({σ}, f(σ)) | f(σ) � 
}.
Small specifications are used in local reasoning to completely specify the behaviour of
an update command by only mentioning the behaviour of the command on the part of
the resource that is affected by the command [13,4,7]. The question of the existence of
small specifications is therefore strongly related to the concept of footprints. Finding a
small specification is about finding the complete specification with the smallest possible
domain, and therefore enquiring about which elements of Σ are essential and sufficient
for a complete specification. This requires a formal characterisation of the footprint
notion, which we shall now present.

4 Footprints

In the introduction we discussed how the AD program demonstrates that the footprints
of a local function do not correspond simply to the smallest safe states, as these states
alone do not always yield complete specifications. In this section we introduce the def-
inition of footprint that does yield complete specifications. In order to understand what
the footprint of a local function should be, we begin by analysing the definition of local-
ity. Recall that the locality definition 3 says that the action on a certain state σ1 imposes
a limit on the action on a bigger state σ2 • σ1. This limit is {σ2} ∗ f(σ1), that is, we
have f(σ2 • σ1) � {σ2} ∗ f(σ1). A reformulation of this definition is that for any state
σ, the action on that state has to be within the limit imposed by every state σ′ that is
smaller than it, and we therefore have



Footprints in Local Reasoning 209

f(σ) �
�

σ′≺σ
{σ − σ′} ∗ f(σ′)

We define this overall constraint imposed on σ by all the smaller states as the local limit
of f on σ, and show that the locality of a function is equivalent to it satisfying the local
limit constraint.

Definition 16 (Local limit). For a local function f on Σ, and σ ∈ Σ, the local limit
of f on σ is defined as

Lf (σ) =
�

σ′≺σ
{σ − σ′} ∗ f(σ′)

Proposition 5. f is local ⇔ f(σ) � Lf (σ) for all σ ∈ Σ
With this intuition that the locality of f is determined by the local limit restricting the
action of f , we define the footprints as those elements which further reduce this limit:
σ is a footprint of f if and only if f(σ) � Lf (σ). If the result of the function is equal
to the local limit on a certain element, then this can be determined just by the fact that
f is a local function. If the result is strictly smaller, then this behaviour is additional
to f being local. The intuition is that this characteristic property of the function would
have to be explicitly stated in a complete specification of the function, which would
make footprints the essential elements required to describe this function’s behaviour.
We formally prove this central result after stating the definition and illustrating it with
examples.

Definition 17 (Footprint). For a local function f and σ ∈ Σ, σ is a footprint of f ,
written Ff (σ), iff f(σ) � Lf(σ). We denote the set of footprints of f by F (f).

Note that an element σ is therefore not a footprint iff the action of f on σ is at the local
limit, that is f(σ) = Lf (σ). With this definition of footprint, the smallest elements on
which f is safe are always footprints. This is because f faults on everything smaller, and
thus the local limit is 
. However, these elements are not always the only footprints.
An example is the AD command discussed in the introduction. The empty heap is a
footprint as it is the smallest safe heap, but the heap cell l �→v is also a footprint.

Example 2 (Dispose command). The footprints of the dispose[l] command are the cells
at location l. We check this by considering the following cases

1. The empty heap, uH , is not a footprint since Ldispose[l](uH)=
=dispose[l](uH)
2. Every cell l �→v for some v is a footprint

Ldispose[l](l �→v) = {l �→v} ∗ dispose[l](uH) = {l �→v} ∗ 
 = 

dispose[l](l �→v) = {uH} � Ldispose[l](l �→v)

3. Every state σ such that σ � (l �→v) for some v is not a footprint

Ldispose[l](σ) � {σ−(l �→v)}∗dispose[l](l �→v) = {σ−(l �→v)} = dispose[l](σ)

By proposition 5, we have Ldispose[l](σ) = dispose[l](σ). The intuition is that σ
does not characterise any ‘new’ behaviour of the function: its action on σ is just a
consequence of its action on the cells at location l and the locality property of the
function.



210 M. Raza and P. Gardner

4. Every state σ such that σ �� (l �→v) for some v is not a footprint

Ldispose[l](σ) � {σ} ∗ dispose[l](uH) = {σ} ∗ 
 = 
 = dispose[l](σ)

Again by proposition 5, Ldispose[l](σ) = dispose[l](σ).

Example 3 (AD command). The AD (Allocate-Deallocate) command was defined in
example 1. We have the following cases for σ.

1. σ �� (uH , x �→v1) for some v1 is not a footprint, since LAD(σ) = 
 = AD(σ).
2. σ = (uH , x �→v1) for some v1 is a footprint since LAD(σ) = 
 (by case (1)) and
AD(σ) = {(uH , x �→w) | w ∈ L} � LAD(σ).

3. σ = (l �→v1, x �→v2) for some l, v1, v2 is a footprint.

LAD(σ) = {(l �→v1, uS)} ∗AD((uH , x �→v2))
(AD faults on all other elements strictly smaller than σ)

= {(l �→v1, uS)} ∗ {(uH , x �→w) | w ∈ Loc}
= {(l �→v1, x �→w) | w ∈ Loc}

AD(σ) = {(l �→v1, x �→w) | w ∈ Loc, w �= l} � LAD(σ)

4. σ = (h, x �→v1) for some v1, and where |loc(h)| > 1, is not a footprint.

LAD(σ) �
�

(l�→v)≺h
{(h− (l �→v), uS)} ∗AD((l �→v, x �→v1))

= {(h, x �→w) | w �∈ loc(h)} = AD(σ)

By proposition 5 we get LAD(σ) = AD(σ).
5. σ = (h, s • (x �→v1)) for some v1 and s �= uS, is not a footprint.

LAD(σ) � {(uH , s)} ∗AD((h, x �→v1)) = AD(σ)

By proposition 5 we get LAD(σ) = AD(σ).

Our footprint definition therefore works properly for these specific examples. Now we
give the formal general result which captures the underlying intuition of local reasoning
that the footprints of a local function are the only essential elements for a complete
specification of the function.

Theorem 2 (Essentiality). The footprints of a local function are the essential domain
elements for any complete specification of that function, that is,

Ff (σ) ⇔ ∀φ ∈ Φcomp(f). σ ∈ D(φ).

5 Sufficiency and Small Specifications

We know that the footprints are the only elements that are essential for a complete spec-
ification of a local function in the sense that every complete specification must include



Footprints in Local Reasoning 211

them. Now we ask when a set of elements is sufficient for a complete specification of a
local function, in the sense that there exists a complete specification of the function that
only includes these elements. In particular, we wish to know if the footprints alone are
sufficient.

Definition 18 (Local limit imposed by a set). For a subset A of Σ, the local limit
imposed by A on the action of f on σ is defined by

LA,f(σ) =
�

σ′�σ,σ′∈A
{σ − σ′} ∗ f(σ′)

Sometimes, the local limit imposed byA is enough to determine the complete behaviour
of f . In this case, we call A a basis for f .

Definition 19 (Basis). A � Σ is a basis for f , written basis(A, f), iff LA,f = f .

This means that, when given the action of f on elements in A alone, we can determine
the action of f on any element in Σ by just using the locality property of f . Every
local function has at least one basis, namely the trivial basis Σ itself. We next show the
correspondence between the bases and complete specifications of a local function.

Lemma 5. Let φA,f ={({σ}, f(σ)} | σ∈A, f(σ)�
}. Then we have basis(A, f)⇔
complete(φA,f , f).

For every canonical complete specification φ ∈ Φcan(f), we have φ = φD(φ),f . By the
previous lemma it follows that D(φ) forms a basis for f . The lemma therefore shows
that every basis determines a complete canonical specification, and vice versa. This cor-
respondence also carries over to all complete specifications for f by the fact that every
domain-equivalent class of complete specifications for f is represented by the canon-
ical complete specification with that domain (corollary 1). It is a simple consequence
of the Essentiality theorem (2) that the footprints are present in every basis for a local
function.

Lemma 6. The footprints of f are included in every basis of f.

The question of sufficiency is about how small the basis can get. Given a local func-
tion, we wish to know if it has a smallest basis. We know that every basis contains the
footprints, but we would also like to know whether the footprints alone form a basis.
This would mean that the function would have a complete specification that just men-
tions the footprints, so it would be a smallest complete specification. We find that for
well-founded resource models, this is indeed the case.

Theorem 3 (Sufficiency I). If a separation algebraΣ is well-founded under the � re-
lation, then the footprints of any local function form a basis for it, that is, f = LF (f),f .

In section 3, the notions of big and small specifications were introduced, and the exis-
tence of a big specification was shown. We are now in a position to show the existence
of the small specification for well-founded resource. If Σ is well-founded, then every
local function has a small specification whose domain is the footprints of the function.

Corollary 2 (Small specification). For well-founded separation algebras, every local
function has a small specification given by φF (f),f .



212 M. Raza and P. Gardner

Thus for well-founded resource, the footprints are always essential and sufficient, and
specifications need not consider any other elements. In practice, small specifications
may not always be in canonical form even though they always have the same domain as
the canonical form. For example, the heap dispose command can have the specification
{({l �→v | v ∈ V al}, {uH})} rather than {({l �→v}, {uH}) | v ∈ V al}. Well-founded
resource is usually the case in practice. One notable exception is the fractional per-
missions model [4] in which the resource includes permissions that can be indefinitely
divided. In analysing the non-well-founded case, we found it important to distinguish
between models that do or do not have negativity.

Definition 20 (Negativity). A separation algebra Σ has negativity iff there exists a
non-unit element σ ∈ Σ that has an inverse, that is, σ �= u and σ • σ′ = u for some
σ′ ∈ Σ. We say that Σ is non-negative if no such element exists.

If a model has negativity then it is non-well-founded, because for elements σ and σ′

such that σ • σ′ = u, the set {σ, u} forms an infinite descending chain (there is no
least element). All well-founded models are therefore non-negative. In the general non-
negative case, we find that either the footprints form a basis, or there is no smallest
basis.

Theorem 4 (Sufficiceny II). If Σ is non-negative then, for any local f , either the foot-
prints form a smallest basis or there is no smallest basis for f.

Corollary 3 (Small Specification). If Σ is non-negative, then every local function ei-
ther has a small specification given by φF (f),f or there is no smallest complete specifi-
cation for that function.

Example 4 (Permissions). The fractional permissions model [4] is non-well-founded
and non-negative. It can be represented by the separation algebra HPerm = L ⇀fin

V al × P where L and V al are as in example 1, and P is the interval (0, 1] of rational
numbers. Elements of P represent ‘permissions’ to access a heap cell. A permission
of 1 for a cell means both read and write access, while any permission less than 1
is read-only access. • joins disjoint heaps and adds the permissions together for any
cells that are present in both heaps only if the resulting permission for each heap cell
does not exceed 1, and the operation is undefined otherwise. In this case, the write
function that updates the value at a location requires a permission of at least 1 and
faults on any smaller permission. It therefore has a small specification with precondition
being the cell with permission 1. The read function, however, can execute safely on
any positive permission, no matter how small. Thus this function can be completely
specified with a specification that has a precondition given by the cell with permission
z, for all 0 < z ≤ 1. However, this is not a smallest specification, as a smaller one can
be given by further restricting 0 < z ≤ 0.5. We can therefore always find a smaller
specification by reducing the value of z but keeping it positive.

For resource with negativity, we find that it is possible to have small specifications that
include non-essential elements (which by theorem 2 are not footprints). These elements
are non-essential in the sense that complete specifications exist that do not include them,
but there is no complete specification that includes only essential elements.



Footprints in Local Reasoning 213

Example 5 (Integers). An example of a model with negativity is the separation algebra
of integers (Z,+, 0). In this case there can be local functions which can have small
specifications that contain non-footprints. Let f : Z → P (Z)� be defined as f(n) =
{n+ c} for some constant c, as in example 1. f is local, but it has no footprints. This is
because for any n, f(n) = 1 + f(n− 1), and so n is not a footprint of f . However, f
does have small specifications, for example, {({0}, {c})}, {({5}, {5 + c})}, or indeed
{({n}, {n + c})} for any n ∈ Z. So although every element is non-essential, some
element is required to give a complete specification.

6 One-Step Local Functions

In the introduction, we described a common, but mistaken, intuition that the footprint
should correspond to the minimal resource on which the function is safe, and that the
behaviour of the function on larger states should be derivable from these minimal states.
The intuition fails due to the subtle nature of the locality condition as shown by the AD
example. However, based on our investigation of footprints, we are now in a position to
determine a natural class of local functions for which this basic intuition indeed holds.
We call these the one-step local functions.

Definition 21 (One-step local function). A local function is one-step if it has a satu-
rated basis. It is precise if it has a precise basis.

Note that every precise local function is one-step, because every precise predicate is
saturated. For any local function, the footprints are the ‘stepping points’ in the sense
that if we start from the bottom element of Σ and go up any ascending chain, the
footprints are the points which add to the locality constraint by restricting the action on
elements above them. For one-step local functions, for any such ascending chain, there
is at most a single such point along any chain (which is actually the point at which the
function becomes safe as shown by proposition 6), and beyond that point, the action of
the function is just given by the local limit. So there is at most a single footprint on any
ascending chain. Hence the name ‘one-step’ in analogy with the unit (or heaviside) step
functions that act as ‘on/off switches’. Along any ascending chain in the partial order
of Σ, there is a single point at which the function ‘turns on’, that is, becomes safe.

Precise local functions are one-step functions with the added property that those
ascending chains never intersect, that is, any two footprints would never have a common
ancestor. So for example, the dispose function is one-step as its behaviour changes at a
single point, which is the cell being deleted. It is also precise because there is no heap
that contains two cells with location l pointing to different values. For the AD function,
there are two stepping points (uH and the single heap cells) along an ascending chain,
so it is not a one-step function.

Example 6 (One-step local functions)

1. Dispose. The heap command dispose[l] is a precise local function. This is because
the heap algebra is well-founded, so the footprints form a basis and, as shown in
section 4, the set of footprints is {l �→v | v ∈ V al} which is a precise predicate.



214 M. Raza and P. Gardner

2. AD. We showed in section 4 that the set of footprints is {(uH , x �→ u) | u ∈
V al}∪ {(l �→u, x �→v) | u, v ∈ V al}. This is a non-saturated predicate, so there is
no saturated basis for the AD function. It is therefore not one-step.

3. Multiple Dispose. This is the command dispose[l1, l2] that faults if neither l1 or l2
are present, disposes l1 if it is present and l2 is not, disposes l2 if it is present and l1
is not, and diverges if both are present. Note that it has to diverge if both are present,
otherwise it would not be local. This is an example of a one-step local function that
is not precise: the set of footprints is {l1 �→v | v ∈ V al} ∪ {l2 �→v | v ∈ V al} and
this is a saturated but imprecise predicate.

Proposition 6. If f is a one-step local function, then its footprints are the smallest
states on which the function is safe: F (f) = min({σ | f(σ) � 
}).
One-step and precise local functions also have advantageous properties with respect to
their specifications. We can determine whether a function is one-step or precise by just
looking at its specifications (checking specifications to be saturated or precise is easier
than checking functions to be one-step or precise).

Proposition 7. A local function f is one-step iff it has at least one saturated complete
specification. It is precise iff it has at least one precise complete specification.

We can also sometimes determine the footprints of local functions directly from the spec-
ifications, without knowing what the function itself is. If the resource is non-negative
and f has a saturated complete specification, then the domain of this specification is the
set of footprints of f .

Proposition 8. If Σ is non-negative and φ is a saturated complete specification for f ,
then the domain of φ is the set of footprints of f: that is, F (f) = D(φ).

7 Conclusion and Future Work

We have defined the footprints of a local function and demonstrated that they are the
only essential elements necessary to obtain complete specifications for local Hoare rea-
soning. For well-founded resource, the footprints are also sufficient, meaning that they
do indeed yield the smallest complete specification. We have therefore solved the foot-
print problem highlighted in the introduction. We have also given results for the non-
well-founded models and have introduced the natural class of one-step local functions
for which the footprints are the smallest safe states.

Although we now know what footprints are, there is still much to investigate about
their properties. Two important questions for future work are how footprints behave
under the sequential composition of functions (we know from examples that it is not
simply the union of the sets of footprints) and how the footprints impact on concurrent
reasoning where identifying the minimal resource is of paramount importance.

Another question of interest is whether we can regain the simple intuition of foot-
prints as minimal safe states by refining the semantics. We have already identified the
natural class of one-step local functions for which the footprints do indeed have this
property. However, these one-step functions are not compositional in general, as our AD
program on the standard heap model illustrates. We are currently exploring an adapted



Footprints in Local Reasoning 215

heap model, where the state keeps track of the allocated cells, aiming for the result that
sequential composition does preserve our one-step property for this model. More gener-
ally, we will seek conditions under which one-step functions do indeed compose; such
conditions should be satisfied by our alternative heap model.

Acknowledgements. We thank Calcagno, O’Hearn and Yang for detailed discussions
on footprints. Raza acknowledges support of an ORS award. Gardner acknowledges
support of a Microsoft/Royal Academy of Engineering Senior Research Fellowship.

References

1. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P., Wies, T., Yang, H.: Shape
Analysis for Composite Data Structures. In: Damm, W., Hermanns, H. (eds.) CAV 2007.
LNCS, vol. 4590, Springer, Heidelberg (2007)

2. Berdine, J., Calcagno, C., OHearn, P.W.: Smallfoot: Automatic modular assertion checking
with separation logic. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.)
FMCO 2005. LNCS, vol. 4111, Springer, Heidelberg (2006)

3. Birkedal, L., Yang, H.: Relational parametricity and separation logic. In: Seidl, H. (ed.) FOS-
SACS 2007. LNCS, vol. 4423, Springer, Heidelberg (2007)

4. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in separation
logic. In: 32nd POPL (2005)

5. Bornat, R., Calcagno, C., Yang, H.: Variables as resource in separation logic. In: 21st MFPS
(2005)

6. Brookes, S.D.: A semantics for concurrent separation logic. In: Gardner, P., Yoshida, N.
(eds.) CONCUR 2004. LNCS, vol. 3170, Springer, Heidelberg (2004)

7. Calcagno, C., Gardner, P., Zarfaty, U.: Context logic and tree update. In: 32nd POPL (2005)
8. Calcagno, C., Gardner, P., Zarfaty, U.: Local Reasoning about Data Update. In: Gordon

Plotkin’s festschrift, ENTCS (2007)
9. Calcagno, C., O’Hearn, P., Yang, H.: Local Action and Abstract Separation Logic (Longer

version). In: LICS (2007)
10. Isthiaq, S., O’Hearn, P.W.: BI as an assertion language for mutable data structures. In: 28th

POPL (2001)
11. Morgan, C.C.: The specification statement. In: ACM Transactions on Programming Lan-

guages and Systems (1988)
12. O’Hearn, P.: Resources, concurrency and local reasoning. Theoretical Computer Science,

Preliminary version appeared in CONCUR 2004 (2007)
13. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter data struc-

tures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, Springer, Heidelberg (2001)
14. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. In: Bulletin of Symbolic Logic

(1999)
15. Parkinson, M., Bornat, R., Calcagno, C.: Variables as resource in Hoare logics. In: 21st LICS

(2006)
16. Pym, D., O’Hearn, P., Yang, H.: Possible worlds and resources: The semantics of BI. In:

Theoretical Computer Science (2004)
17. Pym, D.J.: The Semantics and Proof Theory of the Logic of Bunched Implications. Applied

Logic Series. Kluwer Academic Publishers, Dordrecht (2002)
18. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In: 17th LICS

(2002)
19. Yang, H., O’Hearn, P.: A semantic basis for local reasoning. In: Nielsen, M., Engberg, U.

(eds.) FOSSACS 2002. LNCS, vol. 2303, Springer, Heidelberg (2002)



A Modal Deconstruction of

Access Control Logics

Deepak Garg1 and Mart́ın Abadi2,3

1 Carnegie Mellon University
2 University of California, Santa Cruz
3 Microsoft Research, Silicon Valley

Abstract. We present a translation from a logic of access control with
a “says” operator to the classical modal logic S4. We prove that the
translation is sound and complete. We also show that it extends to logics
with boolean combinations of principals and with a “speaks for” relation.
While a straightforward definition of this relation requires second-order
quantifiers, we use our translation for obtaining alternative, quantifier-
free presentations. We also derive decidability and complexity results for
the logics of access control.

1 Introduction

In computer systems, access control checks restrict the operations that users, ma-
chines, and other principals can execute on objects such as files [27]. These checks
are governed by access control policies—often by the combination of several poli-
cies at different layers and from different entities. In practice, the principals, the
objects, the formulations of policies, and their implementations can be quite
varied. The resulting gaps, inconsistencies, and obscurity endanger security.

In response to these concerns, specialized logics have been proposed as frame-
works for describing, analyzing, and enforcing access control policies (e.g., [3,30,
20, 19, 2, 6, 10, 29]). A number of research projects have applied these logics for
designing or explaining various languages and systems (e.g., [26, 35, 6, 8, 7, 9, 13,
4,16,10,14,18,29]). On the other hand, there have been only few, limited efforts
to study the logics themselves (e.g., [3, 20, 19, 2]). Accordingly, the decidability,
expressiveness, and semantics of these logics are largely unexplored.

Our objective in the present paper is to fill this gap. Specifically, we study a
class of access control logics via sound and complete translations to the classical
modal logic S4.

– Relying on the theory of S4 (e.g., [24, 25]), we obtain Kripke semantics for
the logics. In the quantifier-free case, we also establish the decidability of
the logics and their PSPACE complexity. The translations also open the
possibility of re-using existing decision procedures for S4.

– Translating several logics to S4 enables us to compare their expressiveness. In
particular, while a straightforward definition of the “speaks for” relation [26,
28] requires second-order quantifiers, we use our translations for obtaining

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 216–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Modal Deconstruction of Access Control Logics 217

alternative, quantifier-free presentations. We prove that these quantifier-free
presentations yield the same consequences as the second-order definition.

– The translations also suggest a logic with a boolean structure on principals.
Although propositional, this new logic is rich and quite expressive. Previous
logics with similar constructs allowed conjunctions and disjunctions of prin-
cipals (but not negations); the present logic goes beyond them in ways that
we consider both elegant and useful.

Access control logics (those studied here and most of those in the literature)
include formulas of the form A says s, where A is a principal and s is a formula.
Intuitively, A says s means that A asserts (or supports) s. For example, the
administrator admin of a domain might certify that Alice is an authorized user;
this assertion may be represented as admin says auth user(Alice). In addition,
many logics support the use of the “speaks for” relation: A ⇒ B means that A
speaks for B, that is, A says s implies B says s for every s. For example, when
KeyAlice represents the public key of Alice, one may write KeyAlice ⇒ Alice. When
a server S acts on Alice’s behalf impersonating her, one may also write S⇒ Alice.
Despite these similarities, logics differ in their axioms. A 2003 survey discusses
some of the options [1]. Recently, several works [20,2,19,29] have basically relied
upon the rules of lax logic and the computational lambda calculus [17,11,33] for
the operator says. This approach has several benefits, for example validating
the “handoff axiom” [26, 2]; a detailed discussion of its features is beyond the
scope of this paper. We follow this approach in the logics that we consider.

The first of these logics, called ICL, extends propositional intuitionistic logic
with the operator says which behaves as a principal-indexed lax modality (Sec-
tion 2). ICL can be viewed as an indexed version of CL [11], hence its name,
and also as the common propositional fragment of CDD [2, Section 8] and
other systems [20, 29]. An extension of ICL, called ICL⇒, allows formulas of
the form A ⇒ B (Section 3). Another extension, called ICLB, allows com-
pound principals formed with boolean connectives (Section 4). Our transla-
tions and the resulting theorems apply to each of these logics. In addition,
we show that A ⇒ B can be encoded using either compound principals or a
second-order universal quantifier (Sections 5 and 6). We conclude with a discus-
sion of directions for further work (Section 7). Proofs are available on-line at
www.cs.cmu.edu/∼dg/papers/modal-decons-full.pdf.

Related Work. Our translations are partly based on a translation from intuition-
istic logic to S4 that goes back to Gödel [22]. Moreover, ICL can be seen as a
rather direct generalization of lax logic. Nevertheless, our translation from ICL
(and, as a special case, from lax logic) to S4 appears to be new.

Partly following Curry [15], Fairtlough and Mendler suggested interpreting
lax logic in intuitionistic logic by mapping © s to C ∨ s or to C ⊃ s, where
© is a lax modality and C is a fixed proposition [17]. These interpretations are
sound but not complete. Composing them with a translation from intuitionistic
logic to S4, one can map © s to � ((�C) ∨ s) or to � ((�C) ⊃ s). A similar
translation from lax logic to S4 follows from our definitions, as a special case;
however, our translation does not put a � on C, and it is sound and complete.

 www.cs.cmu.edu/~dg/papers/modal-decons-full.pdf


218 D. Garg and M. Abadi

Other interpretations of lax logic have targeted multimodal logics or intuition-
istic S4 [17, 5, 11, 34]. Our translations seem simpler; in particular, they target
classical S4. Semantically, those interpretations lead to Kripke models with at
least two accessibility relations, while we need only one.

Fairtlough and Mendler also deduced the decidability of lax logic from a sub-
formula property [17]. Further, Howe developed a PSPACE decision procedure
for lax logic [23]. It seems possible to extend Howe’s approach to obtain an al-
ternative proof of decidability for ICL. We do not know whether it would also
apply to richer logics such as ICL⇒ and ICLB, for which we have not established
a subformula property.

Going beyond basic lax logic, not much is known about the theory of log-
ics with compound principals or with a “speaks for” relation (such as ICL⇒

and ICLB). Some of the early work on the subject started to explore seman-
tics and decidability results [3]. Although sometimes helpful, the semantics were
not sound and complete, and the decidability results applied only to fragments
needed for certain access-control decisions. More recent systems like RT and Sec-
PAL (where the “can act as” relation resembles ⇒) include decision procedures
for useful classes of formulas similar to Horn clauses [31, 32, 10].

2 ICL: A Basic Logic of Access Control

We start with a basic access control logic ICL that includes the operator says but
not ⇒. Although minimal in its constructs, the logic is reasonably expressive.
We describe a translation from ICL to classical S4. From this translation we
derive a Kripke semantics and a decidability result.

2.1 The Logic

Formulas in ICL may be atomic propositions (p, q, etc.) or constructed from
standard connectives ∧ (conjunction), ∨ (disjunction), ⊃ (implication), � (true),
and ⊥ (false), and the operator says.

s ::= p | s1 ∧ s2 | s1 ∨ s2 | s1 ⊃ s2 | � | ⊥ | A says s

The letters A, B, etc., denote principals, which are atomic and distinct from
atomic propositions. They may be simple bit-string representations of names; in
Section 4, we generalize principals to a richer algebra.

ICL inherits all the inference rules of intuitionistic propositional logic, which
we elide here. For each principal A, the formula A says s satisfies the following
axioms:

	 s ⊃ (A says s) (unit)
	 (A says (s ⊃ t)) ⊃ (A says s) ⊃ (A says t) (cuc)
	 (A says A says s) ⊃ A says s (idem)

These mean that A says · is a lax modality [17]. We describe them briefly, refer-
ring the reader to the literature on lax logic and computational lambda calculus
for more details and applications.



A Modal Deconstruction of Access Control Logics 219

- (unit) states that every true formula s is supported by every principal A.
(The converse is not true: principals may make false statements.)

- (cuc) allows us to reason with A’s statements. It says that whenever A states
s ⊃ t and s, it also states t. Thus A’s statements are closed under logical
consequence.

- (idem) collapses applications of A says ·. In the context of (unit), (idem)
implies that A says · is idempotent.

Example 1. We illustrate the use of ICL through a simple example. Consider
a file-access scenario with an administrating principal admin, a user Bob, one file
file1, and the following policy:

1. If admin says that file1 should be deleted, then this must be the case.
2. admin trusts Bob to decide whether file1 should be deleted.
3. Bob wants to delete file1.

Intuitively, from these facts we should be able to conclude that file1 should be
deleted. We describe a logical presentation of this example in ICL. Suppose that
the proposition deletefile1 means that file1 should be deleted. The three facts
above can be written:

1. (admin says deletefile1) ⊃ deletefile1
2. admin says ((Bob says deletefile1) ⊃ deletefile1)
3. Bob says deletefile1

Using (unit) and (cuc), (1)–(3) imply deletefile1.

2.2 Translation from ICL to S4

Next we describe a central technical result of our work: a sound and complete
translation from ICL to S4. Before describing the translation, we briefly sketch
S4. More details may be found in standard references (e.g., [24]); S4 has been
studied thoroughly over the years.

S4. S4 is an extension of classical logic with one modality �, and the rules:

From 	 s infer 	 � s.
	 � (s ⊃ t) ⊃ � s ⊃ � t
	 � s ⊃ s
	 � s ⊃ � � s

Translation. Our translation �·� from ICL to S4 is summarized in Figure 1.
It is defined by induction on the structure of formulas. For atomic formulas
and non-modal connectives, the translation is a slight simplification of Gödel’s
translation from intuitionistic logic to S4 [22]. (In Gödel’s words, the basic idea
is to “put a box around everything”; we simplify the translation by putting
boxes only around atomic formulas and implications.) The core of our work is
the translation of A says s.

�A says s� = � (A ∨ �s�)



220 D. Garg and M. Abadi

�p� = � p
�s ∧ t� = �s� ∧ �t�
�s ∨ t� = �s� ∨ �t�
�s ⊃ t� = � (�s� ⊃ �t�)

��� = �
�⊥� = ⊥

�A says s� = � (A ∨ �s�)

Fig. 1. Translation from ICL to S4

We interpret the principal A as an atomic formula in S4 and assume that such
atomic formulas are distinct from the usual atomic formulas p, q, etc.. Informally,
if we read � as “in all possible worlds” and the atomic formula A as “principal
A is unhappy”, then � (A ∨ �s�) means that �s� holds in all possible worlds in
which A is happy.

Alternatively, but equivalently, we could set: �A says s� = � (A ⊃ �s�).
Since the target of the translation is a classical logic, the difference between
� (A ∨ �s�) and � (A ⊃ �s�) is only superficial. We prefer � (A ∨ �s�) because
it leads to a more memorable interpretation of ⇒ in Section 3.

This simple translation is correct in the sense that it is both sound and
complete:

Theorem 1 (Soundness and Completeness). For every ICL formula s,
	 s in ICL if and only if 	 �s� in S4.

The proof of this theorem relies heavily on the proof theory of ICL and S4.

2.3 Decidability and Kripke Models for ICL

Decidability is a desirable property in an access control logic: it allows the pos-
sibility of completely automated tools for analyzing policies. In the case of ICL,
Theorem 1 implies PSPACE decidability since the same complexity bound is
known for S4 [25]. This bound is the best we could expect, since PSPACE-
hardness holds for plain intuitionistic propositional logic.

Corollary 1 (Decidability). There is a polynomial space procedure that de-
cides whether a given ICL formula is provable or not.

Kripke models are attractive for access control logics from several perspectives.
First, they provide a semantic grounding of the logics. They are also useful
as mathematical objects, for instance for showing that certain formulas are not
derivable. We use Theorem 1 and standard models of S4 to derive Kripke models
for ICL.

Definition 1 (Kripke Models). A Kripke model for ICL is a tuple 〈W,≤, ρ, θ〉
where

- W is a set, whose elements are called worlds (denoted using the letter w and
its decorated variants).



A Modal Deconstruction of Access Control Logics 221

- ≤ is a binary relation on W called the accessibility relation. When w ≤ w′,
we say that w′ is accessible from w. We assume that ≤ is reflexive and
transitive. We often write ≥ for (≤)−1.

- ρ is a mapping from atomic formulas of ICL to P(W ) (the power set of W),
called the assignment. Intuitively, ρ(p) is the set of worlds in which p holds.
We assume that ρ is hereditary with respect to ≤, that is, if w ∈ ρ(p), then
for all w′ such that w′ ≥ w, w′ ∈ ρ(p).

- θ is a mapping from principals of ICL to P(W ), called the view map. When
w ∈ θ(A), we say that w is invisible to A, else it is visible to A.

Definition 2 (Satisfaction). Given an ICL formula s and a Kripke model
K = 〈W,≤, ρ, θ〉, we define the satisfaction relation at a particular world (w |= s)
by induction on s.

- w |= p iff w ∈ ρ(p)
- w |= s ∧ t iff w |= s and w |= t
- w |= s ∨ t iff w |= s or w |= t
- w |= s ⊃ t iff for each w′ ≥ w, w′ |= s implies w′ |= t
- w |= � for every w
- not(w |= ⊥) for every w
- w |= A says s iff for every w′ ≥ w, either w′ ∈ θ(A) or w′ |= s

Thus, this definition implies that a world satisfies A says s iff every reachable
world that is visible to A satisfies s. For other constructs, the definition of sat-
isfaction mirrors that in standard Kripke models of intuitionistic logic.

We say that K = 〈W,≤, ρ, θ〉 |= s if w |= s for every w ∈ W . A formula s
is valid (written |= s) if K |= s for every Kripke model K. The following result
shows that provability in ICL coincides with validity.

Corollary 2. For every ICL formula s, 	 s if and only if |= s.

3 ICL⇒: A Logic with a Primitive “Speaks For” Relation

In this section we extend the logic ICL to include a primitive “speaks for” re-
lation. We call the new logic ICL⇒. We also extend the results of Section 2 to
ICL⇒.

3.1 The Logic

ICL⇒ extends ICL with formulas of the form A ⇒ B and with the following
axioms for these formulas:

	 A⇒ A (refl)
	 (A⇒ B) ⊃ (B⇒ C) ⊃ (A⇒ C) (trans)
	 (A⇒ B) ⊃ (A says s) ⊃ (B says s) (speaking-for)
	 (B says (A⇒ B)) ⊃ (A⇒ B) (handoff)

– (refl) and (trans) state that ⇒ is reflexive and transitive.
– (speaking-for) states that if A⇒ B and A says s, then B says s.



222 D. Garg and M. Abadi

– (handoff) states that whenever B says that A speaks for B, then A does indeed
speak for B. This axiom allows every principal to decide which principals
speak on their behalf [26].

Example 2. We modify Example 1: instead of having Bob says deletefile1 di-
rectly, Bob delegates his authority to Alice (fact 3), who wants to delete file1
(fact 4).

1. (admin says deletefile1) ⊃ deletefile1
2. admin says ((Bob says deletefile1) ⊃ deletefile1)
3. Bob says Alice⇒ Bob
4. Alice says deletefile1

Using (handoff) and (speaking-for), we can again derive deletefile1.

3.2 Translation from ICL⇒ to S4

We extend to ICL⇒ the translation from ICL to S4 by adding the clause:

�A⇒ B� = � (A ⊃ B)

As above, A and B are interpreted as atomic formulas in S4, and these atomic
formulas are assumed distinct from the atomic propositions of ICL⇒. We have:

Theorem 2 (Soundness and Completeness). For every ICL⇒ formula s,
	 s in ICL⇒ if and only if 	 �s� in S4.

3.3 Decidability and Kripke Models for ICL⇒

Much as for ICL, Theorem 2 yields a decidability result:

Corollary 3 (Decidability). There is a polynomial space procedure that de-
cides whether a given ICL⇒ formula is provable or not.

It also leads to Kripke models for ICL⇒. These are the same as those for ICL
(Definition 1), with the satisfaction relation for A⇒ B at world w given by the
clause:

w |= A⇒ B iff for every w′ ≥ w, w′ ∈ θ(A) implies w′ ∈ θ(B).

These models are sound and complete in the sense of Corollary 2.

4 ICLB: A Logic with Boolean Principals

Principals in ICL and ICL⇒ are atomic and cannot be composed in any logically
meaningful way. Early on it was observed that the use of compound principals
can help in expressing policies [26,3]. For example, the conjunction of two prin-
cipals may be employed for representing joint statements, with the property

(A ∧ B) says s ≡ (A says s) ∧ (B says s)



A Modal Deconstruction of Access Control Logics 223

Disjunctions also arise, though they are more complex. Going further, we de-
scribe and study a systematic extension ICLB of ICL that allows arbitrary
Boolean combinations of principals with the connectives ∧, ∨, ⊃, �, and ⊥.
(However, we do not include operators such as “quoting” and “for”.) We extend
the results of Section 2 to ICLB.

4.1 The Logic

The formulas of ICLB are the same as those of ICL, except that principals may
contain Boolean connectives. We use the letters a, b, . . . for denoting atomic prin-
cipals (distinct from atomic propositions), and A, B, . . . for denoting arbitrary
principals.

A,B ::= a | A ∧ B | A ∨ B | A ⊃ B | � | ⊥
We write ¬A for (A ⊃ ⊥). We equip the set of principals with a notion of equality
by letting A ≡ B if A and B are provably equivalent when viewed as formulas in
classical logic. With these definitions, the set of principals becomes a Boolean
algebra.

ICLB inherits all the inference rules of ICL, and also includes the following
additional rules:

	 (⊥ says s) ⊃ s (trust)
If A ≡ � then 	 A says ⊥. (untrust)
	 ((A ⊃ B) says s) ⊃ (A says s) ⊃ (B says s) (cuc’)

– (trust) states that ⊥ is a truth teller.
– (untrust) states that any principal equivalent to � says false; it can be seen

as a variant of the necessitation rule of modal logics.
– Similarly, (cuc’) is the analogue of (cuc) for principals. It states that A says s

and (A ⊃ B) says s imply B says s.

We define ICLB as an extension of ICL, rather than ICL⇒, because we do not
need built-in formulas of the form A⇒ B. The “speaks for” relation is definable
in ICLB. As we show in Section 5, A ⇒ B can be seen as an abbreviation for
(A ⊃ B) says ⊥.

We can explain the intuitive meaning of A says s when principal A is com-
pound, as follows:

- (A ∧ B) says s is the same as (A says s) ∧ (B says s).
- (A ∨ B) says s means that, by combining the statements of A and B, we can

conclude s. In particular, if A says (s ⊃ t) and B says s then (A ∨ B) says t.
Disjunctions can be used in modeling groups in access control.

- (A ⊃ B) says s means that A speaks for B on s and on its consequences. We
can show that if (A ⊃ B) says s and s ⊃ s′, then (A says s′) ⊃ (B says s′).
In the special case where s is ⊥, we obtain the usual ⇒ relation.

- � says s is provable for every formula s (including ⊥). In access control
terms, � may be seen as a completely untrustworthy principal.

- ⊥ says s implies that s is true. Thus, ⊥ is a completely trustworthy
principal.



224 D. Garg and M. Abadi

Example 3. The following policy is analogous to that of Example 1:

1. (admin ⊃ ⊥) says deletefile1
2. admin says (Bob ⊃ admin) says deletefile1
3. Bob says deletefile1

The first statement means that admin is trusted on deletefile1 and its conse-
quences. The second statement means that admin further delegates this authority
to Bob.

From (3) and (unit) it follows that admin says Bob says deletefile1. From (2),
(cuc), and (cuc’) we get (admin says Bob says deletefile1) ⊃ (admin says
admin says deletefile1). Hence we have admin says admin says deletefile1. Us-
ing (idem), we obtain admin says deletefile1. From (1) and (cuc’), we obtain
(admin says deletefile1) ⊃ ⊥ says deletefile1, and hence ⊥ says deletefile1. Fi-
nally, using (trust), we conclude deletefile1.

4.2 Translation from ICLB to S4

The translation from ICL to S4 works virtually unchanged for ICLB. In the clause
�A says s� = � (A ∨ �s�), we interpret A as a formula in S4 in the most obvious
way: each Boolean connective in A is mapped to the corresponding connective
in S4, and each atomic principal in A is interpreted as an atomic formula in S4
(without any added boxes). For instance, the translation of

(Bob ⊃ admin) says deletefile1

is
� ((Bob ⊃ admin) ∨ � deletefile1)

Again, we have soundness and completeness results:

Theorem 3 (Soundness and Completeness). For every ICLB formula s,
	 s in ICLB if and only if 	 �s� in S4.

4.3 Decidability and Kripke Models for ICLB

Once more we obtain a decidability result:

Corollary 4 (Decidability). There is a polynomial space procedure that de-
cides whether a given ICLB formula is provable or not.

Furthermore, Kripke models for ICLB may be obtained by generalizing those for
ICL. The view map θ is defined only for atomic principals a. It is lifted to the
function θ̂ that maps all principals to P(W ) as follows:

θ̂(a) = θ(a)
θ̂(A ∧ B) = θ̂(A) ∩ θ̂(B)
θ̂(A ∨ B) = θ̂(A) ∪ θ̂(B)
θ̂(A ⊃ B) = (W − θ̂(A)) ∪ θ̂(B)
θ̂(�) = W

θ̂(⊥) = ∅



A Modal Deconstruction of Access Control Logics 225

The definition of satisfaction (w |= s) is modified to use θ̂ instead of θ:

w |= A says s iff for all w′ ≥ w, either w′ ∈ θ̂(A) or w′ |= s.

Again, these Kripke models are sound and complete in the sense of Corollary 2.
Thus, while the analysis of the translations requires special (and often dif-

ficult) arguments for each logic, the way in which decidability and semantics
follow from translations is almost identical across logics. In the remainder of the
paper, we turn to more unexpected consequences of the translations.

5 From ICL⇒ to ICLB: Expressing “Speaks For” Via
Boolean Principals

We prove that A ⇒ B can be encoded as (A ⊃ B) says ⊥. More precisely,
we analyze the following translation (·) from ICL⇒ to ICLB. It maps every
connective except ⇒ to itself.

p = p
s ∧ t = s ∧ t
s ∨ t = s ∨ t
s ⊃ t = s ⊃ t
� = �
⊥ = ⊥

A says s = A says s
A⇒ B = (A ⊃ B) says ⊥

(Alternatively, we could translate an extension of ICLB with ⇒ to ICLB.) The
encoding of ⇒ is correct, in the following sense:

Theorem 4. For every ICL⇒ formula s, 	 s in ICL⇒ if and only if 	 s in
ICLB.

This theorem is easy to establish using the translations from ICL⇒ and ICLB to
S4. First we show that for every formula s in ICL⇒, �s� and �s� are provably
equivalent in S4. This argument is by a structural induction on s. The only
interesting case is for s of the form A ⇒ B, where we observe that �A⇒ B� =
� (A ⊃ B) ≡ � ((A ⊃ B) ∨ ⊥) = �A⇒ B�. It then follows from Theorems 2
and 3 that 	 s iff 	 �s� iff 	 �s� iff 	 s.

6 On Second-Order Quantification

In this section we consider a logic with second-order quantification. In this logic,
A⇒ B has a well-known, compelling definition, as an abbreviation for

∀X. A says X ⊃ B says X



226 D. Garg and M. Abadi

Our main technical goal is to relate this definition to the quantifier-free axiom-
atizations of Sections 3–5. We prove that those axiomatizations are sound and
complete with respect to the second-order definition. Thus, the full power and
complexity of second-order quantification is not required for reasoning about⇒.
A decidable fragment of the second-order logic suffices.

(This result was far from obvious to us: a priori, it seemed entirely possible
that the axiomatizations were missing some subtle consequence of the second-
order definition. Its proof was also surprising, as it includes a non-constructive
detour through Kripke models, thus leveraging the work of Sections 3–5.)

6.1 The Logic

The second-order logic is the straightforward extension of ICL with universal
quantification over propositions, with the rules of System F [21,12].

This logic is not entirely new. It has previously been defined [2, Section 8] and
used [18] under the name CDD (with only minor syntactic differences). Here we
call it ICL∀ for the sake of uniformity.

The addition of second-order quantification provides great expressiveness, as
illustrated by the definition of⇒ given above. On the other hand, it immediately
leads to undecidability as well as to other difficulties. Nevertheless, this logic is
an obvious and elegant extension of ICL.

6.2 Main Results

Though we do not discuss the theory of ICL∀ in detail, we have had to develop
some of it in the course of our study of ⇒. In this section we present only our
main result on ⇒ and mention other developments to the extent that they are
relevant to this result.

There is an obvious embedding of ICL⇒ into ICL∀:

[[p]] = p
[[s ∧ t]] = [[s]] ∧ [[t]]
[[s ∨ t]] = [[s]] ∨ [[t]]
[[s ⊃ t]] = [[s]] ⊃ [[t]]

[[�]] = �
[[⊥]] = ⊥

[[A says s]] = A says [[s]]
[[A⇒ B]] = ∀X. A says X ⊃ B says X

This embedding is correct, in the following sense:

Theorem 5. For every ICL⇒ formula s, 	 s in ICL⇒ if and only if 	 [[s]] in
ICL∀.

Soundness (the implication from left to right) is easy to establish. It suffices to
show that each axiom of ICL⇒ can be simulated in ICL∀ after translation.



A Modal Deconstruction of Access Control Logics 227

Completeness (the implication from right to left) is much harder. Complica-
tions arise because a proof of [[s]] may contain formulas which are not in the image
of [[·]]. Even if we wish to restrict attention to a fragment in which the universal
quantifier is restricted to formulas of the form ∀X. A says X ⊃ B says X ,
the proofs of theorems in this fragment may mention formulas that contain
universal quantifiers in other positions. Although it is conceivable that a con-
structive proof-theoretic argument would be viable, this difficulty leads us to a
non-constructive argument through acyclic Kripke models.

Our approach seems to be new, so we discuss it in some detail. It is as follows.

– First we define a translation from ICL∀ to second-order S4 (called S4∀),
that is, classical S4 with a second-order universal quantifier. Let us call this
translation �·�. This translation essentially mimics the translation of ICL to
S4, and in addition maps ∀X. s to � ∀X. �s�.

We show that this translation is sound, in the sense that 	 s in ICL∀

implies 	 �s� in S4∀. It follows immediately that 	 [[s]] in ICL∀ implies
	 �[[s]]� in S4∀.

(We do not need to be concerned about the completeness of this transla-
tion for our purposes.)

– Next we may try to show that for every ICL⇒ formula s, if 	 �[[s]]� in S4∀

then 	 �s� in S4. If this were true, Theorem 2 would yield that 	 [[s]] in ICL∀

implies 	 s in ICL⇒ (because 	 [[s]] in ICL∀ implies 	 �[[s]]� in S4∀, as noted
above).

Thus, it would suffice to establish that 	 �[[s]]� in S4∀ implies 	 �s� in
S4. We try to prove this by induction on s. Unfortunately, the proof does
not go through. The argument fails for a formula of the form A⇒ B, since

�[[A⇒ B]]� = � ∀X. � (� (A ∨ �X) ⊃ � (B ∨ �X))

and
�A⇒ B� = � (A ⊃ B)

In S4∀, the latter implies the former, but the former does not imply the
latter.

– Two observations allow the proof to go through:
1. On all acyclic models, �[[A⇒ B]]� implies �A⇒ B�.

Therefore, we can establish that all acyclic models satisfy �[[s]]� if and
only if all acyclic models satisfy �s�.

2. Quantifier-free S4 is sound and complete with respect to acyclic models.
(A model can be “unrolled”, and the resulting acyclic model satisfies the
same quantifier-free formulas as the original model.)

– Using these observations we can complete our proof as follows.
• Suppose that 	 [[s]] in ICL∀.
• By the soundness of the translation from ICL∀ to S4∀, we obtain 	 �[[s]]�

in S4∀.
• Therefore every acyclic model of S4∀ satisfies �[[s]]�.
• By (1), every acyclic model of S4∀ satisfies �s�.



228 D. Garg and M. Abadi

• Since, for S4 formulas (without quantifiers), the models of S4∀ are the
same as the models of S4, every acyclic model of S4 satisfies �s�.
• By (2), every model of S4 satisfies �s�.
• By the completeness of S4 for its models, it follows that 	 �s� in S4.
• By Theorem 2, we conclude that 	 s in ICL⇒.

7 Conclusion

Starting with a basic logic with a says operator, this paper describes simple
translations of three logics of access control to S4. The translations lead to
decidability results and semantics, and also to comparison of the logics. In par-
ticular, the translations enable us to study definitions and axiomatization of the
“speaks for” relation.

Going further, one may attempt to carry out a similar programme for some of
the diverse logics that appear in the literature. At present, there is no metric to
compare these logics against each other, nor a method for integrating more than
one logic into a single system. Translation to a standard logic such as S4 seems
a promising approach for addressing both of these issues. Of course, first-order
and second-order constructs may sometimes be necessary, and more substantial
deviations from S4 may arise too—for instance, towards S5, or by the addition of
special-purpose operators. Understanding those deviations may be instructive.

Going further, too, our results may be of practical value. They may serve
as the basis for theorem provers for logics of access control, with the help of
existing algorithms and provers for S4. More speculatively, finite models (of the
kind that we obtain from our semantics) may also play a role in a new variant of
proof-carrying authentication [6]. A model can serve as evidence that a particular
formula is not valid, thus enabling the use of such negative information as an
input to authorization decisions. These applications of our results are intriguing;
they still require considerable design and experimentation.

Acknowledgments. This work was mostly done at Microsoft Research Silicon
Valley. The first author was also funded by NSF Grant CNS-0716469. We are
grateful to Valeria de Paiva and to Frank Pfenning for discussions on related
work.

References

1. Abadi, M.: Logic in access control. In: Proceedings of the 18th Annual Symposium
on Logic in Computer Science (LICS 2003), pp. 228–233 (June 2003)

2. Abadi, M.: Access control in a core calculus of dependency. Electronic Notes in
Theoretical Computer Science, Computation, Meaning, and Logic: Articles dedi-
cated to Gordon Plotkin 172, 5–31 (April 2007)

3. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A calculus for access control
in distributed systems. ACM Transactions on Programming Languages and Sys-
tems 15(4), 706–734 (1993)



A Modal Deconstruction of Access Control Logics 229

4. Abadi, M., Wobber, T.: A logical account of NGSCB. In: de Frutos-Escrig, D.,
Núñez, M. (eds.) FORTE 2004. LNCS, vol. 3235, pp. 1–12. Springer, Heidelberg
(2004)

5. Alechina, N., Mendler, M., de Paiva, V., Ritter, E.: Categorical and kripke se-
mantics for constructive S4 modal logic. In: Fribourg, L. (ed.) CSL 2001. LNCS,
vol. 2142, pp. 292–307. Springer, Heidelberg (2001)

6. Appel, A.W., Felten, E.W.: Proof-carrying authentication. In: Proceedings of the
6th ACM Conference on Computer and Communications Security, pp. 52–62
(November 1999)

7. Bauer, L., Garriss, S., McCune, J.M., Reiter, M.K., Rouse, J., Rutenbar, P.: Device-
enabled authorization in the Grey system. In: Zhou, J., López, J., Deng, R.H., Bao,
F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 431–445. Springer, Heidelberg (2005)

8. Bauer, L.: Access Control for the Web via Proof-Carrying Authorization. PhD
thesis, Princeton University (November 2003)

9. Bauer, L., Garriss, S., Reiter, M.K.: Distributed proving in access-control systems.
In: Proceedings of the 2005 Symposium on Security and Privacy, pp. 81–95 (May
2005)

10. Becker, M.Y., Fournet, C., Gordon, A.D.: Design and semantics of a decentralized
authorization language. In: 20th IEEE Computer Security Foundations Sympo-
sium, pp. 3–15 (2007)

11. Benton, P.N., Bierman, G.M., de Paiva, V.C.V.: Computational types from a logical
perspective. Journal of Functional Programming 8(2), 177–193 (1998)

12. Cardelli, L.: Type systems. In: Tucker, A.B. (ed.) The Computer Science and En-
gineering Handbook, ch. 103, pp. 2208–2236. CRC Press, Boca Raton, FL (1997)

13. Cederquist, J.G., Corin, R., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini,
G.: Audit-based compliance control. Int. J. Inf. Secur. 6(2), 133–151 (2007)

14. Cirillo, A., Jagadeesan, R., Pitcher, C., Riely, J.: Do as I SaY! programmatic access
control with explicit identities. In: 20th IEEE Computer Security Foundations
Symposium, pp. 16–30 (July 2007)

15. Curry, H.B.: The elimination theorem when modality is present. Journal of Sym-
bolic Logic 17(4), 249–265 (1952)

16. DeTreville, J.: Binder, a logic-based security language. In: Proceedings of the 2002
IEEE Symposium on Security and Privacy, pp. 105–113 (May 2002)

17. Fairtlough, M., Mendler, M.V.: Propositional lax logic. Information and Compu-
tation 137(1), 1–33 (1997)

18. Fournet, C., Gordon, A.D., Maffeis, S.: A type discipline for authorization in dis-
tributed systems. In: 20th IEEE Computer Security Foundations Symposium, pp.
31–45 (2007)

19. Garg, D., Bauer, L., Bowers, K.D., Pfenning, F., Reiter, M.K.: A linear logic of
authorization and knowledge. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.)
ESORICS 2006. LNCS, vol. 4189, pp. 297–312. Springer, Heidelberg (2006)

20. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In:
Proceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW
19), pp. 283–296 (2006)

21. Girard, J.-Y.: Interprétation Fonctionnelle et Elimination des Coupures de l’Arith-
métique d’Ordre Supérieur. Thèse de doctorat d’état, Université Paris VII (June
1972)

22. Gödel, K.: Eine Interpretation des intuitionistischen Aussagenkalkuls. Ergebnisse
eines mathematischen Kolloquiums 8, 39–40 (1933)

23. Howe, J.M.: Proof search in lax logic. Mathematical Structures in Computer Sci-
ence 11(4), 573–588 (2001)



230 D. Garg and M. Abadi

24. Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Methuen Inc.,
New York (1968)

25. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977)

26. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed
systems: Theory and practice. ACM Transactions on Computer Systems 10(4),
265–310 (1992)

27. Lampson, B.W.: Protection. In: Proceedings of the 5th Princeton Conference on
Information Sciences and Systems, pp. 437–443 (1971)

28. Lampson, B.W.: Computer security in the real world. IEEE Computer 37(6), 37–46
(2004)

29. Lesniewski-Laas, C., Ford, B., Strauss, J., Kaashoek, M.F., Morris, R.: Alpaca:
Extensible authorization for distributed services. In: 14th ACM Conference on
Computer and Communications Security, pp. 432–444 (2007)

30. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on Information and System Secu-
rity 6(1), 128–171 (2003)

31. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust manage-
ment languages. In: Proceedings of the Fifth International Symposium on Practical
Aspects of Declarative Languages, pp. 58–73 (2003)

32. Li, N., Mitchell, J.C., Winsborough, W.H.: Beyond proof-of-compliance: security
analysis in trust management. J. ACM 52(3), 474–514 (2005)

33. Moggi, E.: Notions of computation and monads. Information and Computa-
tion 93(1), 55–92 (1991)

34. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Mathematical
Structures in Computer Science 11, 511–540 (2001)

35. Wobber, E., Abadi, M., Burrows, M., Lampson, B.: Authentication in the Taos
operating system. ACM Transactions on Computer Systems 12(1), 3–32 (1994)



Coalgebraic Logic and Synthesis of Mealy Machines

M.M. Bonsangue1,2, Jan Rutten2,3,�, and Alexandra Silva2,��

1 LIACS - Leiden University
2 Centrum voor Wiskunde en Informatica (CWI)

3 Vrije Universiteit Amsterdam (VUA)

Abstract. We present a novel coalgebraic logic for deterministic Mealy ma-
chines that is sound, complete and expressive w.r.t. bisimulation. Every finite
Mealy machine corresponds to a finite formula in the language. For the converse,
we give a compositional synthesis algorithm which transforms every formula into
a finite Mealy machine whose behaviour is exactly the set of causal functions sat-
isfying the formula.

1 Introduction

A Mealy machine (S , f ) consists of a set S of states and a transition function f :S →
(B×S )A assigning to each state s ∈ S and input symbol a ∈ A a pair 〈b, s ′〉, consisting
of an output symbol b ∈ B and a next state s ′ ∈ S . Typically one writes

f (s)(a) = 〈b, s ′〉 ⇐⇒ s
a|b �� s ′

One of the most important applications of Mealy machines is their use in the specifi-
cation of sequential digital circuits. Taking binary inputs and outputs, there is a well-
known correspondence between such binary Mealy machines, on the one hand, and
sequential digital circuits built out of logical gates and some kind of memory elements,
on the other. In present day text books on logic design [11] — on the construction of se-
quential digital circuits — Mealy machines are still the most important mathematically
exact means for the specification of the intended behaviour of circuits.

There does not seem to exist, however, a generally accepted way of formally spec-
ifying Mealy machines themselves. The only formal approach we are aware of is the
general model for categories with feedback in [6], which can be instantiated to Mealy
machines. However, Mealy machines are typically “defined” in a natural language such
as English. This obviously leads to ambiguities, inconsistencies and plain errors [4].

In this paper, we propose a simple but adequate and expressive logical language for
the specification of Mealy machines. Here adequate means that the logical equivalence
corresponds to a natural behavioural equivalence on Mealy machines, whereas expres-
sive means that every finite Mealy machine can be represented by a (finite) formula.
Finally, simple means that the logic contains precisely what is needed to obtain this

� Partially supported by EU project IST-33826 CREDO (http://credo.cwi.nl).
�� Partially supported by the Fundação para a Ciência e a Tecnologia, Portugal, under grant num-

ber SFRH/BD/27482/2006.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 231–245, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



232 M.M. Bonsangue, J. Rutten, and A. Silva

goal, and nothing more. The latter point is an important distinguishing factor in com-
parison with some already existing formalisms in the literature, discussed below.

Briefly stated, our approach is coalgebraic. Mealy machines are a basic and well-
understood family of coalgebras, of the functor M (S ) = (B × S )A. The crucial coal-
gebraic insight is that the properties of Mealy machines (coalgebras) are fully dictated
by (the shape of) their defining functor M . This has led, for instance, to the identifica-
tion of a final Mealy machine, in [14], as the set of all causal stream functions from Aω

to Bω.
Following coalgebraic methodology, we apply general insights from coalgebraic

modal logic (see e.g. [12,2]) and define a logic whose basic operations derive directly
from the functor M . The equivalence induced by the logic coincides with that induced
by the functor M . Further, the logic comes equipped with a proof system for reasoning
about universal validity that we prove sound and complete.

All finite Mealy machines can be specified as a formula in the logic. The main tech-
nical contribution of the paper is the construction, for every formula in the logic, of a
finite Mealy Machine whose behaviour is exactly characterised by the formula.

1.1 Related Work

Automata synthesis is a popular and very active research area [13,8,4,15,5]. Most of
the work done on synthesis has as main goal to find a proper and sufficiently expressive
type of automata to encode a specific type of logic (such as LTL [15] or μ-calculus [8]).

Technically, the synthesis from a μ-calculus formula ϕ consists in translating ϕ into
an alternating automaton Aϕ, reducing Aϕ into a non-deterministic automaton which
is then checked for non-emptiness [8]. The same process has been recently generalized
to F -coalgebras in [10]. In this paper, we use a different approach. We construct a
deterministic Mealy machine for a formula directly, by considering the formula as a
state of the automaton containing enough information about its successors.

Although Mealy machines are in one-to-one correspondence with sequential digital
circuits, not much work has been done for their specification and synthesis. In [6], an
algebra for systems with feedback is given, but no synthesis is presented. In [15], a
compositional algorithm for synthesizing Generalized Mealy machines (GMMs) from
LTL formulae is presented. GMMs are a special class of non-deterministic Mealy ma-
chines that have the acceptance condition of generalized Büchi automata. In this paper,
we will remain in the world of deterministic Mealy machines, the one corresponding
to sequential digital circuits. Moreover, our work exploits the structure of the Mealy
machine and, therefore, the resulting logic is simpler than LTL (but expressive enough
for deterministic Mealy machines).

The logic most similar to ours is the one presented in [4]. There a logic for formal
specification of hardware protocols is presented, and an algorithm for the synthesis of
a Mealy machine is given. Their logic corresponds to the conjunctive fragment of LTL.
Their synthesis process is standard: first a non-deterministic Büchi automaton is syn-
thesized, secondly a powerset construction is used to make the automaton deterministic
and, finally, the propositions on the states are used to determine the inputs and outputs
for each state of the Mealy machine. Because of our coalgebraic approach, the equiva-
lence induced by our logic is canonical, and the logic comes with a proof system that



Coalgebraic Logic and Synthesis of Mealy Machines 233

is sound and complete. Further, our synthesis process remains within standard Mealy
machines and the behaviour of the synthesized automata is exactly characterized by the
original formula. Apart from [14,5], where synthesis for a special case of 2-adic arith-
metic is treated, we did not find any other work on the direct synthesis of deterministic
Mealy machines. From these papers we inherit the basic coalgebraic approach, that we
use here to derive our expressive logical specification language for Mealy machines.

In summary, the work presented in this paper distinguishes itself from all existing
work as follows. Our specification logic is derived directly from the functor, which
results in a very simple and consistent logic that has exactly the operators needed to
fully specify Mealy machines. Note that being simple does not mean this logic has
less expressive power than others. In the context of applications (such as circuits logic
design), this logic has all the relevant operators.

2 Mealy Machines

We give the basic definitions on Mealy machines and introduce the notions of simula-
tion and bisimulation.

First we recall the following definition. A (bounded) meet-semilattice is a set B
equipped with a binary operation ∧B and a constant	B ∈ B , such that ∧B is commu-
tative, associative and idempotent. The element 	B is neutral w.r.t. ∧B . As usual, ∧B
gives rise to a partial ordering≤B on the elements of B :

b1 ≤B b2 ⇔ b1 ∧B b2 = b1

Every set S can be transformed into a meet-semilattice by taking the collection PS
of all subsets of S with intersection as meet. We use semilattices to represent data
structures equipped with an information order: b1 ≤B b2 means that b1 is more concrete
than b2.

Our running examples will all use the four element meet-semilattice:

	
���

�
���

�

B = 1 0

⊥
����

����

Here, the 	 element is used for abstracting (under-specification) from any concrete
data; the ⊥ element denotes inconsistency (over-specification) of information; and the
elements 0 and 1 are concrete output values.

Now let A be a finite set and let B be a (possibly infinite) meet-semilattice. A Mealy
machine (S , f ) with inputs in A and outputs in B consists of a set of states S together
with a function

f :S → (B × S )A

For a given state s ∈ S and an input a ∈ A, the function f returns a pair f (s)(a) =
〈b, s ′〉, consisting of an output value b ∈ B and a state s ′ ∈ S . Typically we will write

f (s)(a) = 〈s [a], sa〉



234 M.M. Bonsangue, J. Rutten, and A. Silva

and call s [a] the (initial) output on input a and sa the next state on input a. We shall
also use the following convention for the representation of Mealy machines:

f (s)(a) = 〈b, s ′〉 ⇐⇒ s
a|b �� s ′

In coalgebraic terms, a Mealy machine (S , f ) is a coalgebra of the functor M :Set →
Set defined, for any set X , as M (X ) = (B ×X )A.

A homomorphism from a Mealy machine (S , f ) to a Mealy machine (T , g) is a
function h:S → T preserving initial outputs and next states:

h(s)[a] = s [a] and h(sa ) = h(s)a

(which is equivalent to the condition that g ◦ h = M (h) ◦ f , where the functor M is
defined on functions as usual).

Machines where A is the two-element set {0, 1} and B is the meet-semilattice B are
called binary, and they are fully specified if only 0 or 1 are used as output elements (and
never⊥ or 	).

For an example, consider the following binary Mealy machine with S = {s1, s2}
and the transition function defined by the following picture.

s1
1|1 ��

0|0
��

s2

1|0,0|1
��

This machine computes the two’s complement of a given binary number.
Next we define the notion of simulation, which can be used to obtain abstraction, and

bisimulation, which plays an important role in the minimization of Mealy machines.

Definition 1 ((Bi)simulation for Mealy). Let (S , f ) and (T , g) be two Mealy ma-
chines. We call a relation R ⊆ S × T a simulation if for all (s , t) ∈ S × T and
a ∈ A

s R t ⇒ ( s [a] ≤B t [a] and sa R ta )

We call R a bisimulation relation if both R and its (relational) inverse R−1 are
simulations.

We write s � t (resp. s ∼ t ) whenever there exists a simulation relation (bisimulation
relation) containing (s , t); and we call � and∼ the similarity and bisimilarity relations.
By definition, we have � ∩ �−1=∼.

As an example, consider the following two binary Mealy machines:

q1
1|1 ��

0|0
��

q2
1|0,0|1 �� q3

1|0,0|1
��

r1
1|� ��

0|0
��

r2

1|0,0|1
��

Observe that q3 and q2 are bisimilar, since R = {(q2, q3), (q3, q3)} is a bisimulation.
A minimal machine is obtained by identifying all bisimilar states, yielding our two’s
complement machine above.



Coalgebraic Logic and Synthesis of Mealy Machines 235

Now, note that the rightmost machine can be simulated by any fully specified binary
machine substituting either 0 or 1 as output for the abstract 	 value in the transition
from r1 to r2. For example, considering the above two’s complement machine, we have
s1 � r1 because S = {(s1, r1), (s2, r2)} is a simulation relation.

Next we recall the construction of a final Mealy machine with inputs in A and outputs
in B . Finality plays an important role in minimization as well as in the proof system (in
Section 3).

Let Aω = { σ | σ:{0, 1, 2, . . .} → A}, the set of all infinite streams over A. For
a ∈ A and σ ∈ Aω, we define:

a:σ = (a, σ(0), σ(1), σ(2), . . .) σ′ = (σ(1), σ(2), σ(3), . . .)

We call a function f :Aω → Bω causal if for all σ ∈ Aω and n ≥ 0, the nth output
value f (σ)(n) depends only on the first n input values (σ(0), . . . , σ(n − 1)). Let

Γ = { f :Aω → Bω | f is causal}
The set Γ can be turned into a Mealy machine (Γ, γ) by defining γ(f )(a) = 〈f [a], fa 〉
as follows:

f [a] = f (a:σ)(0) (where σ is arbitrary) fa (σ) = (f (a:σ))′

(Note that by causality the value of f (a:σ)(0) depends only on a.) The following theo-
rem is a minor variation on [14, Prop.2.3 and Corr.2.3].

Theorem 2 (Finality of (Γ, γ)). For every Mealy machine (S , f ) there exists a unique
homomorphism h:S → Γ . It satisfies, for all s , s ′ ∈ S :

s � s ′ ⇐⇒ h(s) � h(s ′)

where on Γ , similarity coincides with the elementwise ordering induced by B :

f � g ⇐⇒ ∀σ ∈ Aω ∀n ≥ 0 . f (σ)(n) ≤B g(σ)(n)

Since the identity function is always a homomorphism, bisimilarity is equality on Γ . As
a consequence, the image h(S ) of a Mealy machine S is in fact its minimisation with
respect to bisimilarity.

3 Mealy Logic

We present a logic for Mealy machines and define its semantics and a satisfaction
relation.

Definition 3 (Mealy formulae). Let A be a set of input actions and let B be a meet-
semilattice of output actions. Furthermore, let X be a set of (recursion or) fixed point
variables. The set L of Mealy formulae is given by the following BNF syntax. For a ∈ A,
b ∈ B , and x ∈ X :

φ:: = tt | x | a(φ) | a↓b | φ ∧ φ | νx .ψ



236 M.M. Bonsangue, J. Rutten, and A. Silva

where ψ ∈ Lg , the set of guarded formulae, which is given by:

ψ:: = tt | a(φ) | a↓b | ψ ∧ ψ | νx .ψ

We call a(φ) a transition formula and a↓b an output formula. Note that our language
does not include disjunction or negation. As we will discuss in 3.2, this is a natural
restriction and does not decrease the expressiveness of our logic. Moreover, in the same
section we will also point out the reasons for only having one type of fixed point op-
erator. Also note that for every unguarded Mealy formula there exists an equivalent
guarded formula, as a consequence of [9, Theorem 2.1].

The modal fragment of our logic (i.e, the set of closed formulae without the ν oper-
ator) is a special case of the coalgebraic logic obtained by a Stone-type duality [1,2].

In what follows, we shall concentrate on the set Lc
g of formulae that are both guarded

and closed, that is, without free occurrences of fixed point variables x . We turn the set
Lc

g into a Mealy machine (coalgebra)

λ : Lc
g → (B × Lc

g)
A

by defining λ as follows. For a ∈ A and φ ∈ Lc
g , we write λ(φ) = 〈φ[a], φa 〉 and we

define φ[a] and φa by

tt [a] = 	B

a(φ)[a′] = 	B (for any a′ ∈ A)

(a↓b)[a′] =
{

b if a = a′

	B otherwise
(φ1 ∧ φ2)[a] = φ1[a] ∧B φ2[a]
(νx .ψ)[a] = (ψ[νx .ψ/x ])[a]

tta = tt

(a(φ))a′ =
{
φ if a = a′

tt otherwise
(a↓b)a′ = tt (for any a′ ∈ A)
(φ1 ∧ φ2)a = (φ1)a ∧ (φ2)a
(νx .ψ)a = (ψ[νx .ψ/x ])a

Here, ψ[νx .ψ/x ] denotes syntactic substitution, replacing in ψ every free occurrence
of x by νx .ψ.

The above definition uses induction on the following complexity measure, which is
based on the number of nested unguarded occurrences of ν-formulae:

N (tt) = N (a↓b) = N (a(φ)) = 0
N (φ1 ∧ φ2) = max{N (φ1), N (φ2)}+ 1
N (νx .ψ) = 1 + N (ψ)

In order to see that the definition of φ[a] and φa is well-formed, note that in the case of
νx .ψ, we have:

N (ψ) = N (ψ[νx .ψ/x ])

This can easily be proved by (standard) induction on the syntactic structure of ψ, since
ψ is guarded (in x ).

Note that the (sub)machine generated by a formula φ ∈ Lc
g by repeatedly applying λ

will in general be infinite. In Section 4, an algorithm to produce a finite Mealy machine
from a formula φ ∈ Lc

g will be presented.



Coalgebraic Logic and Synthesis of Mealy Machines 237

Having a Mealy coalgebra structure on Lc
g has two advantages. First, it provides us,

by finality of Γ , directly with a natural semantics because of the existence of a (unique)
homomorphism:

Lc
g

[[ · ]] ��

λ

��

Γ

γ

��
(B × Lc

g)A
(id×[[ · ]])A

�� (B × Γ )A

[[φ ]][a] = φ[a] and [[φ ]]a = [[φa ]]

It assigns to every formula φ a causal stream function [[φ ]]:Aω → Bω.
The second advantage of the Mealy structure on Lc

g is that it lets us use the notion
of Mealy simulation to define when a state s ∈ S of a Mealy machine (S , f ) satisfies a
formula φ ∈ Lc

g , by defining:

s |= φ ⇔ s � φ

For brevity, we say that a Mealy machine (S , f ) satisfies a formula φ if some state in S
satisfies φ.

Proving satisfaction then amounts to the construction of a simulation relation R ⊆
S × Lc

g between (S , f ) and (L, λ) such that sRφ.
The above definition is equivalent to the following, more classical definition of sat-

isfaction. For every valuation η:Var → P(S ), we define a satisfaction relation |=η, by
induction, as follows:

s |=η tt for all s
s |=η a(φ) iff sa |=η φ
s |=η a↓b iff s [a] ≤B b
s |=η φ1 ∧ φ2 iff s |=η φ1 and s |=η φ2

s |=η x iff s ∈ η(x )
s |=η νv .ψ iff ∃T ⊆ S .s ∈ T and ∀t ∈ T .t |=η[T/v ] ψ

Here, η[T/v ] denotes the valuation such that, for every x ∈ Var , with x �= v , returns
η(x ) and for x = v returns T .

Note that in this definition single occurrences of x ∈ X are allowed. It can be shown,
by a fairly straightforward and not very instructive proof, that the two definitions of
satisfaction are equivalent. More precisely, if ∅ denotes the everywhere empty valuation,
we have:

s � φ ⇔ s |=∅ φ

for every φ ∈ Lc
g . We omit the proof and will work in what follows with the definition

of satisfaction as simulation.
The following theorem shows that our logic is sufficiently expressive to characterise

bisimilarity.



238 M.M. Bonsangue, J. Rutten, and A. Silva

Theorem 4

(1) For all states s , s ′ of a Mealy machine (S , f ),

s ∼ s ′ iff ∀φ ∈ Lc
g . s |= φ⇔ s ′ |= φ

(2) If S is finite then there exists for any s ∈ S a formula φs ∈ Lc
g such that

∀s ′ ∈ S . s ∼ s ′ iff s ′ |= φs

Proof. (1) Because s ∼ s ′ implies s � s ′ and s ′ � s we have, for any φ ∈ Lc
g ,

s |= φ ⇐⇒ s � φ ⇐⇒ s ′ � φ ⇐⇒ s ′ |= φ

For the converse, note, for any s ∈ S , a ∈ A, and φ ∈ Lc
g , that s |= a↓s [a] and

sa |= φ ⇐⇒ sa � φ ⇐⇒ s � a(φ) ⇐⇒ s |= a(φ)

As a consequence, the following relation

R =
{ 〈s , s ′〉 ∈ S × S | ∀φ ∈ Lc

g . s |= φ⇔ s ′ |= φ
}

and its inverse R−1 are simulation relations on S . Thus R is a bisimulation.
(2) It is sufficient to construct for a given s ∈ S a formula φs with s ∼ φs . To this

end, we associate with every state s ∈ S a variable xs ∈ X and a formula φs = νxs . ψs

defined by
ψs =

∧

a∈A
a(xsa ) ∧ a↓s [a]

Syntactically replacing free occurrences of xs′ by φs′ in φs (s �= s ′) will ensure that all
φs will be in Lc

g . By construction, s ∼ φs . ��
Let us illustrate the last construction above. Recall the two’s complement Mealy ma-
chine presented before:

s1
1|1 ��

0|0
��

s2

1|0,0|1
��

We define φ1 = νx1. ψ1 and φ2 = νx2. ψ2 by

ψ1 = 0(x1) ∧ 0↓0 ∧ 1(x2) ∧ 1↓1 ψ2 = 0(x2) ∧ 0↓1 ∧ 1(x2) ∧ 1↓0
Substituting φ2 for x2 in ψ1 then yields

φ1 = νx1. 0(x1) ∧ 0↓0 ∧ 1(φ2) ∧ 1↓1 φ2 = νx2. 0(x2) ∧ 0↓1 ∧ 1(x2) ∧ 1↓0
By construction we have s1 ∼ φ1 and s2 ∼ φ2.

3.1 Proof System

We now introduce a proof system for assertions of the form φ1 ≤ φ2, where ≤ is the
relation of logical entailment between the closed formulae φ1 and φ2.



Coalgebraic Logic and Synthesis of Mealy Machines 239

(refl) φ ≤ φ (top) φ ≤ tt
(∧ − e1) φ1 ∧ φ2 ≤ φ1 (∧ − e2) φ1 ∧ φ2 ≤ φ2

(trans)
φ1 ≤ φ2 φ2 ≤ φ3

φ1 ≤ φ3

(∧ − i)
φ ≤ φ1 φ ≤ φ2

φ ≤ φ1 ∧ φ2

(a↓ − 	) tt ≤ a↓	B (a() −	) tt ≤ a(tt)
(a↓ − ∧) a↓b1 ∧ a↓b2 ≤ a↓(b1 ∧B b2) (a() − ∧) a(φ1) ∧ a(φ2) ≤ a(φ1 ∧ φ2)

(a↓− ≤)
b1 ≤B b2

a↓b1 ≤ a↓b2

(a()− ≤)
φ1 ≤ φ2

a(φ1) ≤ a(φ2)

(ν − i)
φ ≤ ψ[φ/x ]

φ ≤ νx .ψ (ν − e)
ψ[νx .ψ/x ] ≤ φ
νx .ψ ≤ φ

The first group of axioms and rules gives to the set of formulae the structure of a meet-
semilattice. Further, there are axioms and rules for the two modal operators, showing
the interactions between the transition and output formulae with the meet-semilattice
structure. Finally, the last two rules (ν − i) and (ν − e) can be explained as stating
that the term νx .ψ is the greatest postfixed point, when viewing the formula ψ as a
(monotone) map on formulae.

We write � φ1 ≤ φ2 to indicate that the assertion φ1 ≤ φ2 is derivable from the
above axioms and rules. Note that the converse of (a↓ − ∧) is derivable from (a↓− ≤)
and (∧ − i). Similarly, also the converses of (a↓ − 	), (a() − 	) and (a() − ∧) are
derivable.

Theorem 5 (Soundness). The above proof system is sound, that is, for closed formulae
φ1 and φ2, � φ1 ≤ φ2 implies that for all Mealy machines (S , f ) and s ∈ S if s |= φ1

then s |= φ2.

Proof. By induction on the length of proofs. ��
Next we turn to the completeness for the modal fragment Lm of our Mealy logic L,
where a modal formula is a formula with neither fixed point operators nor variables.
Note that the (Lindenbaum algebra of) Lm is a meet-semilattice.

Let Θ be the set of all filters of (the Lindenbaum algebra of) Lm , where a filter of a
meet-semilattice is a non-empty upper closed subset F such that if a, b ∈ F then also
a∧b ∈ F . The setΘ can be turned into a Mealy machine (Θ, θ) by defining, for F ∈ Θ
and a ∈ A, θ(F )(a) = 〈F [a],Fa 〉, where

F [a] =
∧
{b|a↓b ∈ F} Fa = {φ|a(φ) ∈ F} .

Note that in order for F [a] to be well defined we assume B to be a finite meet-semilattice.
In case B is infinite, we would need B to be a complete meet-semilattice.

Theorem 6. For every Mealy machine (S , f ) there exists a unique homomorphism
kS :S → Θ. In particular, the homomorphism kΓ :Γ → Θ is an isomorphism.

As a consequence of Theorem 4, the isomorphism kΓ :Γ → Θ is also an order iso-
morphism, where the order on Θ is subset inclusion. The logical significance of the



240 M.M. Bonsangue, J. Rutten, and A. Silva

above result is that a finitary logic with only finite conjunctions suffices to completely
describe all Mealy machines up to bisimilarity. In fact the modal fragment of our logic
is a special case of coalgebraic logic obtained by a Stone-type duality [1,2].

Theorem 6 together with the next lemma gives a logical interpretation of the final
coalgebra: its elements correspond to canonical models (in the logical sense) of the
Mealy logic.

Lemma 7. For every modal formula φ and filter F ∈ Θ, F |= φ if and only if φ ∈ F .

Proof. By induction on the structure of φ, using the fact that F is a filter and the above
definition of θ:Θ → (B ×Θ)A. ��
We can finally prove the completeness of the modal fragment of our Mealy logic.

Theorem 8 (Completeness). For modal formulae φ1 and φ2, if s |= φ1 implies s |= φ2

for all Mealy machines (S , f ) and s ∈ S , then � φ1 ≤ φ2.

Proof. Assume �� φ1 ≤ φ2. It is enough to find a state s in a Mealy machine (S , f )
such that s |= φ1 but s �|= φ2. Define Fφ1 = {ψ | φ1 ≤ ψ}. It is not very difficult to
verify that Fφ1 is a filter, hence it is an element of Θ. Clearly, φ1 ∈ Fφ1 but, by our
assumption φ2 �∈ Fφ1 . We can now conclude by applying Lemma 7. ��

3.2 Adding Negation

The logic we have considered so far contains no negation. Extending the logic with
negated formulae is not problematic as long as we consider Mealy machines with out-
puts in a Boolean algebra B (like the two-element set). In this case, we can still turn the
set of (possibly negated) formulae into a Mealy coalgebra by extending our definition
of λ at the beginning of section 3 with

(¬φ)[a] = ¬B (φ[a]) (¬φ)a = ¬(φ)a .

It is easy to see that according to this definition negation distributes up to bisimulation
over conjunction (de Morgan law), and over the modal operators (a sign that the ma-
chine is indeed deterministic). Further, negation is classical, meaning that ¬(¬φ) ∼ φ.
Clearly, disjunctions and μ-recursive formulae can be defined as derived operators.

From the logical point of view, this means that the Lindenbaum algebra of the
resulting logic with negation is the free Boolean algebra over the meet-semilattice
of the Mealy logic we considered here. In this case one can apply the isomorphism
UFilt(B(L)) ∼= Filt(L) to obtain analogous soundness and completeness results as
above, where L is a meet-semilattice, B(L) is the free Boolean algebra over L and
UFilt(B(L)) is the set of ultrafilters of B(L).

4 Synthesis

We will now describe the synthesis process that produces a Mealy machine from an
arbitrary (closed and guarded) Mealy formula1. Each state of the resulting Mealy ma-
chine will be a formula constructed in such a way that if s is the state corresponding to

1 The source code in HASKELL can be downloaded from www.cwi.nl/˜ams/mealy



Coalgebraic Logic and Synthesis of Mealy Machines 241

a formula φ, then s ∼ φ. This implies that the semantics of s is exactly the set of causal
functions satisfying φ.

4.1 Formulae Normalization

We have seen that the first group of six axioms and rules of our proof system gives to the
set of formulae the structure of a meet-semilattice. In order to guarantee the termination
of the synthesis process we will need to identify formulae that are provably equivalent
using only these axioms and rules. For instance, the formulae

a(tt) ∧ a↓b ∧ tt ∧ a↓b and a(tt) ∧ a↓b
are equivalent.

To normalize a formula φ, we need to eliminate any redundancy present in the for-
mula: in a conjunction, tt can be eliminated and, by idempotency, the conjunction of
two syntactically equivalent formulae can be simplified.

The function norm encodes this procedure. We define it by induction on the formula
structure as follows:

norm(tt) = tt
norm(a(φ)) = a(norm(φ))
norm(a↓b) = a↓b
norm(φ1 ∧ φ2) = conj (rem(flatten(norm(φ1) ∧ norm(φ2))))
norm(νx .φ) = νx .(norm(φ)) .

Here, conj takes a list of formulae [φ1, . . . , φn ] and returns the formula φ1∧ . . .∧φn

(conj applied to the empty list yields tt ), rem removes duplicates in a list and flatten
takes a formula φ and produces a list of formulae by omitting brackets and replacing
∧-symbols by commas:

flatten(φ1 ∧ φ2) = flatten(φ1) · flatten(φ2)
flatten(tt) = []
flatten(φ) = [φ], φ ∈ {a↓b, a(φ1), νx .φ1}

In this definition, · denotes list concatenation and [φ] the singleton list containing φ.
Note that an occurrence of tt in a conjunction is eliminated because flatten(tt) = [].

For example, the normalization of the two formulae above will result in the same
formula – a(tt) ∧ a↓b.

Note that norm still distinguishes the formulae φ1∧φ2 and φ2∧φ1. For simplifying
the presentation of the normalization algorithm, we decided not to identify these formu-
lae, since this will not influence termination. However, in the implementation, in order
to reduce the number of states, those formulae are identified. In the examples below this
situation will never occur.

4.2 Synthesis

We first describe what happens in a single step of the synthesis process.
The function δ, which does one-step synthesis for a single formula, takes a formula

φ ∈ Lc
g and produces a partial Mealy machine. Below, δ will be used in the functionΔ,

which synthesises the total Mealy machine.



242 M.M. Bonsangue, J. Rutten, and A. Silva

The function δ is defined, by induction on the complexity measure N defined in
Section 3, as follows:

δ(tt)(a) = 〈	B , tt〉
δ(a′(φ))(a) =

{ 〈	B ,norm(φ)〉 a = a′

〈	B , tt〉 otherwise

δ(a′↓b)(a) =
{ 〈b, tt〉 a = a′

〈	B , tt〉 otherwise
δ(φ1 ∧ φ2)(a) = δ(φ1)(a) � δ(φ2)(a)
δ(νx .φ)(a) = 〈b,norm(φ′)〉 where 〈b, φ′〉 = δ(φ[νx .φ/x ])(a)

where � is defined as: 〈b1, φ1〉 � 〈b2, φ2〉 = 〈b1 ∧B b2,norm(φ1 ∧ φ2)〉.
Note that this function is very similar to the function λ presented in Section 3. In

fact, the difference is the normalization that is now being applied to the formulae so
that a finite machine will be produced.

As an example, consider the formula φ = 1↓0 ∧ (νx .1(x )), specifying a binary
Mealy machine. We can easily compute that δ(φ)(0) = 〈	B , tt〉 and

δ(φ)(1) = δ(1↓0)(1) � δ(νx .1(x ))(1)
= 〈0, tt〉 � 〈	B , νx .1(x )〉
= 〈0, νx .1(x )〉

So, δ(φ) is a (partial) finite function represented by the following diagram.

φ
1|0 ��

0|�B

��

νx .1(x )

tt

To compute the entire Mealy machine that satisfies φ, we need to apply δ to the
new states generated at each step repeatedly until all states in the automata have their
transitions/outputs fully defined.

We implement this procedure with the auxiliary function D . The arguments of this
function are two sets of states: sts ⊆ Lc

g , the states that still need to be processed and
vis ⊆ Lc

g , the states that already have been visited (synthesized). For each φ ∈ sts , D
computes δ(φ) and produces an intermediate transition function (possibly partial) by
taking the union of all those δ(φ). Then, it collects all new states appearing in this step
and recursively computes the transition function for those.

D(sts , vis) =
{∅ sts = ∅

trans ∪D(newsts , vis ′) otherwise
where trans = {〈φ, δ(φ)〉 | φ ∈ sts}

sts ′ = collectStates(trans)
vis ′ = sts ∪ vis
newsts = sts ′ \ vis ′

The function Δ takes a Mealy formula φ ∈ Lc
g and returns a Mealy machine that

satisfies φ:



Coalgebraic Logic and Synthesis of Mealy Machines 243

Δ(φ) = (dom(f ), f ) where f = D({norm(φ)}, ∅)

The function dom returns the domain of a finite function.
Due to lack of space, the proof of finiteness and termination of the synthesis algo-

rithm is not included. They are included in the extended version of this paper [3].
Let us look at an example. For the formula φ presented aboveΔ(φ) = (S , f ), where

S = {tt , φ, νx .1(x )} and f is represented by the following diagram.

φ
1|0 ��

0|�B

��

νx .1(x )

1|�B

��

0|�B

���������������

tt

1|�B ,0|�B

		

Note that the Mealy machine produced by Δ is not minimal. In this example, the
states tt and νx .1(x ) are bisimilar and could be identified.

The (special) output value	B allows us to define underspecified machines: if a given
formula does not contain information about the output value for a given input a, then
we do not return as output a concrete value but instead 	B . If 	B is replaced by any
other element b ∈ B the resulting machine will still satisfy φ.

Let us see a few other examples of the synthesis process. To simplify the presenta-
tion, we consider again binary machines and, moreover, the formulae presented below
will only have information for the input 1. Therefore, for the 0 input δ will always return
〈	B , tt〉.

Let us start with φ1 = 1(1↓0) ∧ (νx .1(x )). We have:

δ(φ1)(1) = δ(1(1↓0))(1) � δ(νx .1(x ))(1)
= 〈	B , 1↓0〉 � 〈	B , νx .1(x )〉
= 〈	B , 1↓0 ∧ (νx .1(x ))〉

We now repeat the process for 1↓0∧ (νx .1(x )), which will yield δ(1↓0∧ (νx .1(x )))
(1) = 〈0, νx .1(x )〉. Finally, we calculate δ(νx .1(x ))(1) = 〈	B , νx .1(x )〉.

The complete Mealy machine is represented in the following diagram:

φ1
1|�B ��

0|�B

��

1↓0 ∧ (νx .1(x ))

1|0
��

0|�B



����������������

tt

1|�B ,0|�B

		 νx .1(x )

1|�B

��
0|�B��

Now, take φ2 = νx .1(1↓0)∧ 1(x ). Because 1(1↓0) has no x ’s one could be tempted
to assume that the automaton for φ2 would be the same as the one for φ1. However, that
is not the case. The synthesis algorithm will produce the following automaton for φ2.



244 M.M. Bonsangue, J. Rutten, and A. Silva

φ2
1|�B ��

0|�B

��

1↓0 ∧ φ2

0|�B



��������������

1|0
��

tt

1|�B ,0|�B

		

As a last example, let φ3 = νx .1(x ∧ (νy.1(y) ∧ 1↓0)). We have:

δ(φ3)(1) = δ(1(φ3 ∧ (νy.1(y) ∧ 1↓0)))(1)
= 〈	B , φ3 ∧ (νy.1(y) ∧ 1↓0)〉

and

δ(φ3 ∧ (νy.1(y) ∧ 1↓0))(1)
= δ(φ3)(1) � δ(νy.1(y) ∧ 1↓0)(1)
= 〈	B , φ3 ∧ (νy.1(y) ∧ 1↓0)〉 � 〈0, νy.1(y) ∧ 1↓0〉
= 〈0,norm(φ3 ∧ (νy.1(y) ∧ 1↓0) ∧ (νy.1(y) ∧ 1↓0))〉
= 〈0, φ3 ∧ (νy.1(y) ∧ 1↓0)〉

Note that if norm would not have been applied, the resulting state φ3 ∧ (νy.1(y) ∧
1↓0) ∧ (νy.1(y) ∧ 1↓0) would be regarded as a new state, even though it is equivalent
to φ3 ∧ (νy.1(y) ∧ 1↓0). Moreover, applying δ to this state (for input 1) would yield
again an equivalent but (syntactically) different state, namely φ3 ∧ (νy.1(y) ∧ 1↓0) ∧
(νy.1(y) ∧ 1↓0) ∧ (νy.1(y) ∧ 1↓0). This illustrates that the function λ, defined in
Section 3, generally produces an infinite machine. However, the identifications made
by norm ensure the termination of the synthesis process.

5 Conclusions and Future Work

We have given a coalgebraic account of Mealy machines and provided a logical spec-
ification language for them. Despite its simplicity, the logic is expressive in the sense
that all Mealy machines can be characterized by finite formulae, but also in the sense
that logical equivalence corresponds to bisimulation. Further, the logic is sound and the
modal fragment complete for all Mealy machines.

The specification language is finitary and includes a fixed point operator.
Other temporal operators can be defined as derived operators. Interestingly, the lan-

guage is already expressive enough to characterize all Mealy machines even without
negation and disjunction. Even stronger, for binary Mealy machines the addition of
negation does not increase the expressive power of the logic. This situation is typical
also of deterministic finite automata: the addition of negation in regular expressions
does not increase the class of languages that they characterize, even though regular
languages are closed under complement.

Our main result is an algorithm for the synthesis of a Mealy machine from a for-
mula. Our synthesis algorithm is compositional, in the sense that the semantics of the



Coalgebraic Logic and Synthesis of Mealy Machines 245

Mealy machine synthesized from a formula can be obtained by suitably composing the
semantics of the Mealy machines synthesized from sub-formulae.

In this paper we have explored the synthesis of one particular type of automata, the
Mealy machines. With a small variation of the logic one can easily obtain a similar result
for Moore automata. More generally, different type of automata can be obtained by
varying the functor under consideration on the category of sets. It would be interesting
to generalize the present result in order to synthesize coalgebras for different functors.

Acknowledgements. We would like to thank Clemens Kupke, Helle Hvid Hansen and
Yde Venema for valuable suggestions and discussions.

References

1. Bonsangue, M.M., Kurz, A.: Duality for logics of transition systems. In: Sassone, V. (ed.)
FOSSACS 2005. LNCS, vol. 3441, pp. 455–469. Springer, Heidelberg (2005)

2. Bonsangue, M.M., Kurz, A.: Presenting functors by operations and equations. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 172–186. Springer, Heidelberg
(2006)

3. Bonsangue, M.M., Rutten, J.J. M.M., Silva, A.: Coalgebraic Logic and Synthesis of Mealy
Machines. CWI Technical report R0705 (2007)

4. Clarke, E.M., German, S.M., Lu, Y., Veith, H., Wang, D.: Executable protocol specification
in esl. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 197–216.
Springer, Heidelberg (2000)

5. Hansen, H.H., Costa, D., Rutten, J.J.M.M.: Synthesis of mealy machines using derivatives.
ENTCS 164(1), 27–45 (2006)

6. Katis, P., Sabadini, N., Walters, R.F.C.: Feedback, trace and fixed-point semantics. ITA 36(2),
181–194 (2002)

7. Kozen, D.: Results on the propositional µ-calculus. TCS 27, 333–354 (1983)
8. Kupferman, O., Vardi, M.: µ-calculus synthesis. In: Nielsen, M., Rovan, B. (eds.) MFCS

2000. LNCS, vol. 1893, pp. 497–507. Springer, Heidelberg (2000)
9. Kupferman, O., Vardi, M., Wolper, P.: An automata-theoretic approach to branching-time

model checking. J. ACM 47(2), 312–360 (2000)
10. Kupke, C., Venema, Y.: Coalgebraic automata theory: basic results. Technical Report SEN-

E0701, CWI, The Netherlands (2007)
11. Marcovitz, A.B.: Introduction to Logic Design. McGraw-Hill, New York (2005)
12. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96 (1999)
13. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: POPL 1989, pp. 179–190

(1989)
14. Rutten, J.J.M.M.: Algebraic specification and coalgebraic synthesis of mealy automata.

ENTCS 160, 305–319 (2006)
15. Tini, S., Maggiolo-Schettini, A.: Compositional synthesis of generalized mealy machines.

Fundam. Inform. 60(1–4), 367–382 (2004)



The Microcosm Principle
and Concurrency in Coalgebra

Ichiro Hasuo1,3,4, Bart Jacobs1,�, and Ana Sokolova2,��

1 Radboud University Nijmegen, The Netherlands
2 University of Salzburg, Austria
3 RIMS, Kyoto University, Japan

4 PRESTO Research Promotion Program, Japan Science and Technology Agency

Abstract. Coalgebras are categorical presentations of state-based systems. In in-
vestigating parallel composition of coalgebras (realizing concurrency), we ob-
serve that the same algebraic theory is interpreted in two different domains in a
nested manner, namely: in the category of coalgebras, and in the final coalgebra
as an object in it. This phenomenon is what Baez and Dolan have called the mi-
crocosm principle, a prototypical example of which is “a monoid in a monoidal
category.” In this paper we obtain a formalization of the microcosm principle
in which such a nested model is expressed categorically as a suitable lax natural
transformation. An application of this account is a general compositionality result
which supports modular verification of complex systems.

1 Introduction

Design of systems with concurrency is nowadays one of the mainstream challenges in
computer science [19]. Concurrency is everywhere: with the Internet being the biggest
example and multi-core processors the smallest; also in a modular, component-based
architecture of a complex system its components collaborate in a concurrent manner.
However, numerous difficulties have been identified in getting concurrency right. For
example, a system’s exponentially growing complexity is one of the main obstacles.
One way to cope with it is a modular verification method in which correctness of the
whole system C1 ‖ · · · ‖ Cn is established using correctness of each component Ci.
Compositionality—meaning that the behavior of C ‖ D is determined by the behavior
of C and that of D—is an essential property for such a modular method to work.

Coalgebras as systems. This paper is a starting point of our research program aimed at
better understanding of the mathematical nature of concurrency. In its course we shall
use coalgebras as presentations of systems to be run in parallel. The use of coalgebras as
an appropriate abstract model of state-based systems is increasingly established [26,11];
the notion’s mathematical simplicity and clarity provide us with a sound foundation

� Also part-time at Technical University Eindhoven, The Netherlands.
�� Supported by the Austrian Science Fund (FWF) project no. P18913-N15.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 246–260, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



The Microcosm Principle and Concurrency in Coalgebra 247

for our exploration. The following table summarizes how ingredients of the theory of
systems are presented as coalgebraic constructs.

system behavior-preserving map behavior

coalgebraically coalgebra
FX

X

morphism of coalgebras

FX
F f

FY

X
f

Y

by coinduction
FX FZ

X
c

beh(c)
Z

∼=final
(1)

This view of “coalgebras as systems” has been successfully applied in the category
Sets of sets and functions, in which case the word “behavior” in (1) refers (roughly)
to bisimilarity. Our recent work [6, 5] has shown that “behavior” can also refer to trace
semantics by moving from Sets to a suitable Kleisli category.

Compositionality in coalgebras. We start with the following question: what is “com-
positionality” in this coalgebraic setting? Conventionally compositionality is expressed
as: C ∼ C′ and D ∼ D′ implies C ‖ D ∼ C′ ‖ D′, where the relation ∼ denotes
the behavioral equivalence of interest. If this is the case the relation ∼ is said to be a
congruence, with its oft-heard instance being “bisimilarity is a congruence.”

When we interpret “behavior” in compositionality as the coalgebraic behavior in-
duced by coinduction (see (1)), the following equation comes natural as a coalgebraic
presentation of compositionality.

beh

(
FX

X
c

∥
∥
∥
∥

FY

Y
d

)

= beh

(
FX

X
c

) ∥
∥
∥
∥ beh

(
FY

Y
d

)

(2)

But a closer look reveals that the two “parallel composition operators” ‖ in the equation
have in fact different types: the first one CoalgF × CoalgF → CoalgF combines
systems (as coalgebras) and the second one Z × Z → Z combines behavior (as states
of the final coalgebra).1 Moreover, the two domains are actually nested: the latter one
Z
∼=→ FZ is an object of the former one CoalgF .

The microcosm principle. What we have just observed is one instance—probably the
first one explicitly claimed in computer science—of the microcosm principle as it is
called by Baez and Dolan [1]. It refers to a phenomenon that the same algebraic theory
(or algebraic “specification,” consisting of operations and equations) is interpreted twice
in a nested manner, once in a category C and the other time in its object X ∈ C. This
is not something very unusual, because “a monoid in a monoidal category” constitutes
a prototypical example.

1 At this stage the presentation remains sloppy for the sake of simplicity. Later in technical
sections the first composition operator will be denoted by ⊗⊗⊗; and the second composition
operator will have the type Z ⊗ Z → Z instead of Z × Z → Z.



248 I. Hasuo, B. Jacobs, and A. Sokolova

monoidal category C monoid X ∈ C

⊗ : C × C → C multiplication X ⊗ X
μ→ X

I ∈ C unit I
η→ X

I ⊗ X ∼= X ∼= X ⊗ I unit law
X X ⊗ X X

X

X ⊗ (Y ⊗ Z) ∼= (X ⊗ Y ) ⊗ Z associativity law
X ⊗ X ⊗ X X ⊗ X

X ⊗ X X

(3)

Notice here that the outer operation ⊗ appears in the formulation of the inner operation
μ. Moreover, to be precise, in the inner “equations” the outer isomorphisms should be
present in suitable places. Hence this monoid example demonstrates that, in such nested
algebraic structures, the inner structure depends on the outer. What is a mathematically
precise formalization of such nested models? Answering this question is a main goal of
this paper.

Such a formalization has been done in [1] when algebraic structures are specified
in the form of opetopes. Here instead we shall formalize the microcosm principle for
Lawvere theories [18], whose role as categorical representation of algebraic theories
has been recognized in theoretical computer science.

L

1

C

⇓X
CAT

As it turns out, our formalization looks like the situation on the
right. Here L is a category (a Lawvere theory) representing an alge-
braic theory; an outer model C is a product-preserving functor; and
an inner model X is a lax natural transformation. The whole setting
is 2-categorical: 2-categories (categories in categories) serve as an appropriate basis for
the microcosm principle (algebras in algebras).

Applications to coalgebras: Parallel composition via sync. The categorical account
we have sketched above shall be applied to our original question about parallel com-
position of coalgebras. As a main application we prove a generic compositionality the-
orem. For an arbitrary algebraic theory L, compositionality like (2) is formulated as
follows: the “behavior” functor beh : CoalgF → C/Z via coinduction preserves an
L-structure. This general form of compositionality holds if: C has an L-structure and
F : C → C lax-preserves the L-structure.

Turning back to the original setting of (2), these general assumptions read roughly
as follows: the base category C has a binary operation ‖; and the endofunctor F comes
with a natural transformation sync : FX ‖ FY → F (X ‖ Y ). Essentially, this sync is
what lifts ‖ on C to ‖ on CoalgF , hence “parallel composition via sync.” It is called a
synchronization because it specifies the way two systems synchronize with each other.
In fact, for a fixed functor F there can be different choices of sync (such as CSP-style
vs. CCS-style), which in turn yield different “parallel composition” operators on the
category CoalgF .

Related work. Our interest is pretty similar to that of studies of bialgebraic structures
in computer science (such as [27, 3, 15, 14, 12, 16]), in the sense that we are also con-
cerned about algebraic structures on coalgebras as systems. Our current framework is
distinguished in the following aspects.



The Microcosm Principle and Concurrency in Coalgebra 249

First, we handle equations in an algebraic theory as an integral part of our ap-
proach. Equations such as associativity and commutativity appear explicitly as com-
mutative diagrams in a Lawvere theory L. We benefit from this explicitness in e.g.
spelling out a condition for the generic associativity result (Theorem 2.4). In contrast,
in the bialgebraic studies an algebraic theory is presented either by an endofunctor
X �→

∐
σ∈Σ X |σ| or by a monad T . In the former case equations are simply not present;

in the latter case equations are there but only implicitly.
Secondly and more importantly, by considering higher-dimensional, nested algebraic

structures, we can now compose different coalgebras as well as different states of the
same coalgebra. In this way the current work can be seen as a higher-dimensional ex-
tension of the existing bialgebraic studies (which focus on “inner” algebraic structures).

Organization of the paper. We shall not dive into our 2-categorical exploration from
the beginning. In Section 2, we instead focus on one specific algebraic theory, namely
the one for parallel composition of systems. Our emphasis there is on the fact that the
sync natural transformation essentially gives rise to parallel composition ‖, and the fact
that equational properties of ‖ (such as associativity) can be reduced to the correspond-
ing equational properties of sync.

These concrete observations will provide us with intuition for abstract categorical
constructs in Section 3, where we formalize the microcosm principle for an arbitrary
Lawvere theory L. Results on coalgebras such as compositionality are proved here in
their full generality and abstraction.

In this paper we shall focus on strict algebraic structures on categories in order to
avoid complicated coherence issues. This means for example that we only consider
strict monoidal categories for which the isomorphisms in (3) are in fact equalities.
However, we have also obtained some preliminary observations on relaxed (“pseudo”
or “strong”) algebraic structures: see Section 3.3.

2 Parallel Composition of Coalgebras

2.1 Parallel Composition Via sync Natural Transformation

Let us start with the equation (2), a coalgebraic representation of compositionality. The
operator ‖ on the left is of type CoalgF × CoalgF → CoalgF . It is natural to re-
quire functoriality of this operation, making it a bifunctor. A bifunctor—especially an
associative one which we investigate in Section 2.3—plays an important role in various
applications of category theory. Usually such an (associative) bifunctor is called a tensor
and denoted by ⊗⊗⊗, a convention that we also follow. Therefore the “compositionality”
statement now looks as follows.

beh

(
FX

X
c ⊗⊗⊗

FY

Y
d

)

= beh

(
FX

X
c

) ∥
∥
∥
∥ beh

(
FY

Y
d

)

(4)



250 I. Hasuo, B. Jacobs, and A. Sokolova

The first question is: when do we have such a tensor ⊗⊗⊗ on CoalgF ? In many appli-
cations of coalgebras, it is obtained by lifting a tensor ⊗ on the base category C to
CoalgF .2 Such a lifting is possible in presence of a natural transformation

FX ⊗ FY
syncX,Y−→ F (X ⊗ Y ), used in

FX

X
c ⊗⊗⊗

FY

Y
d :=

F (X ⊗ Y )

FX ⊗ FY

syncX,Y

X ⊗ Y
c ⊗ d

. (5)

We shall call this sync a synchronization because its computational meaning is indeed a
specification of the way two systems synchronize. This will be illustrated in the coming
examples.

F (Z ⊗ Z) FZ

Z ⊗ Z

ζ⊗⊗⊗ζ

‖ Z

ζfinal

Once we have an outer parallel composition ⊗⊗⊗, an inner
operator ‖ which composes behavior (i.e. states of the final
coalgebra) is also obtained immediately by coinduction as
on the right. Compositionality (4) is also straightforward by
finality: both sides of the equation are the unique coalgebra morphism from c⊗⊗⊗d to the
final ζ. The following theorem summarizes the observations so far.

Theorem 2.1 (Coalgebraic compositionality). Assume that a category C has a tensor
⊗ : C × C → C and an endofunctor F : C → C has a natural transformation
syncX,Y : FX ⊗FY → F (X ⊗Y ). If moreover there exists a final F -coalgebra, then:

1. The tensor ⊗ on C lifts to an “outer” composition operator ⊗⊗⊗ : CoalgF ×
CoalgF → CoalgF .

2. We obtain an “inner” composition operator ‖: Z ⊗ Z → Z by coinduction.
3. Between the two composition operators the compositionality property (4) holds.

�	

We can put the compositionality property (4) in more abstract terms as “the functor
beh : CoalgF → C/Z preserves a tensor,” meaning that the diagram below left com-
mutes. Here a tensor ⊗ on the slice category C/Z is given as on the right, using the
inner composition ‖.

CoalgF × CoalgF

beh × beh

⊗⊗⊗
C/Z × C/Z

⊗
CoalgF

beh
C/Z

(
X

f
Z

,
Y

g
Z

)
⊗

�−→

X ⊗ Y
f ⊗ g

Z ⊗ Z
‖

Z

(6)

The point of Theorem 2.1 is as follows. Those parallel composition operators which
are induced by sync are well-behaved ones: good properties like compositionality come
for free. We shall present some examples in Section 2.2.

Remark 2.2. The view of parallel composition of systems as a tensor structure on
CoalgF has been previously presented in [13]. The interest there is on categorical

2 Note that we use boldface ⊗⊗⊗ for a tensor on CoalgF to distinguish it from ⊗ on C.



The Microcosm Principle and Concurrency in Coalgebra 251

structures on CoalgF rather than on properties of parallel composition such as compo-
sitionality. In [13] and other literature an endofunctor F with sync (equipped with some
additional compatibility) is called a monoidal endofunctor.3

2.2 Examples

In Sets: Bisimilarity is a congruence. We shall focus on LTSs and bisimilarity as
their process semantics. For this purpose it is appropriate to take Sets as our base
category C and Pω(Σ × ) as the functor F . We use Cartesian products as a tensor
on Sets. This means that a composition of two coalgebras has the product of the two
state spaces as its state space, which matches our intuition. The functor Pω in F is the
finite powerset functor; the finiteness assumption is needed for existence of a final F -
coalgebra. It is standard (see e.g. [26]) that a final F -coalgebra captures bisimilarity via
coinduction.

In considering parallel composition of LTSs, the following two examples are well-
known ones.4

– CSP-style [7]: a.P ‖ a.Q
a→ P ‖ Q. For the whole system to make an a-action,

each component has to make an a-action.
– CCS-style [21]: a.P ‖ a.Q

τ→ P ‖ Q, assuming Σ = {a, b, . . .}∪{a, b, . . . }∪{τ}.
When one component outputs on a channel a and another inputs from a, then the
whole system makes an internal τ move.

In fact, each of these different ways of synchronization can be represented by a suitable
sync natural transformation.

Pω(Σ × X) × Pω(Σ × Y ) −→ Pω

(
Σ × (X × Y )

)

(u, v)
syncCSP

X,Y�−→
{

(a, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v
}

(u, v)
syncCCS

X,Y�−→
{

(τ, (x, y)) | (a, x) ∈ u ∧ (a, y) ∈ v
}

By Theorem 2.1, each of these gives (different) ⊗⊗⊗ on CoalgF , and ‖ on Z; moreover
the behavior functor beh satisfies compositionality. In other words: bisimilarity is a
congruence with respect to both CSP-style and CCS-style parallel composition.

Remark 2.3. As mentioned in the introduction, in some ways this paper can be seen as
an extension of the bialgebraic studies started in [27]. However there is also a drawback,
namely the limited expressive power of sync : FX ⊗ FY → F (X ⊗ Y ).

Our sync specifies the way an algebraic structure interacts with a coalgebraic one.
In this sense it is a counterpart of a distributive law ΣF ⇒ FΣ in [27] representing
operational rules, where Σ is a functor induced by an algebraic signature. However
there are many common operational rules which do not allow representation of the

3 Later in Section 3 we will observe that a functor F with sync is a special case of a lax L-
functor, by choosing a suitable algebraic theory L. Such a functor F with sync is usually
called a monoidal functor (as opposed to a lax monoidal functor), probably because it preserves
(inner) monoid objects; see Proposition 3.8.1.

4 Here we focus on synchronous interaction. Both CSP and CCS have an additional kind of
interaction, namely an “interleaving” one; see Remark 2.3.



252 I. Hasuo, B. Jacobs, and A. Sokolova

form ΣF ⇒ FΣ; therefore in [27] the type of such a distributive law is eventually
extended to Σ(F × id) ⇒ FΣ∗. The class of rules representable in this form coincides
with the class of so-called GSOS-rules.

At present it is not clear how we can make a similar extension for our sync; conse-
quently there are some operational rules which we cannot model by sync. One impor-
tant example is an interleaving kind of interaction—such as a.P ‖ Q

a→ P ‖ Q which
leaves the second component unchanged. This is taken care of in [27] by the identity
functor (id) appearing on the left-hand side of Σ(F × id) ⇒ FΣ∗. For our sync to
be able to model such interleaving, we can replace F by the cofree comonad on it, as
is done in [13, Example 3.11]. This extension should be straightforward but detailed
treatment is left as future work.

In K�(T ): Trace equivalence is a congruence. In our recent work [6] we extend
earlier observations in [25, 10] and show that trace semantics—including trace set se-
mantics for non-deterministic systems and trace distribution semantics for probabilistic
systems—is also captured by coinduction when it is employed in a Kleisli category
K�(T ). Applying the present composition framework, we can conclude that trace se-
mantics is compositional with respect to well-behaved parallel composition. The details
are omitted here due to lack of space.

2.3 Equational Properties of Parallel Composition

Now we shall investigate equational properties—associativity, commutativity, and so
on—of parallel composition ⊗⊗⊗, which we have ignored deliberately for simplicity of
argument. We present our result in terms of associativity; it is straightforward to trans-
fer the result to other properties like commutativity. The main point of the following
theorem is as follows: if ⊗ is associative and sync is “associative,” then the lifting ⊗⊗⊗ is
associative. The proof is straightforward.

Theorem 2.4. Let C be a category with a strictly associative tensor ⊗,5 and F : C →
C be a functor with sync : FX ⊗ FY → F (X ⊗ Y ). If the diagram

FX ⊗ (FY ⊗ FZ)
FX ⊗ sync

id
FX ⊗ F (Y ⊗ Z)

sync
F (X ⊗ (Y ⊗ Z))

id
(FX ⊗ FY ) ⊗ FZ

sync ⊗FZ
F (X ⊗ Y ) ⊗ FZ

sync
F ((X ⊗ Y ) ⊗ Z)

(7)

commutes, then the lifted tensor ⊗⊗⊗ on CoalgF is strictly associative. �	

The two identity arrows in (7) are available due to strict associativity of ⊗. In the next
section we shall reveal the generic principle behind the commutativity condition of (7),
namely a coherence condition on a lax natural transformation.

As an example, syncCSP and syncCCS in Section 2.2 are easily seen to be “associative”
in the sense of the diagram (7). Therefore the resulting tensors ⊗⊗⊗ are strictly associative.

5 As mentioned already, in this paper we stick to strict algebraic structures.



The Microcosm Principle and Concurrency in Coalgebra 253

3 Formalizing the Microcosm Principle

In this section we shall formalize the microcosm principle for an arbitrary algebraic
theory presented as a Lawvere theory L. This and the subsequent results generalize the
results in the previous section. In particular, we will obtain a general compositionality
result which works for an arbitrary algebraic theory.

L

1

C

⇓X
CAT

As we sketched in the introduction, an outer model will be a
product-preserving functor C : L → CAT; an inner model inside
will be a lax natural transformation X : 1 ⇒ C. Here 1 : L → CAT
is the constant functor which maps everything to the category 1 with
one object and one arrow (which is a special case of an outer model). Mediating 2-cells
for the lax natural transformation X play a crucial role as inner interpretation of alge-
braic operations. In this section we heavily rely on 2-categorical notions, about which
detailed accounts can be found in [4].

3.1 Lawvere Theories

Lawvere theories are categorical presentations of algebraic theories. The notion is intro-
duced in [18] (not under this name, though) aiming at a categorical formulation of “the-
ories” and “semantics.” An accessible introduction to the notion can be found in [17].
Lawvere theories are known to be equivalent to finitary monads. These two ways of
presenting algebraic theories have been widely used in theoretical computer science,
e.g. for modeling computation with effect [22, 8]. Recent developments (such as [24])
utilize the increased expressive power of enriched Lawvere theories.

In the sequel, by an FP-category we refer to a category with (a choice of) finite prod-
ucts. An FP-functor is a functor between FP-categories which preserves finite products
“on-the-nose,” that is, up-to-equality instead of up-to-isomorphism.

Definition 3.1 (Lawvere theory). By Nat we denote the category of natural numbers
(as sets) and functions between them. Therefore every arrow in Nat is a (cotuple of)
coprojection; an arrow in Natop is a (tuple of) projection.6

A Lawvere theory is a small FP-category L equipped with an FP-functor
H : Natop→L which is bijective on objects. We shall denote an object of L by a
natural number k, identifying k ∈ Natop and Hk ∈ L.

The category Natop—which is a free FP-category on the trivial category 1—is there
in order to specify the choice of finite products in L. For illustration, we make some
remarks on L’s objects and arrows.

– An object k ∈ L is a k-fold product 1 × · · · × 1 of 1.
– An arrow in L is intuitively understood as an algebraic operation. That is, k → 1 as

a k-ary operation; and k → n as an n-tuple 〈f1, . . . , fn〉 of k-ary operations. To be
precise, arrows in L also include projections (such as π1 : 2 → 1) and terms made
up of operations and projections (such as m ◦ 〈π1, π2〉 : 3 → 1).

6 An arrow f : n → k in Nat can be written as a cotuple [κf(1), . . . , κf(n)] where κi : 1 → k
is the coprojection into the i-th summand of 1 + · · · + 1 (k times).



254 I. Hasuo, B. Jacobs, and A. Sokolova

Conventionally in universal algebra, an algebraic theory is presented by an algebraic
specification (Σ, E)—a pair of a set Σ of operations and a set E of equations. A Law-
vere theory L arises from such (Σ, E) as its so-called classifying category (see e.g. [18,
9]). An arrow k → n in the resulting Lawvere theory L is an n-tuple ([t1(−→x )], . . . ,
[tn(−→x )]) of Σ-terms with k variables −→x , where [ ] denotes taking an equivalence class
modulo equations in E. An equivalent way to describe this construction is via sketches:
(Σ, E) is identified with an FP-sketch, which in turn induces L as a free FP-category.
See [2] for details.

Our leading example is the Lawvere theory Mon for monoids.7 It arises as a classi-
fying category from the well-known algebraic specification of monoids. This specifica-
tion has a nullary operation e and a binary one m; subject to the equations m(x, e) = x,
m(e, x) = x, and m(x, m(y, z)) = m(m(x, y), z).

1
〈id,e〉

id

2
m

1
〈e,id〉

id

3
m×id

id×m
2

m

1 2 m 1

Equivalently, Mon is the freely generated FP-
category by arrows 0 e→ 1 and 2 m→ 1 subject to the
commutativity on the right. These data (arrows and com-
mutative diagrams) form an FP-sketch (see [2]).

3.2 Outer Models: L-Categories

L
X−→ Sets

2
m

1
�−→

X2

�m�

X

We start by formalizing an outer model. It is a category with an
L-structure, hence called an L-category. It is standard that a (set-
theoretic) model of L—a set with an L-structure—is identified with

an FP-functor L
X→ Sets. Concretely, let X = X1 be the image of

1 ∈ L. Then k ∈ L must be sent to Xk due to preservation of finite products. Now the
functor’s action on arrows is what interprets L’s operations in X , as illustrated above
right. Equations (expressed as commutative diagrams in L) are satisfied because a func-
tor preserves commutativity.

Turning back to L-categories, what we have to do here is to just replace Sets by the
category CAT of (possibly large and locally small) categories.

Definition 3.2 (L-categories, L-functors). A (strict) L-category is an FP-functor L
C→

CAT. In the sequel we denote the image C1 of 1 ∈ L by C; and the image C(f) of an
arrow f by �f�.

An L-functor F : C → D—a functor preserving an L-structure—is a natural trans-

formation L

C

D

⇓F CAT .

Another way to look at the previous definition is to view an L-structure as “factorization
through Natop → L.” We can identify a category C ∈ CAT with a functor 1 →
CAT, which is in turn identified with an FP-functor Natop → CAT, because Natop

is the free FP-category on 1. We say that C has an L-structure, if this FP-functor factors
through H : Natop → L (as below left). Note that the factorization is not necessarily

7 The Lawvere theory Mon for the theory of monoids should not be confused with the category
of (set-theoretic) monoids and monoid homomorphisms (which is often denoted by Mon as
well).



The Microcosm Principle and Concurrency in Coalgebra 255

unique, because there can be different ways of interpreting the algebraic theory L in C.

Similarly, a functor C
F→ D is identified with a natural transformation 1 ⇓F CAT ;

and then with Natop ⇓F CAT due to the 2-universality of Natop as a free object.
We say that this F preserves an L-structure, if the last natural transformation factors
through H : Natop → L (as below right).

Natop H

C

L

CAT

Natop H

⇓F

L
⇐

CAT

Example 3.3. The usual notion of strictly monoidal categories coincides with
L-categories for L = Mon. A tensor ⊗ and a unit I on a category arise as inter-
pretation of the operations 2 m→ 1 and 0 e→ 1; commuting diagrams in Mon such as
m ◦ 〈id, e〉 = id yield equational properties of ⊗ and I .

3.3 Remarks on “Pseudo” Algebraic Structures

As we mentioned in the introduction, in this paper we focus on strict algebraic
structures. This means that monoidal categories (in which associativity holds only up-
to-isomorphism, for example) fall out of our consideration. Extending our current
framework to such “pseudo” algebraic structures is one important direction of our fu-
ture work. Such an extension is not entirely obvious; we shall sketch some preliminary
observations in this direction.

The starting point is to relax the definition of L-categories from (strict) functors
L → CAT to pseudo functors, meaning that composition and identities are preserved

only up-to-isomorphism. Then it is not hard to see that a pseudo functor Mon C→ CAT
(which preserves finite products in a suitable sense) gives rise to a monoidal category.
Indeed, let us denote a mediating iso-2-cell for composition by Cg,f : �g� ◦ �f�

∼=⇒ �g ◦
f�. The associativity diagram (below left) gives rise to the two iso-2-cells on the right.

3in Mon
m×id

id×m

2
m

2 m 1

C3in CAT
�m×id� ⇒∼=Cm,m×id

�id×m� �m◦(m×id)�=�m◦(id×m)�

C2

�m�

C2
�m�

⇐∼= Cm,id×m

C

(8)

The composition C−1
m,id×m • Cm,m×id is what gives us a natural isomorphism α : X ⊗

(Y ⊗ Z) ∼=→ (X ⊗ Y ) ⊗ Z . Moreover, the coherence condition on such isomorphisms
in a monoidal category (like the famous pentagon diagram; see [20]) follows from the
coherence condition on mediating 2-cells of a pseudo functor (see [4]).

So far so good. However, at this moment it is not clear what is a canonical con-
struction the other way round, i.e. from a monoidal category to a pseudo functor.8 In
the present paper we side-step these 2-categorical subtleties by restricting ourselves to
strict, non-pseudo functors.

8 For example, given a monoidal category C, we need to define a functor �m ◦ (m × id)� =
�m ◦ (id × m)� in (8). It’s not clear whether it should carry (X, Y, Z) to X ⊗ (Y ⊗ Z), or to
(X ⊗ Y ) ⊗ Z.



256 I. Hasuo, B. Jacobs, and A. Sokolova

3.4 Inner Models: L-Objects

We proceed to formalize an inner model. It is an object in an L-category which it-
self carries an (inner) L-structure, hence is called an L-object. A monoid object in a
monoidal category is a prototypical example. We first present an abstract definition;
some illustration follows afterwards.

Definition 3.4 (L-objects). An L-object X in an L-category C is a lax natural trans-
formation X : 1 ⇒ C (below left) which is “product-preserving”: this means that the
composition X ◦ H (below right) is strictly, non-lax natural. Here 1 : L → CAT
denotes the constant functor to the trivial one-object category 1.

L

1

C

⇓X
CAT Natop H

L

1

C

⇓X
CAT

Such a nested algebraic structure—formalized as an L-object in an L-category—shall
be called a microcosm model for L.

k

in Natop

πi

1

1

in CAT
Xk=(X,...,X)

= Ck
�Hπi�

=πi

1
X1=X

C

Let us now illustrate the definition. First, X’s com-

ponent at 1 ∈ L is a functor 1 X1→ C which is iden-
tified with an object X ∈ C. This is the “carrier”
object of this inner algebra. Moreover, any other

component 1 Xk→ Ck must be the k-tuple (X, . . . , X) ∈ Ck of X’s. This is because of
(strict) naturality of X ◦ H (see above right): for any i ∈ [1, k] the composite πi ◦ Xk

is required to be X1.

2

in L

m

1

1

in CAT
X2=(X,X)

⇓
Xm

C2

�m�=⊗
1

X
C

The (inner) algebraic structure on X arises in the
form of mediating 2-cells of the lax natural trans-

formation. For each arrow k
f→ n in L, lax natu-

rality of X requires existence of a mediating 2-cell
Xf : �f� ◦ Xk ⇒ Xn. The diagram (above right) shows the situation when we set
f = m, a binary operation. The natural transformation Xm can be identified with an
arrow X ⊗ X

μ→ X in C, which gives an inner binary operation on X .

Xg◦f =

1 ⇓
Xf

Cl

�f�

1 ⇓
Xg

Ck

�g�

1 Cn

How do such inner operations on X satisfy equations as
specified in L? The key is the coherence condition9 on medi-
ating 2-cells: it requires Xid = id concerning identities; and
Xg◦f = Xg • (�g� ◦ Xf) concerning composition (as on the
right). The following example illustrates how such coherence
induces equational properties.

Example 3.5. A monoid object in a strictly monoidal category is an example of an
L-object in an L-category. Here we take L = Mon, the theory of monoids.

9 This is part of the notion of lax natural transformations; see [4].



The Microcosm Principle and Concurrency in Coalgebra 257

For illustration, let us here derive associativity of multiplication X ⊗X
μ→ X . In the

current setting the multiplication μ is identified with a mediating 2-cell Xm as above.
The coherence condition yields the two equalities (∗) below.

3

in L

id×m m×id

2
m

2
m

1

1

in CAT

⇓
Xid×m

C3

�id×m�

1 ⇓
Xm

C2

�m�

1 C

(∗)
=

1
⇓

Xm◦(id×m)
=Xm◦(m×id)

C3

1 C1

(∗)
=

1 ⇓
Xm×id

C3

�m×id�

1 ⇓
Xm

C2

�m�

1 C

Now it is not hard to see that: the composed 2-cell on the left corresponds to X3 X×μ→
X2 μ→ X ; and the one on the right corresponds to X3 μ×X→ X2 μ→ X . The equalities
(∗) above prove that these two arrows X3 ⇒ X are identical.

3.5 Microcosm Structures in Coalgebras

In this section we return to our original question and apply the framework we just
introduced to coalgebraic settings. First we present some basic results, which are used
later in our main result of general compositionality. The constructs in Section 2 (such
as sync) will appear again, now in their generalized form. Some details and proofs are
omitted here due to lack of space. They will appear in the forthcoming extended version
of this paper, although the diligent reader will readily work them out.

Let C be an L-category, and F : C → C be a functor. We can imagine that, for
the category CoalgF to carry an L-structure, F needs to be somehow compatible with
L; it turns out that the following condition is sufficient. It is weaker than F ’s being an
L-functor (see Definition 3.2).

Definition 3.6 (Lax L-functor). A functor F : C → D between L-categories is
said to be a lax L-functor if it is identified with10 some lax natural transformation

L

C

D

⇓F CAT which is product-preserving (i.e. F ◦ H is strictly natural; see

Definition 3.4).

2

in L

m

1

C2
in CAT

(F,F )

⊗ ⇓
Fm

C2

⊗
C

F
C

Lax L-endofunctors are natural generalization of func-
tors with sync as in Section 2. To illustrate this, look at
the lax naturality diagram on the right for a binary op-
eration m. Here we denote the outer interpretation �m�
by ⊗. The 2-component is F2 = (F, F ) because the lax natural transformation F is
product-preserving. The mediating 2-cell Fm can be identified with a natural transfor-
mation FX ⊗FY → F (X ⊗Y ); this is what we previously called sync. Moreover, Fm

(as generalized sync) is automatically compatible with equational properties (as in The-
orem 2.4); this is because of the coherence condition on mediating 2-cells like “Fg◦f is
a suitable composition of Fg after Ff .”

The following results follow from a more general result concerning the notion of
inserters, namely: when G is an oplax L-functor and F is a lax L-functor, then the
inserter Ins(G, F ) is an L-category.

10 Meaning: F : C → D is the 1-component of such a lax natural transformation C ⇒ D.



258 I. Hasuo, B. Jacobs, and A. Sokolova

Proposition 3.7. 1. Let C be an L-category and F : C → C be a lax L-functor.

Then CoalgF is an L-category; moreover the forgetful functor CoalgF
U→ C is a

(strict, non-lax) L-functor.
2. Given a microcosm model X ∈ C for L, the slice category C/X is an L-category;

moreover the functor C/X
dom−→ C is an L-functor. �	

Note that CoalgF being an L-category means not only that operations are interpreted
in CoalgF but also that all the equational properties specified in L are satisfied in
CoalgF . Therefore this result generalizes Theorem 2.4.

Concretely, an operation f : k → 1 in L is interpreted in CoalgF and C/X as
follows, respectively.

( FX1

X1

c1 , . . . ,
FXk

Xk

ck

)

�→

F �f�(
−→
X )

�f�(
−−→
FX)

(Ff)−→X

�f�(
−→
X )

�f�(−→c )

( Y1
y1

X
, . . . ,

Yk
yk

X

)

�→

�f�(
−→
Y )

�f�(−→y )

�f�(
−→
X )
Xf

X

Compare these with (5) and (6); these make an essential use of Ff and Xf which gener-
alize sync and ‖ in Section 2, respectively.

Proposition 3.8. 1. A lax L-functor preserves L-objects. Hence so does an L-functor.
2. A final object of an L-category C, if it exists, is an L-object. The inner L-structure

is induced by finality. �	

We can now present our main result. It generalizes Theorem 2.1, hence is a generalized
version of the “coalgebraic compositionality” equation (4).

Theorem 3.9 (General compositionality). Let C be an L-category and F : C → C

be a lax L-functor. Assume further that ζ : Z
∼=→ FZ is the final coalgebra. Then the

functor beh : CoalgF → C/Z is a (non-lax) L-functor. It makes the following diagram
of L-functors commute.

CoalgF
beh

U

C/Z

domC �	

The proof is straightforward by finality. Here CoalgF is an L-category
(Proposition 3.7.1). So is C/Z because: ζ ∈ CoalgF is an L-object (Proposition 3.8.2);
Z = Uζ is an L-object (Propositions 3.8.1 and 3.7.1); hence C/Z is an L-category
(Proposition 3.7.2).

We have also observed some facts which look interesting but are not directly needed
for our main result (Theorem 3.9). They include: the category L-objC of L-objects in C

and morphisms between them forms the lax limit of a diagram C : L → CAT; the sim-
plicial category Δ is the “universal” microcosm model for Mon (cf. [20, Proposition
VII.5.1]). The details will appear in the forthcoming extended version.



The Microcosm Principle and Concurrency in Coalgebra 259

4 Conclusions and Future Work

In this paper we have observed that the microcosm principle (as called by Baez and
Dolan) brings new mathematical insights into computer science. Specifically, we have
looked into parallel composition of coalgebras, which would serve as a mathematical
basis for the study of concurrency. As a purely mathematical expedition, we have pre-
sented a 2-categorical formalization of the microcosm principle, where an algebraic
theory is presented by a Lawvere theory. Turning back to our original motivation, the
formalization was applied to coalgebras and yielded some general results which ensure
compositionality and equational properties such as associativity.

There are many questions yet to be answered. Some of them have been already men-
tioned, namely: extending the expressive power of sync (Remark 2.3), and a proper
treatment of “pseudo” algebraic structures (Section 3.3).

On the application side, one direction of future work is to establish a relationship
between sync and (syntactic) formats for process algebras. Our sync represents a certain
class of operational rules; formats are a more syntactic way to do the same. Formats
which guarantee certain good properties (such as commutativity, see [23]) have been
actively studied. Such a format should be obtained by translating e.g. a “commutative”
sync into a format.

On the mathematical side, one direction is to identify more instances of the micro-
cosm principle. Mathematics abounds with the (often implicit) idea of nested algebraic
structures. To name a few: a topological space in a topos which is itself a “generalized
topological space”; a category of domains which itself carries a “structure as a do-
main.” We wish to turn such an informal statement into a mathematically rigorous one,
by generalizing the current formalization of the microcosm principle. As a possible first
step towards this direction, we are working on formalizing the microcosm principle for
finitary monads which are known to be roughly the same thing as Lawvere theories.

Another direction is a search for n-folded nested algebraic structures. In the current
paper we have concentrated on two levels of interpretation; an example with more levels
might be found e.g. in an internal category in an internal category.

Acknowledgments. Thanks are due to Kazuyuki Asada, John Baez, Masahito
Hasegawa, Bill Lawvere, Duško Pavlović, John Power and the participants of CALCO-
jnr workshop 2007 including Alexander Kurz for helpful discussions and comments.

References

1. Baez, J.C., Dolan, J.: Higher dimensional algebra III: n-categories and the algebra of
opetopes. Adv. Math. 135, 145–206 (1998)

2. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Berlin (1985)
3. Bartels, F.: On generalised coinduction and probabilistic specification formats. Distributive

laws in coalgebraic modelling. PhD thesis, Free Univ. Amsterdam (2004)
4. Borceux, F.: Handbook of Categorical Algebra. Encyclopedia of Mathematics, vol. 50, 51,

52. Cambridge Univ. Press, Cambridge (1994)
5. Hasuo, I.: Generic forward and backward simulations. In: Baier, C., Hermanns, H. (eds.)

CONCUR 2006. LNCS, vol. 4137, pp. 406–420. Springer, Heidelberg (2006)



260 I. Hasuo, B. Jacobs, and A. Sokolova

6. Hasuo, I., Jacobs, B., Sokolova, A.: Generic trace semantics via coinduction. Logical Meth-
ods in Comp. Sci. 3(4–11) (2007)

7. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood Cliffs
(1985)

8. Hyland, M., Power, A.J.: Discrete Lawvere theories and computational effects. Theor. Comp.
Sci. 366(1–2), 144–162 (2006)

9. Jacobs, B.: Categorical Logic and Type Theory. North Holland, Amsterdam (1999)
10. Jacobs, B.: Trace semantics for coalgebras. In: Adámek, J., Milius, S. (eds.) Coalgebraic

Methods in Computer Science. Elect. Notes in Theor. Comp. Sci., vol. 106, Elsevier, Ams-
terdam (2004)

11. Jacobs, B.: Introduction to coalgebra. Towards mathematics of states and observations (2005)
Draft of a book, www.cs.ru.nl/B.Jacobs/PAPERS/index.html

12. Jacobs, B.: A bialgebraic review of deterministic automata, regular expressions and lan-
guages. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Com-
putation. LNCS, vol. 4060, pp. 375–404. Springer, Heidelberg (2006)

13. Johnstone, P.T., Power, A.J., Tsujishita, T., Watanabe, H., Worrell, J.: An axiomatics for cat-
egories of transition systems as coalgebras. In: Logic in Computer Science, IEEE, Computer
Science Press, Los Alamitos (1998)

14. Kick, M., Power, A.J., Simpson, A.: Coalgebraic semantics for timed processes. Inf. &
Comp. 204(4), 588–609 (2006)

15. Klin, B.: From bialgebraic semantics to congruence formats. In: Workshop on Structural
Operational Semantics (SOS 2004). Elect. Notes in Theor. Comp. Sci. 128, 3–37 (2005)

16. Klin, B.: Bialgebraic operational semantics and modal logic. In: Logic in Computer Science,
pp. 336–345. IEEE Computer Society, Los Alamitos (2007)

17. Kock, A., Reyes, G.E.: Doctrines in categorical logic. In: Barwise, J. (ed.) Handbook of
Mathematical Logic, pp. 283–313. North-Holland, Amsterdam (1977)

18. Lawvere, F.W.: Functorial Semantics of Algebraic Theories and Some Algebraic Problems in
the Context of Functorial Semantics of Algebraic Theories. PhD thesis, Columbia University,
1963. Reprints in Theory and Applications of Categories 5, 1–121 (2004)

19. Lee, E.A.: Making concurrency mainstream, Invited talk at CONCUR 2006 (2006)
20. Mac Lane, S.: Categories for the Working Mathematician, 2nd edn. Springer, Berlin (1998)
21. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)
22. Moggi, E.: Notions of computation and monads. Inf. & Comp. 93(1), 55–92 (1991)
23. Mousavi, M.R., Reniers, M.A., Groote, J.F.: A syntactic commutativity format for SOS. In-

form. Process. Lett. 93(5), 217–223 (2005)
24. Nishizawa, K., Power, A.J.: Lawvere theories enriched over a general base. Journ. of Pure &

Appl. Algebra (to appear, 2006)
25. Power, J., Turi, D.: A coalgebraic foundation for linear time semantics. In: Category Theory

and Computer Science. Elect. Notes in Theor. Comp. Sci., vol. 29, Elsevier, Amsterdam
(1999)

26. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comp. Sci. 249, 3–80
(2000)

27. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Logic in Computer
Science, pp. 280–291. IEEE, Computer Science Press, Los Alamitos (1997)

www.cs.ru.nl/B.Jacobs/PAPERS/index.html


Systems of Equations Satisfied in All

Commutative Finite Semigroups

Pawe�l Parys�

Warsaw University
parys@mimuw.edu.pl

Abstract. The following problem is considered: check if a system of
equations has a solution in every commutative finite semigroup. It is
shown that the problem is decidable, and NP-complete. The problem is
related with the pumping lemma for regular languages.

1 Introduction

One of the most famous and deep algorithms existing in formal language theory is
Makanin’s algorithm [8]. The algorithm takes as an input an system of equations
and decides whether the system has a solution in a free semigroup. It has been
improved several times. The currently best version of Makanin’s algorithm works
in EXPSPACE [5] and occupies (including the proof of correctness) over forty
pages. Recently new algorithms to decide solvability of general word equations,
using different ideas, have been found [11,10]. The algorithm in [10] works in
PSPACE.

A related problem is to check if a system of equations is satisfied in all semi-
groups simultaneously. However, it can be easily shown that a system of equa-
tions having a solution in the free semigroup, also has a solution in every other
semigroup. In this sense, for equations the free semigroup is the most difficult of
semigroups. This argument, however, fails for finite semigroups. There are sys-
tems, which have solutions in all finite semigroups, but not in the free semigroup.
For instance in a finite semigroup, when we add an element to itself several times,
we always start looping, which can cause the existence of a solution. It’s easy to
show that in every finite semigroup there exists an idempotent element (i.e. a
solution of an equation x ·x = x). It is enough to take any element and to add it
to itself appropriate number of times. This fails in the free semigroup (no empty
words). Solving of other equations will be a generalization of this observation.

This paper is devoted to solving equations over finite semigroups. Formally
the following problem may be considered: Given a system of equations (with
variables and coefficients), decide if the system has a solution in every finite
semigroup and for every evaluation of the coefficients in this semigroups. Intu-
itively speaking, an opponent chooses a semigroup and values of coefficients and
we have to show values of variables such that the equations will be satisfied.
� Author supported by Polish government grant no. N206 008 32/0810.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 261–272, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



262 P. Parys

For example consider the following system of equations:
{

x · x = x
a · y · b = x

In every finite semigroup and for every values of coefficients a and b, we want to
have such values of variables x and y that the system is satisfied. In other words
we need such an idempotent x, which ,,begins” with a and ,,ends” with b. One
can easily prove that such an idempotent exists, regardless of the choice of the
semigroup and the coefficients a and b.

Checking if a system has a solution in every finite semigroup is interesting
itself, but it has also some motivation. There is a correspondence between fi-
nite semigroups and regular languages, so questions about semigroups are also
questions about regular languages. Solving equations in finite semigroups can be
seen as a generalization of pumping. What does it mean that a system of equa-
tions has a solution in every finite semigroup? For any finite semigroup (finite
automaton) we choose, there would exist such values of the variables such that
the left and right sides evaluate to the same element. So using these values of
variables we will deceive any semigroup: it cannot distinguish between the left
and right side. This idea was used in recent work over tree-walking automata,
where standard pumping lemmas proved to be inadequate, and nonexpressive-
ness results were shown by using equations in semigroups. For example in [1],
for every semigroup and for every a and b they need to have u and v such that
u = u · a · u = u · b · v and v = v · a · u = v · b · v.

In this paper I concentrate on commutative semigroups. I show that solving
equations in all finite commutative semigroups is not only decidable, but NP-
complete.

Theorem 1.1. The following problem is NP-complete: Given a system of word
equations, decide if the system has a solution in every finite commutative semi-
group.

There is the following easy extension of that theorem (proved in Section 4.4).

Corollary 1.2. The following problem is decidable: Given a closed positive Π2

formula (i.e. of the form ∀ . . . ∀∃ . . .∃(positive sentence) where elementary sen-
tences are equations) decide if it is true in every finite commutative semigroup.

The non-commutative case is left open. Some preliminary results are described
in Section 6.

Related work. Here we ask if for every choice of coefficients there exist values of
variables. A natural extension of this question is deciding whether an arbitrary
first-order formula is satisfied in any finite semigroup. The problem is undecid-
able [4], even for very special case of formulas. For commutative finite semigroups
the problem was not considered yet, to the best of the author’s knowledge. Check-
ing if a first-order formula is satisfied in a free semigroup is undecidable [12].



Systems of Equations Satisfied in All Commutative Finite Semigroups 263

However for a commutative free semigroup the problem is decidable, since it can
be encoded in well known Presburger arithmetic.

Another connected problem is solving a system of equations in a given finite
semigroup [7].

2 Notations and Definitions

Vectors of letters like c1, . . . , cm or X1, . . . , Xn etc. will be denoted by c̄, X̄, . . .
When I need to consider simultaneously several vectors of the same type, I use
superscripts: X̄(1), . . . , X̄(h), . . .

As we have only commutative semigroups I use plus sign for describing the
semigroup operation. For a in a semigroup and k ≥ 1 I write k · a for a added
to itself k times.

I fix the following finite nonempty alphabets:

Σ0 = {X1, . . . , Xγ} — the alphabet of variables,
Σ1 = {C1, . . . , Cω} — the alphabet of coefficients.

An interpretation of coefficients in a semigroup S is a vector c̄ = (c1, . . . , cω)
of elements of S (an element ci corresponds to a coefficient Ci). It is easier to
treat an interpretation of coefficients as a part of a semigroup. A pair (S, c̄) of
a semigroup and an interpretation of coefficients in it will be called a semigroup
with coefficients. Since now as a semigroup I will understand a semigroup with
coefficients and sometimes I will simply write S for (S, c̄).

A system of equations φ̄ is a system of equalities of the form
⎧
⎨

⎩

φ11 = φ12

. . .
φm1 = φm2

where φ11, . . . , φm1, φ12, . . . , φm2 are nonempty words over Σ0 ∪ Σ1. Sometimes
I will write plus signs between symbols in the equations (just for convenience).
For a given semigroup with coefficients (S, c̄) and vector x̄ of elements of S, by
φjs(x̄) I denote evaluation of φjs in semigroup S with ci (and xi) substituted
for Ci (and Xi). For a given semigroup with coefficients (S, c̄), a solution of the
system φ̄ is a vector x̄ ∈ S such that φi1(x̄) = φi2(x̄) for all 1 ≤ i ≤ m.

A homomorphism of semigroups with coefficients from (S, c̄) to (S′, c̄′) is a
homomorphism of semigroups f : S → S′ such that f(ci) = c′i for every i. See
that if a system φ̄ has a solution x̄ in (S, c̄) and we have any homomorphism
f : (S, c̄) → (S′, c̄′), then image of x̄ is obviously a solution in (S′, c̄′).

We will shortly say that a system has a solution in the class FinComm if for
every commutative finite semigroup with coefficients there exists a solution of
the system. Note the quantifier alternation: for all semigroups and all values of
the coefficients, one must be able to find a values of the variables that yield a
solution. In the article I present an algorithm for solving the following problem:

Input: a system of equations.
Output: Has the system a solution in every commutative finite semigroup
with coefficients?



264 P. Parys

What would happen if we’ve skipped the word “finite”? When a system has
a solution in every commutative semigroup it also has in a free commutative
semigroup. There is a homomorphism from the free commutative semigroup to
any other, so from a solution in free commutative semigroup we get a solution
in any other commutative semigroup. Therefore the problem would reduce to
finding solutions in the free commutative semigroup, which is easy.

3 Special Form of Equations: Variables on Both Sides

Definition 3.1. I will say that an equation is balanced if on its every side there
is at least one variable. I will say that a system of equations is balanced if every
equation is balanced.

The problem is somehow easier if we consider only balanced systems. At the
beginning I will solve the problem in this special case. The results from this
section will be used later for solving the general case.

3.1 One Coefficient

At the very beginning we will consider an even simpler form of systems, where
at most one coefficient is used in the system. A general balanced system will be
later reduced to several such systems. The following two theorems tell us that it
is sufficient to solve such systems over Z.

Theorem 3.2. Let C be a coefficient and let φ̄ be a balanced system where no
coefficients other than C appear in the system. Then the following statements
are equivalent:

1. the system φ̄ has a solution in FinComm;
2. for every n ≥ 2 the system φ̄ has a solution in the group Zn (integers modulo

n) with an interpretation C 	→ 1.

Interpretation of coefficients other than C doesn’t matter, as they do not appear
in the system, but for completeness we should fix it somehow. Condition 1 above
could be replaced by the assertion for all finite semigroups, not only commutative
(we do not use commutativity in the proof below).

In a proof of the theorem I will use the following fact:

Fact 3.3. For a given element c of a finite semigroup S there exists N such that
2N · c = N · c.

Proof. Look at all multiples of c. As there is only finite number of elements in
S, there have to be k · c = (k + l) · c for some k, l ≥ 1. Adding to this equation
l · c several times we get

k · c = (k + l) · c = (k + 2l) · c = . . . = (k + kl) · c.

Then adding (l − 1)k · c to it we get kl · c = 2kl · c. So taking N = kl we are
done. 
�



Systems of Equations Satisfied in All Commutative Finite Semigroups 265

Proof (of Theorem 3.2). 1 ⇒ 2. Obvious, because 2 is a special case of 1.
1 ⇐ 2. Fix a commutative finite semigroup S with an interpretation c ∈ S of

the coefficient C, for which the system should have a solution. Let N be such
that 2N ·c = N ·c (from fact 3.3). We have the following two properties for every
k, l ≥ 0:

– it holds (N + k) · c + (N + l) · c = (N + k + l) · c;
– if additionally k ≡ l (mod N) it holds (N + k) · c = (N + l) · c.

Let ȳ will be a solution of the system in Zn (understood as numbers from 0 to
N−1), which exists from point 2. We take xj = (N+yj)·c for all 1 ≤ j ≤ γ. Then
for every 1 ≤ i ≤ m, s = 1, 2 we have φis(x̄) = (N+φis(ȳ))·c. Since ȳ is a solution
in Zn, we have φi1(ȳ) ≡ φi2(ȳ) (mod N), so (N + φi1(ȳ)) · c = (N + φi2(ȳ)) · c,
which means that x̄ is a solution in S. 
�

Theorem 3.4. Let C be a coefficient and let φ̄ be a balanced system where no
coefficients other than C appear in the system. Then the following statements
are equivalent:

1. for every n ≥ 2 the system φ̄ has a solution in the group Zn with an inter-
pretation C 	→ 1;

2. the system φ̄ has a solution in the group Z with an interpretation C 	→ 1.

Proof. 1 ⇐ 2. This implication is almost obvious. For every n there is a homo-
morphism from Z to Zn (taking numbers modulo n), so if we have a solution in
Z, we also have it in Zn.

1 ⇒ 2. In this theorem in fact we deal with classical systems of number
equations in Z or Zn. The system can be written in the form of ¯̄a · X̄ = b̄ where
¯̄a and b̄ are a matrix and a vector of integer numbers and X̄ is a vector of
variables. For solving this system in Z we can perform a Gauss elimination on
the pair (¯̄a, b̄). To keep all the constants in Z we cannot divide a equation by a
number, we can only multiply, but it is enough. The only difference from normal
Gauss elimination (with division allowed) is that we are not able to get ones “on
the diagonal”, we get there arbitrary nonzero numbers. After possibly changing
numeration of variables (order of columns in ¯̄a) we get the following equivalent
system

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 0 0 . . . 0 a1,k+1 a1,k+2 . . . a1γ

0 a22 0 . . . 0 a2,k+1 a2,k+2 . . . a2γ

0 0 a33 . . . 0 a3,k+1 a3,k+2 . . . a3γ

...
...

...
. . .

...
...

...
. . .

...
0 0 0 . . . akk ak,k+1 ak,k+2 . . . akγ

0 0 0 . . . 0 0 0 . . . 0
...

...
...

. . .
...

...
...

. . .
...

0 0 0 . . . 0 0 0 . . . 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

X1

X2

X3

...
Xk

Xk+1

Xk+2

...
Xγ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b1

b2

b3

...
bk

bk+1

...
bm

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where a11, . . . , akk are nonzero.



266 P. Parys

The same operations we can do, when we are considering the system over Zn,
and we get the same system (with the exception that all numbers are treated
modulo n). Here the system we get is not necessarily equivalent to the original
one (when multiplying by a number which has common divisors with n, a equality
may become true, when it wasn’t). But if the original system had a solution, then
this also has (for every Zn).

Firstly see that bk+1 = bk+2 = . . . = bm = 0. Otherwise for bi �= 0 we have
a equation 0 = bi which should be satisfied in all semigroups Zn, but is not
satisfied in almost all of them, e.g. for any n > bi.

Let n = a11 · a22 · . . . · akk. Let x1, . . . , xγ be a solution in this Zn. The i-th
equation (1 ≤ i ≤ k) says that

aiixi + ai,k+1xk+1 + ai,k+2xk+2 + . . . + aiγxγ ≡ bi (mod a11 · a22 · . . . · akk)

from which we have

aiixi + ai,k+1xk+1 + ai,k+2xk+2 + . . . + aiγxγ ≡ bi (mod aii)

which means that

aii|(bi − ai,k+1xk+1 − ai,k+2xk+2 − . . . − aiγxγ) (1)

As a solution for Z we will take:

x′i =
{

(bi − ai,k+1xk+1 − ai,k+2xk+2 − . . . − aiγxγ) · 1
aii

for 1 ≤ i ≤ k

xi for k + 1 ≤ i ≤ γ

Condition (1) guarantees that x′i is integer. It’s easy to see that it is really a
solution. 
�

3.2 Many Coefficients

Definition 3.5. For a given balanced system φ̄ and a coefficient C ∈ Σ1 we
define a projection φ̄(C) as a system obtained from φ̄ by erasing all coefficients
other than C.

Notice that the assumption that φ̄ has a variable on every side (is balanced)
guarantees that φ̄(C) also has a variable on every side. In particular the sides are
nonempty, so we get a well defined system.

Lemma 3.6. Let φ̄ be a balanced system. Then the following statements are
equivalent:

1. the system φ̄ has a solution in FinComm;
2. for every coefficient C ∈ Σ1 and n ≥ 2 the system φ̄(C) has a solution in the

group Zn with an interpretation C 	→ 1.



Systems of Equations Satisfied in All Commutative Finite Semigroups 267

Proof. 1 ⇒ 2. Almost obvious. Fix C and n. As a special case of 1 we get that
the system φ̄ has a solution in Zn with interpretation C 	→ 1 and D 	→ 0 for all
D ∈ Σ1, D �= C. But this solution is also a solution of φ̄(C), because evaluation
of sides of φ̄ and φ̄(C) are the same (the only difference is that in φ̄ we add 0
several times).

1 ⇐ 2. Fix a commutative finite semigroup S with coefficients c̄. From 2 and
Theorem 3.2 for every Ci ∈ Σ1 we have a solution x̄(Ci) of the projection φ̄(Ci)

in S. As our solution of the whole system we take the sum of these solutions:
xj = x

(C1)
j + x

(C2)
j + . . . + x

(Cω)
j for every 1 ≤ j ≤ γ. Then the evaluation of

a side of an equation will be the sum of evaluations of sides of equations for
one coefficient: φks(x̄) = φ

(C1)
ks (x̄(C1)) + φ

(C2)
ks (x̄(C2)) + . . . + φ

(Cω)
ks (x̄(Cω)). This

is because every ci or x
(Ci)
j appears the same number of times in φks(x̄) as in

φ
(Ci)
ks (x̄(Ci)) and does not appear in any other element. Of course we’ve used the

assumption that the semigroup is commutative. 
�

As an immediate corollary of Lemma 3.6 and Theorem 3.4 we get the following
theorem:

Theorem 3.7. Let φ̄ be a balanced system. Then the following statements are
equivalent:

1. the system φ̄ has a solution in FinComm;
2. for every coefficient C ∈ Σ1 the system φ̄(C) has a solution in the group Z

with an interpretation C 	→ 1.

So we’ve got an easy to check criterion for testing if such system has a solution
in the class FinComm.

4 General Case

4.1 Everywhere Something Is One Everywhere

Now I will prove an important technical lemma, which simplifies further argu-
mentation. Here we need a version of the lemma for commutative finite semi-
groups, but the same lemma is true for general finite semigroups or for any
variety.

Lemma 4.1. Let {φ̄(1), . . . , φ̄(N)} be systems of equations such that in every
commutative finite semigroup with coefficients some φ̄(i) has a solution. Then
some of the systems φ̄(i) has a solution in every of these semigroups.

Proof. Assume that for every system φ̄(i) there exists a semigroup Si in which
there is no solution of φ̄(i). Look at the product semigroup S = S1 × . . . ×
SN (naturally interpretation of coefficient in the product is a sequence of its
interpretations in every Si). Some system φ̄(i) has to have a solution in S. But
we have a homomorphism from S to Si (a projection), so φ̄(i) has a solution in Si

too. But we’ve assumed that it hasn’t, we’ve got contradiction, so the theorem
is true. 
�



268 P. Parys

4.2 Removing “Wrong” Variables

Let φ̄ be a system in which in some equations on one side there are only coeffi-
cients and on the other side there are also variables. We will replace the system
by a number of simpler systems. For notational simplicity, assume that this hap-
pened in the first equation: that on the right side of this equation (φ12) there
are only coefficients, and that on its left side (φ11) there is at least the variable
X1. For a word of coefficients w ∈ Σ∗1 we define a system φ̄(w). It will be φ̄ in
which we replace every occurrence of X1 in every equation by the word w. We
will be considering these systems for all nonempty subsequences of the right side
of the first equation (in fact the order of coefficients in w doesn’t matter, as we
have only commutative semigroups, so we can also think about all submultisets
of the φ12). Obviously there are only finitely many of these subsequences.

Theorem 4.2. For a system φ̄ as above, the system has a solution in FinComm
if and only if for some w — subsequence of φ12, the system φ̄(w) has a solution
in FinComm.

Proof. ⇐. Let w be this subsequence of φ12, for which φ(w) has a solution in
FinComm. Fix a commutative finite semigroup with coefficients S, for which we
need a solution of φ̄. Let x̄ be a solution of φ̄(w) there. As a solution of φ̄ we can
take an evaluation of w as x1 and values from x̄ as the other variables. Then
the evaluation of sides of φ̄ and φ̄(w) are the same, so this is a solution of φ̄ (the
only difference between φ̄ and φ̄(w) is that on the places of X1 we have w, but
they both evaluates to the same value).

⇒. According to Lemma 4.1 it is enough to show that in every commutative
finite semigroup for every interpretation of coefficients at least one of these sys-
tems has a solution. Then the lemma would say that one of the systems would
have a solution in every of these semigroups.

Fix a commutative finite semigroup with coefficients S, for which we need
a solution of some system φ̄(w). We will construct a semigroup S′ and basing
on a solution of φ̄ in it, we will construct a solution of some φ̄(w) in S. Let N
be the length of φ12 (the right side of the first equation, which contains only
coefficients). The semigroup S′ will contain two disjoint parts:

1. all the elements of S;
2. all commutative words (multisets) of coefficients from Σ1 up to length N .

Now we need to define an operation. Inside S we just add in S. When adding
between the parts, we evaluate the word of coefficients in S and then add in S.
When adding two words of coefficients, we concatenate it. If the result fits into
second part (has length ≤ N), we just take it. When it is longer, we evaluate it
in S. The idea is that S′ for short words simulates free commutative semigroup.
Words no longer than N we remember as they are, for longer words we remember
only their value in S.

We take an interpretation of coefficients in S′ such that a coefficient is inter-
preted as an one-letter word containing it. S′ is a commutative finite semigroup,
so φ̄ has a solution x̄′ in it. See that when something is in the first part, then



Systems of Equations Satisfied in All Commutative Finite Semigroups 269

after adding anything it will remain in this part. The right side of the first equa-
tion, which contains just N coefficients, in S′ will evaluate to itself in the second
part. This means that x′1 (and the whole left side) is also in the second part.
Moreover, x′1 is a submultiset of the right side. We will take x′1 as the word w.
Now we need to have a solution of φ̄(w) in S. As xi (for 2 ≤ i ≤ γ) we will take
x′i when it is in the first part or evaluation of x′i in S, when it is in the second
part. It’s easy to see that φ̄(w) gives now the same equalities, as φ̄ before (when
an equation from φ̄ in S′ has given an equality on words, then it also holds after
evaluation to S). So it’s a solution in S and we’re done. 
�

4.3 The Algorithm

Theorem 4.2 almost gives us an algorithm. In every moment we will have a
set of systems, about which we’d like to know if at least one of the systems
has a solution in FinComm. At the very beginning the set contains only the
original system. Then we repeatedly replace a system, in which in some equations
variables are only on one side, by a number of systems, as described above. See
that after such step, we get systems containing less variables, so the process has
to finish. At the end we get a set of systems, in which every equation contains
at least one variable on both sides or no variables at any side.

Now see what happens, if in an equation there are only coefficients. If the
number of coefficients of every kind is equal on both sides (the sides are equal
as multisets), then the equation is always satisfied, because our semigroups are
commutative. In this case we can just remove this equation and we get equivalent
system. Otherwise there is an coefficient C, which on left side appears k times
and on the right side l times, where k �= l. Such equation is not satisfied in
FinComm, it is even very unlikely to be satisfied in any commutative finite
semigroup. For example consider an additive group Zk+l+1 with interpretation
C 	→ 1 and D 	→ 0 for all D ∈ Σ1, D �= C. Here left side evaluates to k and
right side to l, which aren’t equal, so the equality isn’t satisfied. This means
that we can immediately say that system containing such equation cannot have
a solution in FinComm.

Finally we get a set of balanced systems; we want to say if any of them
has a solution in FinComm. But for such systems it can be determined by the
algorithm from section 3.

4.4 Positive Π2 Formulas

We will now prove Corollary 1.2. Here on the input we have a closed positive Π2

formula instead of a system of equations. In fact original Theorem 1.1 (and the
above algorithm) solves a situation, when only conjunctions are used. A formula
with disjunctions can be normalized to a form saying that (in every commutative
semigroup) for every choice of coefficients there exist values of variables such that
some of given systems is satisfied. In the light of Lemma 4.1 we can equivalently
say that some of these systems is satisfied in FinComm. So it is enough to
check each of these systems separately using above algorithm—if one of them



270 P. Parys

is satisfied in FinComm, then the formula is true in every commutative finite
semigroup.

However during the mentioned normalization, the size of a formula can grow
exponentially, so we lose the NP complexity.

5 Complexity

In this section I will show that the problem is NP-complete. To talk about the
complexity we need to know how we represent the system and how is its size
defined. The easiest (but not good enough) way is to remember an equation
as it is, as a list of coefficients and variables. When we use this representation,
then during the operation of our algorithm the size of the system can grow
exponentially, so it wouldn’t work in NP. But we can do better: a side of a
equation will be described by numbers of occurrences of every symbol (coefficient
or variable). So when a symbol repeats N times, the binary representation of N
will be remembered, which has a length of Θ(log N).

Firstly I will show that the problem is in NP. Of course I will use the algo-
rithm described above in the paper. Essentially the algorithm consists of two
parts. In the first part we remove a variable from unbalanced equation several
times and substitute for it some subsequence of the other side of the equation
(see subsection 4.2). Note that in nondeterministic model we can just guess the
correct substitution instead of checking all the possibilities. In the second part
we solve a balanced system of equations over Z. This can be done in NP (see [2],
the solution will have polynomial size, so we can just guess it).

The only question is what is the length of the system after the first part. We
need to show that it will grow at most polynomially. Let Vi and Bi be a total
number of occurrences of variables and of coefficients in the system after the i-th
step of the algorithm (in particular V0 and B0 are these numbers in the initial
system). Note that the length of the initial system is at least Ω(log |V0 +B0|). In
i-th step we substitute for a variable at most Bi−1 coefficients, and the variable
occurs at most Vi−1 times, so

Bi ≤ Bi−1 + Vi−1Bi−1 = (Vi−1 + 1)Bi−1

The number of occurrences of variables even decrease, so Vi ≤ Vi−1. After k
steps we have: Vk ≤ V0 and Bk ≤ (V0 + 1)kB0. Let N be the length of the
initial system, γ ≤ N — number of different variables and ω ≤ N — number of
different coefficients. In each step we remove one variable, so there are at most
k ≤ γ ≤ N steps. In the resulting system we have 2m sides of m equations, every
of which needs length at most γ log Vk for describing variables and ω log Bk for
describing coefficients. So the length of the resulting system will be at most:

2m(γ log Vk + ω log Bk) ≤ 2N2(log V0 + log((V0 + 1)NB0)) =
= 2N2(log V0 + N log(V0 + 1) + log B0) ≤
≤ O(N3)O(log |V0 + B0|) ≤ O(N4)

so it’s polynomial.



Systems of Equations Satisfied in All Commutative Finite Semigroups 271

Now I will show that the problem is NP-hard. To do that I will reduce to it
the NP-complete clique problem (defined in [6]). Almost the same proof would
also work for a problem of solving systems of equations in the commutative
free semigroup. Assume that we are looking for a clique of size k in a graph
G = (V, E). Assume that V = {1, 2, . . . , |V |}. We will have only one coefficient
C. We will have a variable Xi for each vertex and helper variables X ′i and X ′′ij
for each vertex and each pair of vertices. The equations are:

⎧
⎨

⎩

X1 + X2 + . . . + X|V | = (|V | + k) · C
Xi + X ′i = 3 · C for every i ∈ V
Xi + Xj + X ′′ij = 4 · C for every (i, j) �∈ E

If there is a clique of size k, then we will have a solution in every commutative
finite semigroup (and even in the free commutative semigroup). We take Xi =
2 ·C if the vertex i is in the clique or Xi = C if it isn’t. First equation is satisfied,
because there are exactly k vertices in the clique. The equations of the second
and third type can be satisfied by taking X ′i and X ′′ij equal to C or 2 · C. When
there is no edge (i, j), then at most one of vertices i and j is in the clique, so
it’s possible to satisfy the equations of the third type.

When there is a solution in every commutative finite semigroup, then there is
also some solution x̄ in the following semigroup S: Elements of S are {1, 2, . . . , M}
for large enough M = max(5, |V | + k + 1). The operation a + b is defined as
min(M, a + b). The coefficient C evaluates to 1. From equations of the second
type we see that xi = 1 or 2. We take vertex i to a clique iff xi = 2. The equations
of the third type guarantees that two vertices cannot be in the clique if there is
no edge between them. First equation says that the clique has size k.

6 Other Questions

It may be interesting to check if a system has a solution in other classes of
semigroups, for example all finite semigroups or all idempotent finite semigroups.

For idempotent finite semigroups this question is easy, as we know that there
are only finitely many idempotent semigroups with a given number of generators
(see [9]). Moreover all these semigroups can be listed, because there is a formula
for maximum number of elements in such semigroup. It is enough to check if
a system has a solution in all semigroups generated by our coefficients, which
we can do one semigroup after another. For any semigroup, when there is a
solution in a subsemigroup generated by coefficients, it is also a solution in whole
semigroup. It may be interesting to find an algorithm with better complexity.

It remains open how to check that in class of all finite semigroups. It is not
difficult to prove that in every finite semigroup S, there are elements u, v such
that the subsemigroup {usv: s ∈ S} is a two-sided ideal and a group. So there
is a hope that (with more effort that for commutative case) the problem could
be reduced to solving systems of equations over all finite groups. However un-
like in the commutative case, there are systems of equations satisfied in all finite



272 P. Parys

groups, but not in the free group [3]. So the reduction to finite groups do not
give a solution yet.

It would be also interesting to know if the problem of checking if arbitrary first
order formula is satisfied in every commutative finite semigroup is decidable.

References

1. Bojańczyk, M., Colcombet, T.: Tree-walking automata cannot be determinized.
In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS,
vol. 3142, p. 246–256. Springer, Heidelberg (2004)

2. Borosh, I., Treybig, L.B.: Bounds on positive integral solutions of linear diophantine
equations. Proc. Amer. Math. Soc. 55(2), 299–304 (1976)

3. Coulbois, T., Khelif, A.: Equations in free groups are not finitely approximable.
Proc. Amer. Math. Soc. 127(4), 963–965 (1999)

4. Gurevich, Y.: The word problem for certain classes of semigroups. Algebra and
Logic 5(5), 25–35 (1966) (in Russian)

5. Gutiérrez, C.: Satisfiability of word equations with constants is in exponential
space. In: Foundations of Computer Science, pp. 112–120 (1998)

6. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press (1972)

7. Klima, O., Tesson, P., Therien, D.: Dichotomies in the complexity of solving sys-
tems of equations over finite semigroups. Theor. Comp. Sys. 40(3), 263–297 (2007)

8. Makanin, G.S.: The problem of solvability of equations in a free semigroup. USSR
Sbornik 32, 129–198 (1977)

9. McLean, D.: Idempotent semigroups. The American Mathematical Monthly 61(2),
110–113 (1954)

10. Plandowski, W.: Satisfiability of word equations with constants is in pspace. In:
Foundations of Computer Science, pp. 731–742 (1999)

11. Plandowski, W., Rytter, W.: Application of lempel-ziv encodings to the solution of
word equations. In: International Colloquium on Automata, Languages and Pro-
gramming, pp. 731–742 (1998)

12. Tarski, A., Mostowski, A., Robinson, M.R.: Undecidable theories. North-Holland,
Amsterdam (1953)



Optimal Lower Bounds on Regular Expression

Size Using Communication Complexity

Hermann Gruber and Jan Johannsen

Institut für Informatik, LMU München
Oettingenstr. 67, 80538 München, Germany

{gruberh,jjohanns}@tcs.ifi.lmu.de

Abstract. The problem of converting deterministic finite automata into
(short) regular expressions is considered. It is known that the required
expression size is 2Θ(n) in the worst case for infinite languages, and for
finite languages it is nΩ(log log n) and nO(log n), if the alphabet size grows
with the number of states n of the given automaton. A new lower bound
method based on communication complexity for regular expression size
is developed to show that the required size is indeed nΘ(log n).

For constant alphabet size the best lower bound known to date is
Ω(n2), even when allowing infinite languages and nondeterministic fi-
nite automata. As the technique developed here works equally well for
deterministic finite automata over binary alphabets, the lower bound is
improved to nΩ(log n).

1 Introduction

One of the most basic theorems in formal language theory is that every finite
automaton can be converted into an equivalent regular expression, and vice
versa [10]. While algorithms accomplishing these tasks have been known for a
long time, there has been a renewed interest in these classical problems during
the last few years. For instance, new algorithms for converting regular expres-
sions into finite automata outperforming classical algorithms have been found
only recently, as well as a matching lower bound of Ω(n · (log n)2) on the min-
imum number of transitions required by any equivalent nondeterministic finite
automaton (NFA). The lower bound is, however, only reachable for growing al-
phabets, and a better algorithm is known for constant alphabet size, see [20] for
the current state of the art.

In contrast, much less is known about the converse direction, namely of con-
verting finite automata into regular expressions. Apart from the fundamental na-
ture of the problem, some applications of converting finite automata into regular
expressions lie in control flow normalization, including uses in software engineer-
ing such as automatic translation of legacy code [17]. All known algorithms cov-
ering the general case of infinite languages are based on the classical ones, which
are compared in the survey [18]. The drawback is that all of these (structurally
similar) algorithms return expressions of size 2O(n) in the worst case, and Ehren-
feucht and Zeiger exhibit a family of languages over a growing alphabet for which

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 273–286, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



274 H. Gruber and J. Johannsen

this exponential blow-up is inevitable [2]. This leads to the quest for identifying
structural restrictions on the underlying transition graph of the given finite au-
tomaton that can guarantee a shorter equivalent regular expression [3,16], as well
as for heuristics improving the classical algorithms [6,1]. Another possibility is to
concentrate on subfamilies of regular languages. For the important special case
of unary languages, it has been established that every n-state nondeterministic
finite automaton can be converted in polynomial time into an equivalent regular
expression of polynomial size [13]. And for finite languages, there exist equivalent
regular expressions of size at most nO(logn) obtained by a classical construction,
which is carefully analyzed in [3]. In contrast, results from [2] show that size
nΩ(log logn) can be necessary for finite languages—at least for a growing alphabet.

Although there remains a considerable gap between the best known upper
bounds and the lower bounds given some 30 years ago, to the best of our knowl-
edge, only little progress has been made on this problem. The most preeminent
gap between the upper and lower bounds presented in [2] is in the case of finite
languages. There the upper and lower bounds of nO(log n) and nΩ(log log n), re-
spectively, are essentially the best ones known to date. We close this gap, giving
that the blow-up for finite languages is nΘ(logn) in the worst case, when switch-
ing the representation from a finite automaton to a regular expression. To this
end, we develop a new lower bound technique for regular expression size based
on communication complexity. Ellul et al. [3] prove a lower bound of Ω(n2) on
the size of regular expressions for a finite language over the binary alphabet by a
reduction to Boolean circuit complexity. We improve this approach by harnessing
a technique used to obtain better lower bounds for monotone Boolean circuits,
using the communication complexity of search problems as introduced by Karch-
mer and Wigderson [8]. Our approach shows that the lower bound can even be
realized for an n-state deterministic finite automaton over a binary alphabet.

We also show that a family of finite languages (over a growing alphabet)
studied by Ehrenfeucht and Zeiger [2] captures the combinatorial core of the
conversion problem for finite languages, as these form in some precise sense
the hardest languages for this problem. We then use this to obtain a slight
improvement of the best known upper bounds on this conversion problem.

2 Preliminaries

2.1 Formal Languages

We assume the reader to be familiar with the basic notions in formal language
and automata theory as contained in [7]. In particular, let Σ be an alphabet
and Σ∗ the set of all words over the alphabet Σ, including the empty word ε.
The length of a word w is denoted by |w|, where |ε| = 0, and the total number of
occurrences of the alphabet symbol a in w is denoted by |w|a. In this paper we
mainly deal with a special class of finite languages called homogeneous languages.
A finite language L ⊂ Σ∗ is homogeneous if all words in the language have the
same length. In order to fix the notation, we briefly recall the definition of regular
expressions and the languages described by them:



Optimal Lower Bounds on Regular Expression Size 275

Let Σ be an alphabet. The regular expressions over Σ and the languages
that they denote are defined recursively as follows: ∅ is a regular expression and
denotes the empty language; for a ∈ Σ ∪ {ε}, a is a regular expression and
denotes the language {a}; if e and f are regular expressions denoting languages
E and F , then (e + f), (e · f) and (e)∗ are regular expressions denoting the
languages E ∪ F , E · F and E∗, respectively. Finally, the language described by
the regular expression E is denoted by L(E).

For convenience, parentheses are sometimes omitted and the product is sim-
ply written as juxtaposition. The priority of operators is specified in the usual
fashion: product is performed before disjunction, and star before both product
and disjunction. We also write sometimes L1 +L2 to denote the union of the lan-
guages L1 and L2. The alphabetic width (or size) alph(E) of a regular expression
E is defined as the total number of occurrences of symbols in Σ in E. For a reg-
ular language L we define alph(L) as the minimum alphabetic width among all
regular expressions describing L. As we will be primarily concerned with small
regular expressions, we recall the notion of uncollapsible regular expressions [3]:

Let E be a regular expression. We say that E is uncollapsible if all of the
following conditions hold: If E contains the symbol ∅, then E = ∅; the expression
E contains no subexpression of the form FG or GF , with L(F ) = {ε}; if E
contains a subexpression of the form F + G or G + F with L(F ) = {ε}, then
ε /∈ L(G); if E contains a subexpression of the form F ∗, then L(F ) �= {ε}.

The reader might have noticed that we have added a fourth condition not
present in the original definition. This condition ensures that the star operator
cannot occur in uncollapsible regular expressions describing finite languages. It is
easily seen that for every collapsible regular expression, there is an uncollapsible
one specifying the same language of at most the same size.

2.2 Communication Complexity

Let X,Y, Z be finite sets and R ⊆ X × Y × Z a ternary relation on them. In
the search problem R, we have Alice given some input x ∈ X , Bob is given
some input y ∈ Y . Initially, no party knows the other’s input, and Alice and
Bob both want to output some z such that (x, y, z) ∈ R, by communicating
as few bits as possible. A communication protocol is a binary tree with each
internal node v labeled either by a function av : X → {0, 1} if Alice transmits
at this node, or bv : Y → {0, 1} if Bob transmits at this node. Each leaf is
labeled by an output z ∈ Z. We say that a protocol solves the search problem
for relation R if for every input pair (x, y) ∈ X × Y , walking down the tree
according to the functions av and bv leads to a leaf labeled with some z satisfying
(x, y, z) ∈ R. The overall number of bits transmitted for a given input pair
(x, y) ∈ X × Y and a given protocol is then equal to the length of the walk
just described; and the maximum length among these walks equals the depth
of the tree. The (deterministic) communication complexity D(R) is now defined
as the minimum depth among all communication protocols solving R, and the
protocol partition number CP (R) denotes the minimum number of leaves among
all protocols solving the search problem for R.



276 H. Gruber and J. Johannsen

Of course, there exist protocols whose depth is even linear in the number of
leaves, but a standard argument about balancing binary trees shows that every
such deep protocol can be transformed into a shallow protocol, see e.g. [11, ch. 2]:

Lemma 1. logCP (R) ≥ 1
3D(R). 
�

An important fact about these two complexity measures is a close correspondence
with the complexity of Boolean circuits and Boolean formulas, respectively. This
relation is based on search problems, which we define next in terms of languages.

For a homogeneous language ∅ ⊂ L ⊂ Σn, the search problem associated
with L is a ternary relation RL ⊆ L × (Σn \ L)× [n] defined by: (v, w, i) ∈ RL
iff vi �= wi. Karchmer and Wigderson established the following connection to
circuit complexity [8]: Take Σ = {0, 1}. If we naturally identify each set L ⊆
{0, 1}n with its characteristic n-bit Boolean function, then D(RL) equals the
minimum depth of a Boolean circuit (over the standard basis) computing the
characteristic function of L. Moreover, CP (RL) equals the minimum number of
variable occurrences among all Boolean formulas representing L.

Proving superpolynomial lower bounds on formula size for specific functions
turns out to be an extremely difficult open problem. Fortunately, this is no
longer true if we consider monotone Boolean formulas [8]. A similar class of
search problems can be defined for the latter setup:

Let (Σ,<) = (a1 < a2 < · · · < ak) be an ordered alphabet. This order on Σ
is extended componentwise to a partial order on Σn. The upward closure of a
homogeneous language L ⊆ Σn (w.r.t. this partial order) is defined as the set

↑(L) = {w ∈ Σn | u ≤ w for some u ∈ L}.
A homogeneous language L ⊆ Σn is called monotone, if L = ↑(L). For a mono-
tone homogeneous language ∅ ⊂ L ⊂ Σn, the monotone search problem associ-
ated with L, denoted by RmL , is defined by (v, w, i) ∈ RmL iff both (v, w, i) ∈ RL
and overmore vi > wi. For Σ = {0, 1} with 0 < 1, the measure CP (RmL ) equals
the minimum formula size among all monotone Boolean formulas representing L,
and an similar correspondence holds for D(RmL ) and monotone circuit depth [8].

For more background on communication complexity, the reader might want
to consult the book [11].

3 A New Lower Bound Technique for Regular Expression
Size

The goal of this section is to relate the alphabetic width of a homogeneous
language to the protocol partition number of the monotone search problem as-
sociated with that language.

Definition 2. A regular expression E describing a homogeneous language is
called a homogeneous expression, if none of the symbols ∅, ε and ∗ occur in E,
or L(E) is empty and E = ∅.



Optimal Lower Bounds on Regular Expression Size 277

Lemma 3. For n ≥ 1, let L ⊆ Σn be a homogeneous language. If E is an un-
collapsible regular expression describing L, then E is a homogeneous expression.

Proof. For the case L(E) = ∅, the statement immediately follows from the def-
initions. Assume E is uncollapsible and ∅ ⊂ L(E) ⊆ Σn. We can rule out that
any subexpression F with L(F ) = ∅ occurs in E: Every regular expression de-
noting the empty language contains the symbol ∅ at least once. Next, finiteness
of the described languages is invariant under the operations + and ·, but not by
the Kleene star: For any regular expression F , the set denoted by F ∗ is infinite
unless L(F ) = ∅ or {ε}. We have already ruled out the existence of ∅ symbols in
E. Since E is uncollapsible, it does not contain any subexpression of the form F ∗

with L(F ) = {ε} either. Thus, the language L(E) being finite, E cannot have
any subexpression of the form F ∗.

Finally, we rule out the possibility that ε occurs in E: As all words in L(E) are
of length n, we make the following observation: If E contains a subexpression of
the form F +G, then there exists m ≤ n such that both L(F ) and L(G) contain
only strings of length m. If alph(E) ≤ 1, then clearly E has no ε-subexpression.
Assume alph(E) > 1 and ε occurs in E. Since E is uncollapsible, E contains a
subexpression of the form F +ε with ε /∈ F and F �= ∅. But then F +ε describes
a set of strings having different lengths, a property which is inherited to E, since
E has no subexpressions describing the empty language. 
�
The next proposition shows that for homogeneous languages, the upward closure
operator ↑ commutes with union and concatenation.

Proposition 4. For homogeneous languages L1 and L2,

↑(L1) + ↑(L2) = ↑(L1 +L2) and ↑(L1) · ↑(L2) = ↑(L1 ·L2) . 
�
We establish next that homogeneous monotone languages can be described by
regular expressions in some normal form, and that the conversion into this nor-
mal form increases the expression size at most by a factor of |Σ|.

A homogeneous expression is called a sum if it uses + as the only operator, i.e.
it is of the form (b1+. . .+bm) for bi ∈ Σ. Let E be a homogeneous expression and
F a subexpression of E. The subexpression F is called a maximal sum in E if F
is a sum, but each subexpression G having F as a proper subexpression is not a
sum. Note that the maximal sums in an expression each describe a subset of Σ.
For a homogeneous expressionE, the number of maximal sums in E is denoted by
s(E). Since any non-redundant sum is of size at most |Σ| and contains at least one
alphabetical symbol, we get s(L) ≤ alph(L) ≤ |Σ| · s(L) for every homogeneous
language L. A homogeneous expression E is called monotone if each maximal
sum F in E describes a monotone language, that is L(F ) = ↑(L(F )).

Lemma 5. For each homogeneous expression E over an ordered alphabet Σ,
there exists a monotone expression F with s(F ) = s(E) and L(F ) = ↑(L(E)).
In particular, if E describes a monotone language, then L(F ) = L(E).

Proof. The claim is shown by induction on s(E). In the base case s(E) = 1, E
is itself a sum. Let b be the minimal letter occurring in E, and let b1, . . . , bm be



278 H. Gruber and J. Johannsen

those letters in Σ with bi ≥ b. We set F := (b1 + . . .+ bm), and we clearly have
L(F ) = ↑(L(E)) as well as s(F ) = s(E) = 1, hence the claim holds.

Now let s(E) > 1, and thus E = E1 ⊕ E2 where the symbol ⊕ stands for one
of the operators + or ·, and in the latter case, E1 and E2 are not sums. Thus we
have s(E) = s(E1) + s(E2) and hence s(Ei) < s(E) for i = 1, 2. By the induction
hypothesis, we get expressions Fi with L(Fi) = ↑(L(Ei)) and s(Fi) = s(Ei). We
set F := F1 ⊕ F2, and we obtain s(F ) = s(F1) + s(F2) = s(E1) + s(E2) = s(E).
By Proposition 4, we obtain L(F ) = ↑(L(E1))⊕↑(L(E2)) = ↑(L(E1)⊕L(E2)) =
↑(L(E)), so the claim holds. 
�
Now we are ready to derive a technique for bounding alphabetic width of homo-
geneous languages in terms of communication complexity:

Lemma 6. For every homogeneous language L with ∅ ⊂ L ⊂ Σn and n ≥ 1,

alph(L) ≥ s(L) ≥ CP (RL) .

Moreover, if L is monotone, then

alph(L) ≥ s(L) ≥ CP (RmL ) .

Proof. Let E be a regular expression with L(E) = L. By Lemma 3, we can
assume that E is homogeneous. If E is a homogeneous regular expression with
L(E) homogeneous, then for every subexpression F of E the language L(F ) is
homogeneous as well, and we denote by λ(F ) the length of the words in L(F ).

We will now, given a homogeneous regular expression E for L, construct a
protocol for RL with s(E) many leaves.

Recall that Alice is given an input x ∈ L, Bob a y /∈ L, and they have to
find an index i with xi �= yi. At each state of the protocol, Alice and Bob keep
a subexpression F of E together with an interval [i, j] of length j − i + 1 =
λ(F ), satisfying the invariant that xi . . . xj ∈ L(F ) and yi . . . yj /∈ L(F ). At the
beginning F = E and [i, j] = [1, n], hence the invariant holds.

At a state of the protocol with a subexpression F = F0 + F1 with s(F ) > 1
and interval [i, j], it must hold that either xi . . . xj ∈ L(F0) or xi . . . xj ∈ L(F1),
but yi . . . yj /∈ L(F0) and yi . . . yj /∈ L(F1). Thus Alice can transmit δ ∈ {0, 1}
such that xi . . . xj ∈ L(Fδ), and the protocol continues with F updated to Fδ
and [i, j] unchanged.

At a state with subexpression F = F0 · F1 and interval [i, j], let � := i +
λ(F0) − 1. Then it must hold that xi . . . x� ∈ L(F0) and x�+1 . . . xj ∈ L(F1),
but either yi . . . y� /∈ L(F0) (case 0) or y�+1 . . . yj /∈ L(F1) (case 1). Then Bob
can transmit δ = 0, 1 such that case δ holds, and the protocol continues with F
updated to Fδ and [i, j] set to [i, �] in case 0 and [�+ 1, j] in case 1.

At a state with a subexpression F that is a maximal sum in E, it must be the
case that i = j, and that xi ∈ L(F ) and yi /∈ L(F ), hence in particular xi �= yi
and the protocol can terminate with output i.

Obviously, the protocol solves RL, and the tree of the protocol constructed is
isomorphic to the parse tree of E with its maximal sums at the leaves, thus the
number of leaves is s(E).



Optimal Lower Bounds on Regular Expression Size 279

If L happens to be monotone, then by Lemma 5 we can assume that E is
a monotone expression. Then also all subexpressions of E that appear in the
above proof are monotone, and in the terminating case it must moreover be the
case that xi > yi, therefore the protocol solves RmL . 
�

4 Lower Bounds for the Conversion Problem

For given integers �, n, we define a family of graphs F�,n with parameters �, n as
the set of directed acyclic graphs whose vertex set V is organized in �+ 2 layers,
with n vertices in each each layer. Hence we assume V = { 〈i, j〉 | 1 ≤ i ≤ n, 0 ≤
j ≤ �+1}. For all graphs in F�,n, we require in addition that each edge connects
a vertex in some layer i to a vertex in the adjacent layer i+ 1.

The following definition serves to represent the set F�,n as a finite set of
strings over the alphabet {0, 1}: Fix a graph G ∈ F�,n for the moment. Let
e(i, j, k) = 1 if G has an edge from vertex i in layer j to vertex k in layer
j + 1, and let e(i, j, k) = 0 otherwise. Next, for vertex i in layer j, the word
f(i, j) = e(i, j, 1)e(i, j, 2) · · · e(i, j, n) encodes the set of outgoing edges for this
vertex. Then for layer j, the word g(j) = f(1, j)f(2, j) · · · f(n, j) encodes the set
of edges connecting vertices in layer j to vertices in layer j + 1, for 0 ≤ j ≤ �.
Finally, the graph G is encoded by the word w(G) = g(0)g(1) · · · g(�). It is easy
to see that each word in the set {0, 1}n2(�+1) can be uniquely decoded as a graph
in the set F�,n.

A graph G ∈ F�,n belongs to the subfamily fork�,n, if there exists a simple
path starting in 〈1, 0〉 ending eventually in a fork, i.e., a vertex of outdegree at
least two. The goal of this section will be to show that the language

L = L�,n = {w ∈ {0, 1}n2(�+1) | w = w(G) with G ∈ fork�,n }
can be accepted by a DFA of size polynomial in both parameters, while this
cannot be the case for any regular expression describing this language.

Proposition 7. For every pair (�, n) with � ≥ 2 and n ≥ 5, the language L�,n
can be accepted by a DFA having at most � · n4 states.

Proof. We describe a DFA A accepting L, which has special states qji for 1 ≤
i ≤ n and 0 ≤ j ≤ �+1. These states will have the following property: If G has a
simple non-forking path starting in vertex 〈1, 0〉 and ending in vertex 〈i, j〉, then
the DFA is in state qi,j after reading the first j · n2 letters of the word w(G).
A DFA having this property is obtained by setting q01 to be the start state, and
by applying the construction shown in Figure 1 one by one to all states qji , for
1 ≤ i ≤ n and 0 ≤ j ≤ �. Each transition in Figure 1 labeled with some regular
expression has to be unrolled to a simple path.

To complete the construction, we have to ensure that from every state q for
which δ(q, 1) is not yet defined, the transition δ(q, 1) leads to a state that leads
every suffix of admissible length to an accepting state. This will be achieved
by adding the transition structure of another deterministic finite automaton



280 H. Gruber and J. Johannsen

qji pj1 rj1 qj+1
1

(0 + 1)n(i−1)
1 · 0n−1 (0 + 1)n

2−ni

pj2 rj2 qj+1
2

1 · 0n−2 (0 + 1)n
2−ni

pjn−1 rjn−1 qj+1
n−1

1 · 0 (0 + 1)n
2−ni

pjn rjn qj+1
n

1 (0 + 1)n
2−ni

...

0

0

0

0

�

0

0 + 1

Fig. 1. Connecting qj
i to the corresponding states in the next layer

that accepts {0, 1}n2(�+1), and routing the lacking transitions into states of this
automaton appropriately, in a way that each time the suffixes of admissible
length are accepted.

Finally, we count the number of states in A: Unrolling the construction de-
picted in Figure 1 introduces

�∑

j=0

n∑

i=1

(

n · i +
n∑

k=1

(n+ 1− k + n2 − n · i)
)

states, excluding the dead state. All dead states can be merged, and the minimal
DFA accepting the language {0, 1}n2(�+1) has n2(�+ 1) + 2 states, one of which
is already a dead state. By adding up and simplifying, we see that the number
of states equals

(�+ 1)(
1
2
n4 +

1
2
n3 + 2n2) + 2.



Optimal Lower Bounds on Regular Expression Size 281

We have � + 1 <
√

2� and 2/(� + 1) < 1 provided � ≥ 2, and for n ≥ 5 holds
1
2n

4 + 1
2n

3 + 2n2 + 1 < n4√
2
, and thus we can conclude that the number of states

is bounded above by � · n4, provided � ≥ 2 and n ≥ 5. 
�
Next, we give a lower bound on the alphabetic width of this language. To this end,
we show that the communication complexity of the monotone search problem for
L�,n is bounded below by the communication complexity of the relation FORK�,n,
which is defined as follows (cf. [11, ch. 5.3]):

LetW := {1, . . . , n}�. The relation FORK�,n is a subset ofW×W×{0, 1, . . . , �}
For two strings x = x1x2 · · ·x� and y = y1y2 · · · y�, and i ∈ {0, 1, . . . , �} we
have (x, y, i) ∈ FORK�,n iff xi = yi and xi+1 �= yi+1, with the convention that
x0 = y0 = 1, x�+1 = n − 1 and y�+1 = n. The following lower bound on this
relation is found in the monograph [11] and is due to1 Grigni and Sipser [4]:

Lemma 8. D(FORK�,n) ≥ �(logn)/4� · �log �� 
�
It remains to give a reduction from FORK�,n to the monotone search problem.

Lemma 9. Let L = L�,n. Then D(RmL ) ≥ � 14 logn� · �log ��.
Proof. We show that for L = L�,n, any protocol that solves RmL can be used to
solve FORK�,n without any additional communication, which implies the stated
lower bound. The reduction is similar to one used by Grigni and Sipser [4].

From her input x ∈ W , Alice computes a graph Gx ∈ F�,n having for every
0 ≤ i ≤ � an edge from 〈xi, i〉 to 〈xi+1, i+1〉, and an additional edge from 〈x�, �〉
to 〈n, �+ 1〉. By construction, Gx ∈ fork�,n and thus w(Gx) ∈ L�,n.

Similarly, from his input y ∈ W , Bob computes a graph Gy having for every
0 ≤ i ≤ � an edge from 〈yi, i〉 to 〈yi+1, i+ 1〉. Additionally, Gy has all the edges
from 〈i, j〉 to 〈i′, j + 1〉 where i �= yj and i′ is arbitrary. Therefore Gy /∈ fork�,n
and thus w(Gy) /∈ L�,n.

Now running the protocol for RmL on w(Gx) and w(Gy) yields a position k
where w(Gx)k = 1 and w(Gy)k = 0, i.e., an edge that is present in Gx, but not
in Gy. By construction, this edge goes from 〈xi, i〉 to 〈xi+1, i+1〉 for some i, and
it must be that yi = xi and yi+1 �= xi+1, as otherwise the edge would be present
in Gy. Thus i is a solution such that (x, y, i) ∈ FORK�,n. 
�
Theorem 10. There exist infinitely many languages Lm such that Lm is ac-
ceptable by a DFA with at most m states, but

alph(Lm) ≥ m 1
75 logm.

Proof. For an integer k, we choose n = 24k, � = n4 and m = n5. Then our
witness language is L = Lm = Ln4,n. This language is acceptable by a DFA with
at most m = n5 states. In contrast, we have D(RmL ) ≥ (logn)2 by Lemma 9,
which together with Lemma 1 implies that CP (RmL ) ≥ 2

1
3 (log n)2 = m

1
75 logm,

and the latter is a lower bound for the alphabetic width of the language Lm. 
�
1 In fact, Grigni and Sipser investigated a relation that is slightly different from the

one used in [11] and in this work.



282 H. Gruber and J. Johannsen

5 Strength and Limitations

In this section, we illustrate the power and limitations of the techniques we in-
troduced. We show that our lower bound technique sometimes gives tight lower
bounds, although the gap between the lower bound and the actual minimum reg-
ular expression size can be exponential, that is, we cannot hope that CP (RL) has
a performance guarantee for regular expressions similar to the case of Boolean
formulas.

5.1 A Poor Lower Bound

For n even, consider the languages of palindromes of length n, Ln = {wwR |
w ∈ {0, 1}n/2 }. To give an upper bound on CP (RLn), recall from Section 2.2
that this number equals the minimum number of variable occurrences among
all Boolean formulas describing the characteristic function of Ln. The following
formula of size 2n describes the characteristic function:

n/2∧

i=1

(xi ∧ xn/2+i) ∨ (¬xi ∧ ¬xn/2+i).

For a lower bound on alph(L), we use the well known fact that alph(L) is bounded
below by the minimum number of states required by a nondeterministic finite
automaton accepting L. However, it is well known that every nondeterministic
finite automaton accepting Ln has size exponential in n [15].

5.2 Optimal Expressions for Parity

Let parn denote the parity language {w ∈ {0, 1}n ; |w|1 odd }. In [3], it is shown
that alph(parn) = Ω(n2) using Khrapchenko’s bound [9] on the Boolean formula
size of the parity function. From a recent improvement of this bound by Lee [12],
we obtain the following better lower bound:

Theorem 11. If E is a regular expression with L(E) = parn, and n = 2d + k
with k < 2d, then alph(E) ≥ 2d(2d + 3k).

We will now construct regular expressions for parn that exactly match this lower
bound. The construction is essentially the same as Lee’s [12] upper bound for
the size of Boolean formulas for parity, but our analysis is simpler, using only
induction and elementary arithmetic.

We have that parn = L(oddn), where the expressions evenn and oddn are
defined inductively by

even1 := 0 odd1 := 1
even2m := (evenm · evenm) + (oddm · oddm)
odd2m := (evenm · oddm) + (oddm · evenm)

even2m+1 := (evenm+1 · evenm) + (oddm+1 · oddm)
odd2m+1 := (evenm+1 · oddm) + (oddm+1 · evenm)



Optimal Lower Bounds on Regular Expression Size 283

First we observe that alph(evenn) = alph(oddn) for every n, and we denote it
by r(n) := alph(evenn). Then the function r(n) satisfies the following recursive
equations:

r(1) = 1 r(2m) = 4r(m) r(2m+ 1) = 2r(m+ 1) + 2r(m)

We now show that if n = 2d + k with k < 2d, then r(n) = 2d(2d + 3k), by
induction on n. Thus our expressions match Lee’s lower bound.

The case n = 1 is obvious. For the induction step, we distinguish three cases.
The first case is n = 2m where m = 2d + k, hence n = 2d+1 + 2k. In this case
we have

r(n) = 4r(m) = 4 · 2d(2d + 3k) = 2d+1(2d+1 + 6k).

The second case is n = 2m+ 1 where m = 2d + k and m+ 1 = 2d + (k+ 1) with
k + 1 < 2d, hence n = 2d+1 + 2k + 1 with 2k + 1 < 2d+1. In this case we obtain

r(n) = 2r(m+ 1) + 2r(m) = 2d+1(2d + 3k + 3) + 2d+1(2d + 3k)

= 2d+1(2d+1 + 6k + 3) .

The final case is n = 2m+1, where m = 2d+k and m+1 = 2d+1, thus k = 2d−1
and n = 2d+1 + (2d+1 − 1). In this case we calculate

r(n) = 2r(m+ 1) + 2r(m) = 22d+3 + 2d+1(2d + 3(2d − 1))

= 2d+1(2d+2 + 2d + 3(2d − 1)) = 2d+1(2d+1 + 2d+1 + 2d + 3(2d − 1))

= 2d+1(2d+1 + 3 · 2d + 3(2d − 1) = 2d+1(2d+1 + 3(2d+1 − 1))

which shows the claim.

6 Upper Bounds for Converting NFAs into Regular
Expressions

In this section, we identify a family of finite languages Hn which are the hardest
finite languages for the NFA to RE conversion problem. The term hardest is
made precise in the statement of the theorem below. The languages Hn were
also studied in [2], where it was shown that alph(Hn) = nΩ(log log n).

Theorem 12. For n ≥ 1, let Gn = (Vn, Δ) be the complete directed acyclic
graph on n vertices, that is Vn = {1, 2, . . . , n} and edge set Δ = {〈i, j〉 | 1 ≤ i <
j ≤ n}. Define the language Hn ⊂ Δ≤n−1 as the set of all paths in G leading
from vertex 1 to vertex n. Then the following holds:

1. Hn can be accepted by an n-state nondeterministic finite automaton.
2. Let Σ be an alphabet. For every finite language L over Σ acceptable by an

n-state nondeterministic finite automaton holds alph(L) ≤ |Σ| · alph(Hn).



284 H. Gruber and J. Johannsen

Proof. The first statement is easy to see. For the second statement, assume the
theorem holds for all values up to n−1, and let A be an n-state nondeterministic
finite automaton accepting L ⊆ Σ≤n−1. Without loss of generality, we assume A
has state set {q1, q2, . . . , qn} and the states are in topological order with respect
to the transition structure of the directed acyclic graph underlying A, that is,
the automaton cannot move from state qj to state qi if i ≤ j. Furthermore, we
can safely assume that the automaton has start state q1 and single accepting
state qn. This can be achieved by the following construction: If q1 is not the
start state, and the state set is topologically ordered, then q1 is not reachable
from the start state. q1 can be removed, and we can apply the theorem for the
obtained n− 1-state automaton. For similar reasons, we can assume that qn is a
final state. If A has another final state p, we add transitions such that for every
transition entering p there is now a transition from the same source entering qn.
Then we remove p from the set of final states. Clearly, the accepted language is
not altered by this construction, and the number of states remains n.

Let H be the minimal partial n-state deterministic finite automaton accepting
Hn, i.e. the automaton has no dead state. We again assume that the state set
of H is topologically ordered, as for A.

Let F andG be the regular expressions obtained by applying the standard state
elimination algorithm [7,14] to the automata H and A, respectively. Since the al-
gorithm is correct, we have L(F ) = Hn, and L(G) = L(A). For a pair of states
(qi, qj) with i < j in A, define the regular expression Fij as the minimal expres-
sion describing the union of all transition labels under which the automaton can
change its state from qi to qj . Then by the properties of the transformation algo-
rithm holdsG = sub(F ), where sub is the substitution replacing every occurrence
of the atomic expression 〈i, j〉 with an occurrence of the expression (Fij).

Now let F ′ be an expression of minimal alphabetic width describing Hn, that
is L(F ′) = L(F ). Then this equality is derivable using a sound and complete
proof system for regular expression equations, e.g. see [19]. Then we can derive
the equality L(sub(F ′)) = L(sub(F )) by a single application of the substitution
rule [19], and recall sub(F ) = G. To estimate the size of L(G), we simply observe
that alph(Fij) ≤ |Σ|, for all i, j. 
�
Thus an algorithm which does the job for the n-state automaton accepting Hn

will not perform much worse given any other finite automaton of equal size.
In doing this, we obtain a slightly improved upper bound for the conversion
problem for all finite languages — the currently best known method [3, Cor. 22]
gives a bound of (n+ 1) · kn(n− 1)logn+1:

Corollary 13. Let A be an n-state nondeterministic finite automaton accepting
a finite language L = L(A) over a k-symbol alphabet. Then

alph(L) < k · n(n− 1)log(n−1)+1

Proof. By the preceding theorem, it suffices to give an upper bound on alph(Hn).
The language Hn coincides with set of all walks (of length at most n− 1) in Gn
that start in vertex 1 and end in vertex n. The analysis given in [3, Thm. 20]



Optimal Lower Bounds on Regular Expression Size 285

implies that there exists a regular expression of size at most n(n− 1)log(n−1)+1

describing this set, since for each pair (i, j), there is a regular expression of size
at most 1 describing the set of walks of length at most 1 in Gn starting in i and
end in j. Thus, alph(Hn) ≤ n(n− 1)log(n−1)+1. 
�

7 Conclusions and Further Work

We developed a new lower bound technique for regular expression size to show
that converting deterministic finite automata accepting finite languages into reg-
ular expressions leads to an inevitable blow-up in size of nΘ(log n), solving an open
problem stated in [2]. This bound still holds when restricting to alphabet size
two. Note that finite automata accepting unary finite languages can be easily
converted into regular expressions of linear size.

Compared to the finite automaton model, we feel that we have still a lim-
ited understanding of the power of regular expressions in terms of descriptional
complexity. For instance, although we have determined an asymptotically tight
bound of nΘ(logn), there is still a considerable gap between the two constants
implied by the Θ-Notation. This is in stark contrast with the deterministic finite
automaton model, where exact bounds are known for many questions regarding
descriptional complexity, see [21] for an overview.

Another interesting line of research concerns lower bounds for the conversion
problem on infinite languages, over alphabets of constant size. This problem has
been solved in [5], where a corresponding lower bound of 2Ω(n) was established,
given an n-state DFA over a binary alphabet accepting an infinite language.
There a different proof technique based on digraph connectivity was used, which
only gives trivial lower bounds for finite languages. That paper also contains
lower bounds on alphabetic width of some basic regular language operations,
such as intersection, shuffle, and complement. The effect of language operations
on alphabetic width in the case of finite languages is also of interest: For finite
automata accepting finite languages, the descriptional complexity often differs
from the general case, see e.g. [21]. The lower bound techniques developed in
this paper might be useful in that context.

Acknowledgment. We would like to thank Jeffrey Shallit for kindly providing
us a copy of the corrected final version [3], which by now has already appeared.

References

1. Delgado, M., Morais, J.: Approximation to the smallest regular expression for a
given regular language. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.)
CIAA 2004. LNCS, vol. 3317, pp. 312–314. Springer, Heidelberg (2005)

2. Ehrenfeucht, A., Zeiger, H.P.: Complexity measures for regular expressions. Journal
of Computer and System Sciences 12(2), 134–146 (1976)

3. Ellul, K., Krawetz, B., Shallit, J., Wang, M.: Regular Expressions: New Results
and Open Problems. Journal of Automata, Languages and Combinatorics 10(4),
407–437 (2005)



286 H. Gruber and J. Johannsen

4. Grigni, M., Sipser, M.: Monotone separation of logarithmic space from logarithmic
depth. Journal of Computer and System Sciences 50, 433–437 (1995)

5. Gruber, H., Holzer, M.: Finite automata, digraph connectivity and regular expres-
sion size. Technical report, Technische Universität München (December 2007)

6. Han, Y., Wood, D.: Obtaining shorter regular expressions from finite-state au-
tomata. Theoretical Computer Science 370(1–3), 110–120 (2007)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading (1979)

8. Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-
logarithmic depth. SIAM Journal on Discrete Mathematics 3, 255–265 (1990)

9. Khrapchenko, V.M.: Methods for determining lower bounds for the complexity of
π-schemes (English translation). Math. Notes Acad. Sciences USSR 10, 474–479
(1972)

10. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, Annals of Mathematics Studies,
pp. 3–42. Princeton University Press, Princeton (1956)

11. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, New York (1997)

12. Lee, T.: A new rank technique for formula size lower bounds. In: Thomas, W.,
Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, Springer, Heidelberg (2007)

13. Martinez, A.: Efficient computation of regular expressions from unary NFAs. In:
Dassow, J., Hoeberechts, M., Jürgensen, H., Wotschke, D. (eds.) Workshop on
Descriptional Complexity of Formal Systems 2002, London, Canada, pp. 216–230
(2002)

14. McNaughton, R., Yamada, H.: Regular expressions and state graphs for automata.
IRA Transactions on Electronic Computers 9(1), 39–47 (1960)

15. Meyer, A.R., Fischer, M.J.: Economy of description by automata, grammars, and
formal systems. In: IEEE Symposium on Switching and Automata Theory 1971,
pp. 188–191 (1971)

16. Morais, J.J., Moreira, N., Reis, R.: Acyclic automata with easy-to-find short reg-
ular expressions. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS,
vol. 3845, pp. 349–350. Springer, Heidelberg (2006)

17. Morris, P.H., Gray, R.A., Filman, R.E.: Goto removal based on regular expressions.
Journal of Software Maintenance 9(1), 47–66 (1997)

18. Sakarovitch, J.: The language, the expression, and the (small) automaton. In: Farré,
J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845, pp. 15–30. Springer,
Heidelberg (2006)

19. Salomaa, A.: Two complete axiom systems for the algebra of regular events. Journal
of the ACM 13(1), 158–169 (1966)

20. Schnitger, G.: Regular expressions and NFAs without ε-transitions. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer, Hei-
delberg (2006)

21. Yu, S.: State complexity of finite and infinite regular languages. Bulletin of the
EATCS 76, 142–152 (2002)



On Decision Problems for

Probabilistic Büchi Automata

Christel Baier1, Nathalie Bertrand1,2, and Marcus Größer1

1 Technische Universität Dresden, Germany
2 IRISA/INRIA Rennes, France

Abstract. Probabilistic Büchi automata (PBA) are finite-state accep-
tors for infinite words where all choices are resolved by fixed distributions
and where the accepted language is defined by the requirement that the
measure of the accepting runs is positive. The main contribution of this
paper is a complementation operator for PBA and a discussion on several
algorithmic problems for PBA. All interesting problems, such as checking
emptiness or equivalence for PBA or checking whether a finite transition
system satisfies a PBA-specification, turn out to be undecidable. An
important consequence of these results are several undecidability results
for stochastic games with incomplete information, modelled by partially-
observable Markov decision processes and ω-regular winning objectives.
Furthermore, we discuss an alternative semantics for PBA where it is
required that almost all runs for an accepted word are accepting, which
turns out to be less powerful, but has a decidable emptiness problem.

Probabilistic ω-automata have been introduced in [BG05] as probabilistic ac-
ceptors for languages over infinite words. The central idea of these models is
to resolve all choices by fixed probabilistic distributions and to define the ac-
cepted language as the set of infinite words where the probability measure of
the accepting runs (according to, e.g., a Büchi, Rabin or Streett acceptance
condition) is positive. In the paper [BG05], we mainly concentrated on expres-
siveness and efficiency and showed that the class of languages that are recog-
nizable by a probabilistic Büchi automaton (PBA) strictly subsumes the class
of ω-regular languages (i.e., PBA are more expressive than their nondetermin-
istic counterparts) and agrees with the class of languages that can be accepted
by a probabilistic Rabin or Streett automaton (PRA/PSA). Furthermore, there
are ω-regular languages that have PBA of polynomial size, while any NBA has
at least exponentially many states. Another aspect that makes probabilistic ω-
automata interesting is the observation that the verification problem “given a
finite Markov chain M and an ω-regular language L for the undesired behaviors,
check whether the undesired behaviors have zero measure in M” can be answered
with a PBA-representation of L by means of a simple product-construction and
graph-based methods, while the methods known for a representation of L by a
standard Büchi automaton (alternating or nondeterministic) are more complex
since they rely on some kind of powerset construction [Var85,CY95,BRV04].

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 287–301, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



288 C. Baier, N. Bertrand, and M. Größer

The purpose of this paper is to study algorithmic problems for PBA in more
detail and to provide answers to several questions that were left open in [BG05].
Our main results are:

(1) a complementation operator for PBA
(2) the fact that the language accepted by a PBA might depend on the precise

transition probabilities
(3) the undecidability of the emptiness problem for PBA, and various related

problems
(4) the decidability of the emptiness problem for PBA with a (non-standard)

almost-sure semantics

To provide a complementation operator for PBA we use a technique that re-
sembles the complementation of nondeterministic Büchi automata by means of
Safra’s algorithm [Saf88] and relies on (i) a transformation of a given PBA P
into an equivalent PRA PR that accepts each infinite word with probability 0
or 1, (ii) the complementation of the Rabin acceptance condition in PR to obtain
a PSA PS for the complement language and (iii) a transformation of PS into an
equivalent PBA by means of techniques presented in [BG05].

At a first glance, the undecidability of the emptiness problem for PBA might
not be astonishing given the undecidability of the emptiness problem for Rabin’s
probabilistic finite automata (PFA) [Rab63,Paz71]. However, PFA are equipped
with a positive threshold for the acceptance probability, while the acccepted
language of a PBA just requires positive acceptance probability (which is not
of interest for PFA as for finite words the criterion “positive acceptance prob-
ability” agrees with the existence of an accepting run). In fact, (2) and (3) are
surprising since for the verification of finite probabilistic systems (Markov chains
or Markov decision processes) against ω-regular properties, the precise transition
probabilities are irrelevant and a simple graph analysis suffices, as long as one
is interested in qualitative questions [HSP83,Var85,CY95].

The undecidability of the emptiness problem has several important conse-
quences. First, together with the effectiveness of complementation, it implies
that all interesting algorithmic problems for PBA (such as checking emptiness,
universality or equivalence) as well as all relevant verification problems for finite-
state nondeterministic systems (with or without probabilism) where the desired
or undesired behaviors are specified by a PBA are undecidable. Second, several
undecidability results can be established for stochastic games with incomplete in-
formation. More precisely, we show the undecidability of the questions whether
there exists an observation-based strategy such that a Büchi condition holds with
positive probability or whether there is an observation-based strategy such that
a coBüchi condition holds almost surely. This even holds for stochastic games
with a single nondeterministic player, modelled by partially observable Markov
decision processes (POMDP) which can be seen as a generalization of PBA.
Although several undecidability results have been established for POMDPs and
quantitative properties [MHC03,GD07], we are not aware of any other undecid-
ability result for POMDPs and qualitative properties. Our results might be of



On Decision Problems for Probabilistic Büchi Automata 289

interest to several research communities as POMDPs are widely used in vari-
ous applications like elevator controlling, autonomous robot planning, network
toubleshooting or health care policymaking (see [Cas98] for a survey).

We finally discuss an alternative semantics for PBA which defines the accepted
language of a PBA by the requirement that almost all runs are accepting. PBA
with the almost-sure semantics turn out to be less powerful than PBA with the
standard semantics, but checking emptiness is decidable for them. In contrast to
the above undecidability results for POMDPs, we provide a decision algorithm
for the almost-sure (repeated) reachability problem for POMDPs, that is, given
a POMDP M and a state set F , check whether there is an observation-based
strategy for M that ensures to visit F (infinitely often) with probability 1.
This extends former results on the decidability of special cases of the qualitative
model checking problem for POMDPs [dA99] where the confinement problem
(which asks whether an invariant can hold with positive probability) has been
addressed.

Organization of the paper Section 1 briefly recalls the basic definitions of prob-
abilistic Büchi automata and (partially observable) Markov decision processes.
The complementation of PBA is described in Section 2. Several undecidability
results for PBA (as well as POMDPs) are given in Section 3. An alternative
semantics for PBA is introduced and studied in Section 4. Section 5 concludes
the paper.

1 Preliminaries

Throughout the paper, we assume familiarity with formal languages and non-
deterministic automata over finite and infinite words, see e.g. [Tho90, PP04,
GTW02]. We just recall the main concepts of probabilistic ω-automata with
Büchi or other acceptance conditions and (partially observable) Markov deci-
sion processes. For further details we refer respectively to [BG05] and [Put94].

Probabilistic Büchi automata (PBA) can be seen as nondeterministic Büchi
automata where the nondeterminism is resolved by a probabilistic choice: for
any state q and letter a ∈ Σ either q does not have any a-successor or there
is a probability distribution for the a-successors of q. Formally, a PBA over
the alphabet Σ is a tuple P = (Q, δ, μ, F ) where Q is a finite state space,
δ : Q×Σ ×Q → [0, 1] the transition probability function such that for all q ∈ Q
and a ∈ Σ,

∑

p∈Q

δ(q, a, p) ∈ {0, 1},

μ the initial distribution, i.e., μ is a function Q → [0, 1] with
∑

q∈Q μ(q) = 1,
and F ⊆ Q the set of accepting states. The states q ∈ Q where μ(q) > 0 are
called initial. A run for an infinite word w = a1a2 . . . ∈ Σω is an infinite sequence
π = p0, p1, p2, . . . of states in Q such that p0 is initial and pi+1 ∈ δ(pi, ai+1) =
{q : δ(pi, ai+1, q) > 0} for all i ≥ 0. Inf(π) denotes the set of states that are
visited infinitely often in π. Run π is called accepting if Inf(π)∩F �= ∅. Given an



290 C. Baier, N. Bertrand, and M. Größer

infinite input word w ∈ Σω, the behavior of P is given by the infinite Markov
chain that is obtained by unfolding P into a tree using w as a “scheduling
policy”. We can therefore apply standard concepts for Markov chains (σ-algebra
on the infinite paths and probability measure [KSK66,Kul95, Ste94]) to define
the acceptance probability of w in P , denoted PrP(w) or briefly Pr(w), by the
probability measure of the set of accepting runs for w in P . The accepted language
of P is then defined as

L(P) =
{
w ∈ Σω | PrP(w) > 0

}
.

The language of a PBA P might be different from the language of the NBA that
is obtained from P by ignoring the probabilities. However, DBA and NBA that
are deterministic in limit [Var85, CY95] can be viewed as special instances of
PBA (arbitrary probabilities in ]0, 1] can be attached to the edges). Since each
NBA can be transformed into an equivalent one that is deterministic in limit
[Var85,CY95], each ω-regular language can be represented by a PBA. However,
there are PBA that accept non-ω-regular languages. For example, the PBA Pλ

depicted in Fig. 1 with 0 < λ < 1 accepts the following non-ω-regular language:

L(Pλ) =
{
ak1bak2bak3b . . . | k1, k2, k3, . . . ∈ N≥1 s.t.

∞∏

i=1

(1 − λki) > 0
}
.

Here and in the rest of the paper, we depict accepting states by boxes.

q r

a, 1 − λ

b, 1

a, λ a, 1

Fig. 1. PBA Pλ with 0 < λ < 1

Similarly, probabilistic Rabin and Streett automata (PRA and PSA, respec-
tively) are defined as tuples P = (Q, δ, μ,Acc) where Q, δ and μ are as above,
and Acc is a finite set of pairs (H, K) with H, K ⊆ Q. The accepted language of
a PRA or PSA is defined as for PBA, but with an adapted notion of accepting
runs. A run π = p0, p1, p2 . . . is accepting in a PRA if there is a pair (H, K) ∈ Acc
such that Inf(π) ⊆ H and Inf(π) ∩ K �= ∅, whereas it is accepting in a PSA if
for all pairs (H, K) ∈ Acc either Inf(π) ∩ H = ∅ or Inf(π) ∩ K �= ∅. Note that
any PRA or PSA P can be transformed into an equivalent PBA whose size is
polynomially bounded in the size of P [BG05].

A Markov decision process (MDP) is a tuple M = (Q,Act, δ, μ) where Q is a
finite set a states, δ : Q × Act × Q → [0, 1] a transition probability function and
μ an initial distribution. The behaviour of an MDP is determined by a device,
the scheduler, that resolves the nondeterministic choices: a scheduler for M is
any (history-dependent) function that selects an action for the current state i.e.,
a function U : S∗ → Act such that U(s0 . . . sn) = α implies δ(sn, α, t) > 0 for
some state t.



On Decision Problems for Probabilistic Büchi Automata 291

A partially observable MDP (POMDP) is a pair (M, ∼) consisting of an MDP
and an equivalence relation ∼ ⊆ Q × Q over the states of M such that for all
states s, t ∈ Q, if s ∼ t then the sets of actions enabled in s and t are equal.
Given a POMDP (M, ∼), an observation-based scheduler U is a scheduler for the
underlying MDP M that is consistent with ∼, i.e. which satisfies U(s0s1 . . . sn) =
U(t0t1 . . . tm) if n = m and si ∼ ti for 0 ≤ i ≤ m.

Given a total PBA P (a PBA that has transitions for each pair of a state
and input letter) and the trivial equivalence relation ∼ = Q × Q, the pair (P ,
∼) forms a POMDP, where an observation-based scheduler represents an input
word for the PBA P (here Act = Σ).

2 Complementation of PBA

The question whether the class of languages recognizable by PBA is closed under
complementation was left open in [BG05]. We show here that for each PBA P
there exists a PBA that accepts the complement of L(P). Before providing a
complementation operator for PBA, we consider the PBA P̃λ in Fig. 2 which
accepts the following language (see appendix):

L̃λ =
{
ak1bak2bak3b . . . | k1, k2, k3 . . . ∈ N≥1 s.t.

∞∏

i=1

(1 − λki) = 0
}
.

L̃λ is thus roughly the complement of the language accepted by the PBA Pλ

shown in Fig. 1. More precisely, it holds that L̃λ = (a+b)ω \ L(Pλ). Hence, P̃λ

combined with a PBA for (a + b)∗aω, b(a + b)ω and (a + b)∗bb(a + b)ω yields a
PBA that recognizes the complement of L(Pλ).

p2 p1

pF p0

b, 1
a, λ

a, 1−λ

a, 1−λ

b, 1
a, 1−λ

a, λ

a, λ a, 1

Fig. 2. PBA P̃λ with 0 < λ < 1

Theorem 1. For each PBA P there exists a PBA P ′ of size O(exp(|P|) such
that L(P ′) = Σω \ L(P). Moreover, P ′ can be effectively constructed from P.



292 C. Baier, N. Bertrand, and M. Größer

Proof (sketch). The idea for the complementation of a given PBA P is to provide
the following series of transformations

PBA P (1)
=⇒ 0/1-PRA PR with L(PR) = L(P)
(2)
=⇒ 0/1-PSA PS with L(PS) = Σω \ L(PR)
(3)
=⇒ PBA P with L(P) = L(PS)

where 0/1-PRA denotes a PRA with PrPR(w) ∈ {0, 1} for each word w ∈ Σω.
Step (2) is obvious as it relies on the duality of Rabin and Streett acceptance. In
step (3), we may use the polynomial transformation from PSA to PBA presented
in [BG05]. The most interesting part is step (1), which has some similarities
with Safra’s determinization algorithm for NBA and also relies on some kind
of powerset construction. However, we argue that the probabilistic setting is
slighty simpler: instead of organizing the potential accepting runs in Safra trees,
we may deal with up to n independent sample runs (where n is the number of
states in P) that are representative for all potential accepting runs. The idea
is to represent the current states of the sample runs by tuples 〈p1, . . . , pk〉 of
pairwise distinct states in P . Whenever two sample runs meet at some point,
say the next states p′1 and p′2 in the first two sample runs agree, then they are
merged, which requires a shift operation for the other sample runs and yields a
tuple of the form 〈p′1, p′3, . . . , p′k, . . . , r, . . .〉 where pi → p′i stands for the move
in the i-th sample run. Additionally, new sample runs are generated in case
the original PBA P can be in an accepting state r /∈ {p′1, . . . , p′k}. The Rabin
condition serves to express the condition that at least one of the sample runs
enters the set F of accepting states in P infinitely often and is a proper run in
P (i.e., is affected by the shift operations only finitely many times). The details
of this construction are complicated and omitted here. ��

3 Undecidability Results

A natural question that arises with automata is whether the accepted language
of a given automaton is empty. The decidability of this problem for PBAs was
open, since in [BG05] the emptiness problem was only treated for uniform PBA,
a subclass of PBA, which are as expressive as ω-regular languages. It was shown
there that checking emptiness is decidable for uniform PBAs and that the prob-
lem, given a uniform PBA P , whether L(P) �= ∅ is NP-hard. The decidability
followed from a transformation of a uniform PBA into an equivalent NSA. For
the full class of PBA we present the following result.

Theorem 2. The emptiness problem for PBA is undecidable.

Our proof for Theorem 2 given below relies on a reduction from a variant of
the emptiness problem for PFA, using the fact that modifying the transition
probabilities can affect the accepted language of a PBA. To see this last point,
we consider again the PBA represented in Fig. 1 and show that:



On Decision Problems for Probabilistic Büchi Automata 293

Proposition 3. For 0 < λ < 1
2 < η < 1, L(Pλ) �= L(Pη).

Recall that L(Pλ) = {ak1bak2b · · · |
∏

i≥1(1 − λki) > 0}. Proposition 3 is an
immediate consequence of the following lemma (using n = 2):

Lemma 4. For each n ∈ N≥2 there exists a sequence (ki)i≥1 such that
∏

i≥1(1 − λki) > 0 if and only if λ < 1
n .

Proof. Given n ∈ N≥2, we define the sequence (ki)i≥1 in the following way: the
first n elements are set to 1, then the n2 following elements are set to 2, the n3

next elements set to 3, etc. The sequence (ki)i≥1 is non-decreasing, and defined
by plateaux of increasing values and exponentially increasing length. We show
that

∏
i(1 − λki) is positive if and only if λ < 1

n . To see this, we consider the
series

∑
i log(1−xki) which converges if and only if

∏
i(1−xki) is positive. Now,∑

i log(1 − xki) =
∑

i ni log(1 − xi) by definition of the sequence (ki), and the
latter series behaves as −

∑
i nixi (i.e. either both converge, or both diverge)

since log(1− ε) ∼ε�→0 −ε. Hence
∑

i ni log(1−xi) < ∞ if and only if x < 1
n , and∏

i(1 − λki) > 0 if and only if λ < 1
n which proofs the claim. ��

The emptiness problem for PFA is known to be undecidable [Rab63,Paz71]. We
use here a variant of this result, due to Madani et al [MHC03]:

Theorem 5 (Undecidability result for PFA, [MHC03]). The following
problem is undecidable: Given a constant 0 < ε < 1 and a PFA that either
accepts some string with probability at least 1 − ε or accepts all strings with
probability at most ε, decide which is the case.

To provide an undecidability proof of the emptiness problem for PBA (The-
orem 2), we reduce the variant of the emptiness problem for PFA recalled in
Theorem 5 to the intersection problem for PBA which takes as input two PBA
P1 and P2 and asks whether L(P1) ∩ L(P2) is empty. As PBA are closed under
intersection ( [BG05]), this will complete the proof for Theorem 2.

Let R be a PFA over some alphabet Σ and 0 < ε < 1
2 as in Theorem 5,

i.e. such that either there exists some word w accepted by R with probability
strictly greater than 1 − ε, or all words are accepted with probability less than
ε. For w ∈ Σ∗, let PrR(w) denote the probability that the word w is accepted
by R. From the PFA R and the constant ε we derive two PBA P1 and P2 such
that

L>ε(R) = ∅ if and only if L(P1) ∩ L(P2) = ∅,

where L>ε(R) = {w ∈ Σ∗ | PrR(w) > ε}. The alphabet for both P1 and P2

arise from the alphabet Σ of R by adding new symbols � and $, that is, P1

and P2 are PBA over the alphabet Σ′ = Σ ∪ {�, $}. The rough idea is to use
the somehow complementary acceptance behaviour of the automata Pλ and P̃λ

(see Fig. 1 and 2). The automata P1 and P2 are designed to read words of the
form w1

1�w
1
2� · · · w1

k1
$$w2

1�w
2
2� · · · w2

k2
$$ · · · where wj

i ∈ Σ∗. Roughly speaking,
P1 will mimick the automaton Pλ and P2 will mimick P̃λ, where reading a word



294 C. Baier, N. Bertrand, and M. Größer

wj
i � in P1 (resp. P2) corresponds to reading a single letter a in Pλ (resp. P̃λ).

Recall that Pλ and P̃λ accept infinite words of the form ak1bak2b . . . (depending
on the ki). The two $-symbols serve as a separator for P1 and P2, just like
the letter b does for Pλ and P̃λ. Thus, the number of �-symbols between the
(j − 1)st and the jth occurence of $$ (and therefore the number of words wj

i )
corresponds to the value of kj . Automaton P1 evolves from automaton Pλ by
replacing each of its two states q, r by a copy of the PFA R. The transitions
for the �-symbol will be defined, such that after reading a word wj

i � in the copy
of R that corresponds to the state q (recall that this corresponds to reading
a single letter a in Pλ in state q) the automaton P1 is still in this copy of R
with probability 1 − PrR(wj

i ) and has moved to the other copy with probability
PrR(wj

i ), similar to the behaviour of automaton Pλ upon reading the letter a in
state q (it stays in q with probability λ and moves to r with probability 1 − λ).
The structure of P1 and P2 is shown in Fig. 3 and 4, respectively.

s0

p
f

R

s0

p
f

R

�, 1
�, 1 �, 1

�, 1

F $, 1

$, 1

$, 1

$, 1

Fig. 3. PBA P1

PBA P1 is composed of two copies of the PFA R (respresented in dashed
lines) augmented with new edges using the additional symbols � and $. For
simplicity, we represented only one initial and one final state from R, called
s0 and f respectively. The initial states of P1 are the initial states of the first
copy of R. From any final state of the first copy of R, the PBA P1 can reach
each initial state of R in the second copy (but no other state) while reading the
symbol �. (That means, each initial state of R of the second copy is reached with
the initial probability of R.) Upon reading the symbol � in a non-final state p
of the first copy of R, the automaton P1 proceeds to each initial state of the
first copy of R (again the initial distribution of R is assumed). Consuming the
symbol $ in some (final or non-final) state of the second copy, P1 enters with
probability 1 the special state F , which is the unique accepting state of P1.
Reading the second $ symbol, P1 moves on to an initial state.

The language of this PBA is the following:

L(P1) =
{
w1

1�w
1
2� . . . w1

k1
$$ w2

1�w
2
2� . . . w2

k2
$$ . . . | wj

i ∈ Σ∗

and
∏

j≥1

(
1 −

(kj−1∏

i=1

(1 − PrR(wj
i ))

))
> 0

}
.



On Decision Problems for Probabilistic Büchi Automata 295

p′

0

F ′

p′

1

p′

2

u′

1 u′

2

�, ε

$, 1

$, 1

a ∈ Σ, 1

a ∈ Σ, 1

$, 1

$, 1

a ∈ Σ, 1

�, 1 − ε

a ∈ Σ, 1

�, 1

Fig. 4. PBA P2

PBA P2 (Fig. 4) does not depend on the structure of the given PFA R, but
only on ε and the alphabet Σ. Its accepted language is :

L(P2) =
{

v1$$ v2$$ . . . | vi ∈ (Σ ∪ {�})∗ and
∏

i≥1

(
1 − (1 − ε)|vi|�) = 0

}
,

where |v|� is the number of � symbols in the word v ∈ (Σ ∪ {�})∗.
Given P1 and P2, let us now detail the correctness of the reduction, i.e., prove

that the language L>ε(R) = {w ∈ Σ∗ | PrR(w) > ε} of R for the threshold ε is
empty if and only if L(P1) ∩ L(P2) = ∅.

⇒: Assume that L>ε(R) is empty, i.e. for all finite words w ∈ Σ∗ we have:
PrR(w) ≤ ε. Let w̃ ∈ L(P2). The goal is to prove that w̃ /∈ L(P1). Since
w̃ ∈ L(P2), w̃ can be written as

w̃ = v1$$ v2$$ . . . with vi ∈ (Σ ∪ {�})∗ and
∏

i

(
1 − (1 − ε)|vi|�) = 0.

The subwords vi can be decomposed according to the occurrences of the
symbol �. That is,

w̃ = w1
1�w

1
2� . . . w1

k1
$$ w2

1�w
2
2� . . . w2

k2
$$ . . . with |vi|� = ki − 1.

Hence w̃ ∈ L(P2) implies
∏

i

(
1 − (1 − ε)ki−1

)
= 0. However:

∏

j

(
1 −

∏kj−1
i=1

(
1 − PrR(wj

i )
))

≤
∏

j

(
1 −

kj−1∏

i=1

(
1 − ε

))
since L>ε(R) = ∅

=
∏

j

(
1 − (1 − ε)kj−1

)

= 0 since w̃ ∈ L(P2).

Hence, w̃ /∈ L(P1). Since this holds for any w̃ ∈ L(P2), we conclude that
L(P1) ∩ L(P2) = ∅.



296 C. Baier, N. Bertrand, and M. Größer

⇐: Assume now that L>ε(R) �= ∅. By assumption on the PFA R, this means
that there exists a finite word w ∈ Σ∗ such that PrR(w) > 1 − ε.
We define

w̃k1,k2,... = (w�)k1w$$ (w�)k2w$$ . . .,

and prove that there exists a sequence k1, k2, . . ., such that w̃k1,k2,... ∈
L(P1) ∩ L(P2). The acceptance probability of w̃k1,k2,... in P1 is

∏

j

(
1 −

∏kj

i=1

(
1 − PrR(w)

))
=

∏

j

(
1 −

(
1 − PrR(w)

)kj
)

>
∏

j

(
1 −

(
1 − (1 − ε)

)kj
)

=
∏

j

(
1 − εkj

)

On the other hand, the word w̃k1,k2,... can be written as v1$$v2$$ . . . with
vi ∈ (Σ∪{�})∗ and |vi|� = ki. Hence,

∏
i

(
1−(1−ε)|vi|�) =

∏
i

(
1−(1−ε)ki

)
.

We finally apply Lemma 4 (with n = 2) which yields the existence of a
sequence (k′i)i≥1 that will ensure at the same time

∏

j≥1

(
1 − εk′

j

)
> 0 and

∏

i≥1

(
1 − (1 − ε)k′

i

)
= 0.

Hence, w̃k′
1,k′

2,... ∈ L(P1) ∩ L(P2) and L(P1) ∩ L(P2) �= ∅.

This completes the proof of Theorem 2.
Since complementation is effective for PBA, from the undecidability of the

emptiness problem, we immediately get that many other interesting algorithmic
problems for PBA are undecidable too.

Corollary 6 (Other undecidability results for PBA). Given two PBA P1

and P2, the following problems are undecidable.

universality: L(P1) = Σω?
equivalence: L(P1) = L(P2)?
inclusion: L(P1) ⊆ L(P2)?

Another immediate consequence of Theorem 2 is that the verification problem
for finite transition systems T and PBA-specifications is undecidable. Here we
assume that the states in T are labelled with sets of atomic propositions of some
finite set AP and consider the traces of the paths in T that arise by the projection
to the labels of the states. Furthermore, we assume that the given PBA has the
alphabet 2AP:

Corollary 7 (Verification against PBA-specifications). The following
problems are undecidable:

(a) Given a transition system T and a PBA P, is there a path in T whose trace
is in L(P)?

(b) Given a transition system T and a PBA P, do the traces of all paths in T
belong to L(P)?



On Decision Problems for Probabilistic Büchi Automata 297

Proof. Consider a transition system T such that each infinite word over the
alphabet of P is a trace of T . Then the emptiness problem for PBA reduces to
(a) and the universality problem for PBA reduces to (b). ��

As transition systems are special instances of state-labelled Markov decision
processes, the following four cases of the qualitative verification problem for
finite state-labelled Markov decision processes M and PBA-specifications P are
undecidable too. Is there a scheduler U for M such that

(i) PrU(L(P)) > 0? (ii) PrU (L(P)) = 1?
(iii) PrU(L(P)) < 1? (iv) PrU (L(P)) = 0?

Indeed, problem (a) of Corollary 7 reduces to (i) (resp. (ii)) and problem (b)
reduces to (iii) (resp. (iv)) when T is viewed as an MDP M.

Since PBA are a special case of POMDPs our results immediately imply un-
decidability results for POMDPs and qualitative properties. In the literature,
some undecidability results for POMDPs and quantitative properties (e.g. ex-
pected rewards, approximation of the maximal reachability problem) can be
found [MHC03,GD07]. However, as far as we know, the undecidability of qualita-
tive ω-regular properties for POMDPs is a new result. As POMDPs are 1 1

2 -player
games, the following results also apply to the setting of stochastic multi-player
games with incomplete information.

Corollary 8 (Undecidability results for POMDPs). The following prob-
lems are undecidable:

(a) Given (M, ∼) a finite POMDP and F a set of states in M, is there an
observation-based strategy U for (M, ∼) such that PrU(�♦F ) > 0?

(b) Given (M, ∼) a finite POMDP and F a set of states in M, is there an
observation-based strategy U for (M, ∼) such that PrU(♦�F ) = 1?

4 Almost-Sure Semantics and Decidability Results

Despite the undecidability of the emptiness problem for PBA, one way to try
to recover decidability results is to consider an altered semantics for PBA. More
precisely, we define the almost-sure semantics of a PBA P as the set of words
which generate an almost-sure set of accepting runs:

L=1(P) =
{
w ∈ Σω | PrP(w) = 1

}

Let us first observe that for probabilistic Büchi automata, the switch from
the standard semantics which requires positive acceptance probability to the
almost-sure semantics leads to a loss of expressiveness, and the class of prob-
abilistic Büchi automata under the almost-sure semantics is not closed under
complementation. This restricted class of languages is nevertheless not included
in the ω-regular languages. Before we summarize the expressiveness results for
almost-sure PBA, we fix some notation. By IL(PBA) we denote the class of PBA-
definable languages, i.e. IL(PBA) = {L(P) | P is a PBA}. Similarly, IL(PBA=1)



298 C. Baier, N. Bertrand, and M. Größer

denotes the class of languages definable by a PBA with the almost-sure seman-
tics. At last, IL(ω-reg) denotes the class of ω-regular languages.

Theorem 9 (Expressiveness of almost-sure PBA)

(a) IL(PBA=1) � IL(PBA)
(b) IL(ω-reg) � IL(PBA=1)
(c) IL(PBA=1) � IL(ω-reg)
(d) IL(PBA=1) is not closed under complementation.

Proof (sketch). The proofs for items (a) and (b) are omitted here.

(c) The PBA P̃λ of Fig. 2 recognizes a non-ω-regular language and enjoys the
property that each word is either accepted with probability 0 or with prob-
ability 1, thus L=1(P̃λ) = L(P̃λ). This shows that P̃λ with the almost-sure
semantics accepts a non-ω-regular language.

(d) It is evident that each DBA P can be viewed as a PBA and that L(P) =
L=1(P). Consider the language (a∗b)ω. It can be recognized by a DBA and
hence by a PBA with the almost-sure semantics. However, its complement
(a + b)∗aω cannot be recognized by a PBA with the almost-sure semantics.

��

Remark 10. It is worth noting that the almost-sure semantics does not lead to
a loss of expressiveness if Streett or Rabin acceptance is considered. That is:

IL(PSA) = IL(PSA=1) = IL(PRA=1) = IL(PRA).

This follows from the duality of the Streett and Rabin acceptance conditions and
the results presented in section 2 as every PRA (resp. PSA) can be transformed
into an equivalent PBA [BG05].

PBA with the almost-sure semantics are less expressive but simpler to handle
algorithmically. As L=1(P̃λ) = L(P̃λ), Lemma 4 implies

Proposition 11. For 0 < λ < 1
2 < η < 1, L=1(P̃λ) �= L=1(P̃η).

Thus modifying the transition probabilities can affect the accepted language of a
PBA with the almost-sure semantics. However the emptiness problem “Given a
PBA, does L=1(P) = ∅?” for PBA under the almost-sure semantics is decidable.
We will show a more general result, namely the decidability of the almost-sure
repeated reachability problem for POMDPs (which asks whether, for a given
POMDP (M, ∼) and a state set F , there exists an observation-based scheduler
U such that PrU (�♦F ) = 1).

Theorem 12. The almost-sure repeated reachability problem for POMDPs is
decidable.

Proof. The proof splits into two steps. We first show (Lemma 13) that the
almost-sure repeated reachability problem for POMDPs reduces to the almost-
sure reachability problem for POMDPs (and vice versa) and then we proof the
decidability of the latter problem (Theorem 14). ��



On Decision Problems for Probabilistic Büchi Automata 299

Lemma 13. The two following problems are reducible to each other:
(i) Given a POMDP (M, ∼) and a set of states F , is there an observation-based
scheduler U with PrU(�♦F ) = 1?
(ii) Given a POMPD (M, ∼) and a set of states F , is there an observation-based
scheduler U with PrU(♦F ) = 1?

Proof. Problem (ii) reduces to (i) in a straightforward manner: given an instance
for (ii) we transform it into an instance for (i) by making all F -states absorbing,
i.e. by removing all outgoing edges from states in F , and adding self loops for all
letters, with probability one (to these same states). We now show that problem
(i) is reducible to problem (ii). Let (M, ∼), F be an instance for (i). We define
M′ as follows: M′ consists of a copy of M and some additional state f . All
transitions (r, a, r′) in M with r /∈ F are left unchanged. The transitions (r, a, r′)
in M with r ∈ F are kept, but their probabilities are divided by 2 in M′. In M′,
we add a self-loop with probability 1 to state f for all actions a ∈ Act. Finally,
for all r ∈ F and a ∈ Act, we add a new transition (r, a, f) with probability 1

2 .
The transformation is depicted in figure 5.

∈F r′

M

∈F r′

Ma, p a, p/2

f
a, 1/2

Act, 1

M′

Fig. 5. Transformation from M to M′

The equivalence relation ∼′ on Q
.
∪ {f} agrees with ∼ on Q and {f} forms

its own equivalence class, i.e. [s]∼′ = [s]∼ for s ∈ Q and [f ]∼′ = {f}. With
F ′ = {f}, (M′, ∼′), F ′ is an instance for problem (ii) satisfying the equivalence:

∃ obs.-based scheduler U s.th. PrMU (�♦F ) = 1 ⇐⇒
∃ obs.-based scheduler U ′ s.th. PrM

′
U ′ (♦F ′) = 1

Indeed if F is visited almost surely infinitely often in M under the scheduler U ,
F ′ will be almost surely visited in M′ under the scheduler U ′ that mimics U .
Conversely, given U ′ with PrM

′
U ′ (♦F ′) = 1, we define U to be the restriction of U ′

on the set of path of M. Then PrMU (�♦F ) = 1, since PrMU (♦�¬F ) > 0 implies
PrM

′
U ′ (�¬F ′) > 0. ��

Theorem 14. The almost-sure reachability problem for POMDPs is decidable.

Proof. We reduce the almost-sure reachability problem for POMDPs to the
almost-sure reachability problem for (fully observable) MDPs, which is known



300 C. Baier, N. Bertrand, and M. Größer

to be solvable by means of graph-algorithms. Let M = ((Q,Act, δ, μ), ∼) be a
(w.l.o.g. total) POMDP and F ⊆ Q. We define an MDP M′ = (Q′,Act, δ′, μ′)
as follows. The set of states Q′ of M consists of pairs (r, R) with r ∈ R ⊆ [r]∼
and an extra state qF that has a self-loop with probability one for all a ∈ Act.
Given a ∈ Act and R ⊆ Q, let R′ = δ(R\F, a).

If δ(r, a) ∩ F = ∅ then δ′((r, R), a, (r′, R′ ∩ [r′]∼) = δ(r, a, r′) for each r′ ∈ Q.
If δ(r, a) ∩ F �= ∅ then δ′((r, R), a, (r′, R′ ∩ [r′]∼)) = 1

2·|R′\F | for all r′ ∈ R′\F

and δ′((r, R), a, qF ) = 1
2 (in case R′\F = ∅, δ′((r, R), a, qF ) = 1).

Moreover μ′(q, {q}) = μ(q) for all q �∈ F and μ(qF ) = Σr∈F μ(r). We set
F ′ = {qF }. This construction ensures that there exists an observation-based
scheduler U with PrMU (♦F ) = 1 if and only if M′ has a scheduler U ′ such that
PrM

′
U ′ (♦F ′) = 1. ��

Our algorithm uses a powerset construction and hence runs in time exponential
in the size of the given POMDP. However, given the EXPTIME-hardness results
established by Reif [Rei84] for 2-player games with incomplete information and
by de Alfaro [dA99] for POMDPs, we do not expect more efficient algorithms.

Corollary 15. The emptiness problem for PBA with the almost-sure semantics
is decidable.

Proof. As PBA are a special case of POMDPs, this follows from Theorem 12. ��

5 Conclusion

This paper answers several open questions on probabilistic Büchi automata.
We first provide a complementation operator for PBA, that somehow resembles
Safra’s complementation operator for NBA, but appears to be simpler as the
concept of sample runs (rather than Safra trees) suffices. We then establish the
undecidability of the emptiness and universality problem for PBA, which yields
the undecidability of the qualitative verification problem for POMDPs against
(general) ω-regular properties. Switching to an alternative almost-sure semantics
for PBA (which turns out to be less expressive) we prove the decidability of the
emptiness problem, via showing the decidability of the almost-sure repeated
reachability problem and the almost-sure reachability problem for POMDPs.

References

[BG05] Baier, C., Größer, M.: Recognizing ω-regular languages with probabilistic
automata. In: Proc. 20th IEEE Symp. on Logic in Computer Science (LICS
2005), pp. 137–146. IEEE Computer Society Press, Los Alamitos (2005)

[BRV04] Bustan, D., Rubin, S., Vardi, M.: Verifying ω-regular properties of Markov
chains. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp.
189–201. Springer, Heidelberg (2004)



On Decision Problems for Probabilistic Büchi Automata 301

[Cas98] Cassandra, A.R.: A survey of POMD applications. Presented at the AAAI
Fall Symposium (1998),
http://pomdp.org/pomdp/papers/applications.pdf

[CY95] Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verifi-
cation. Journal of the ACM 42(4), 857–907 (1995)

[dA99] de Alfaro, L.: The verification of probabilistic systems under memory-
less partial-information policies is hard. In: Proc. Workshop on Proba-
bilistic Methods in Verification (ProbMiV 1999), Birmingham University,
Research Report CSR-99-9, pp. 19–32 (1999)

[GD07] Giro, S., D’Argenio, P.R.: Quantitative model checking revisited: neither
decidable nor approximable. In: Raskin, J.-F., Thiagarajan, P.S. (eds.)
FORMATS 2007. LNCS, vol. 4763, pp. 179–194. Springer, Heidelberg
(2007)

[GTW02] Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite
Games. LNCS, vol. 2500. Springer, Heidelberg (2002)

[HSP83] Hart, S., Sharir, M., Pnueli, A.: Termination of probabilistic concur-
rent programs. ACM Transactions on Programming Languages and Sys-
tems 5(3), 356–380 (1983)

[KSK66] Kemeny, J.G., Snell, J.L., Knapp, A.W.: Denumerable Markov chains. D.
Van Nostrand Co (1966)

[Kul95] Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman
& Hall, Boca Raton (1995)

[MHC03] Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic
planning and related stochastic optimization problems. Artificial Intelli-
gence 147(1–2), 5–34 (2003)

[Paz71] Paz, A.: Introduction to probabilistic automata. Academic Press Inc., Lon-
don (1971)

[PP04] Perrin, D., Pin, J.-É.: Infinite Words. Pure and Applied Mathematics,
vol. 141. Elsevier, Amsterdam (2004)

[Put94] Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic
Programming. John Wiley and Sons, Chichester (1994)

[Rab63] Rabin, M.O.: Probabilistic automata. Information and Control 6(3), 230–
245 (1963)

[Rei84] Reif, J.H.: The complexity of two-player games of incomplete information.
Journal of Computer System Sciences 29(2), 274–301 (1984)

[Saf88] Safra, S.: On the complexity of omega-automata. In: Proc. 29th Sympo-
sium on Foundations of Computer Science (FOCS 1988), pp. 319–327.
IEEE Computer Society Press, Los Alamitos (1988)

[Ste94] Stewart, W.J.: Introduction to the numerical solution of Markov Chains.
Princeton University Press, Princeton (1994)

[Tho90] Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical
Computer Science, vol. B, ch. 4, pp. 133–191. Elsevier, Amsterdam (1990)

[Var85] Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state
programs. In: Proc. 26th Symposium on Foundations of Computer Science
(FOCS 1985), pp. 327–338. IEEE Computer Society Press, Los Alamitos
(1985)

http://pomdp.org/pomdp/papers/applications.pdf


Model-Checking ω-Regular Properties of

Interval Markov Chains�

Krishnendu Chatterjee1, Koushik Sen1, and Thomas A. Henzinger1,2

1 University of California, Berkeley, USA
2 EPFL, Switzerland

{c krish,ksen,tah}@eecs.berkeley.edu

Abstract. We study the problem of model checking Interval-valued
Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite
Markov Chains for which the exact transition probabilities are not known.
Instead in IDTMCs, each transition is associated with an interval in which
the actual transition probability must lie. We consider two semantic inter-
pretations for the uncertainty in the transition probabilities of an IDTMC.
In the first interpretation, we think of an IDTMC as representing a (possi-
bly uncountable) family of (classical) discrete-time Markov Chains, where
each member of the family is a Markov Chain whose transition probabili-
ties lie within the interval range given in the IDTMC. We call this semantic
interpretation Uncertain Markov Chains (UMC). In the second semantics
for an IDTMC, which we call Interval Markov Decision Process (IMDP),
we view the uncertainty as being resolved through non-determinism. In
other words, each time a state is visited, we adversarially pick a transi-
tion distribution that respects the interval constraints, and take a prob-
abilistic step according to the chosen distribution. We introduce a logic
ω-PCTL that can express liveness, strong fairness, and ω-regular prop-
erties (such properties cannot be expressed in PCTL). We show that the
ω-PCTL model checking problem for Uncertain Markov Chain semantics
is decidable in PSPACE (same as the best known upper bound for PCTL)
and for Interval Markov Decision Process semantics is decidable in coNP
(improving the previous known PSPACE bound for PCTL). We also show
that the qualitative fragment of the logic can be solved in coNP for the
UMC interpretation, and can be solved in polynomial time for a sub-class
of UMCs. We also prove lower bounds for these model checking problems.
We show that the model checking problem of IDTMCs with LTL formu-
las can be solved for both UMC and IMDP semantics by reduction to the
model checking problem of IDTMC with ω-PCTL formulas.

1 Introduction

Discrete Time Markov Chains (DTMCs) are often used to model and analyze the
reliability and performance of computer systems [6,9,15,12]. A DTMC consists
� This research was supported in part by the AFOSR MURI grant F49620-00-1-0327,

the NSF grant CNS-0720906, the NSF ITR grant CCR-0225610 and CCR-0234690,
the Swiss National Science Foundation (NCCR MICS and Indo-Swiss Research Pro-
gramme), and the ARTIST2 European Network of Excellence.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 302–317, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Model-Checking ω-Regular Properties of Interval Markov Chains 303

of a finite number of states and a fixed probability of transition from one state
to another state. The fixed probability assumption in a DTMC may often not
be realistic in practice [11,14,22,13]. For example, in case of an open system
that interacts with an environment, transition probabilities may not be known
precisely due to incomplete knowledge about the environment. Imprecision in
the transition probabilities may arise if the probabilities in the system model
are estimated through statistical experiments, which only provide bounds on
the transition probabilities.

The model of Interval-valued Discrete-time Markov Chains (IDTMC) has
been introduced [11,13] to faithfully capture these system uncertainties. IDTMCs
are DTMC models where the exact transition probability is not known, and in-
stead the transition probability is assumed to lie within a range. Three valued
abstractions of DTMCs also naturally result in IDTMCs [8]. Two semantic in-
terpretations have been suggested for such models. Uncertain Markov Chains
(UMC) [11,18] is an interpretation of an IDTMC as a family of (possibly un-
countably many) DTMCs, where each member of the family is a DTMC whose
transition probabilities lie within the interval range given in the IDTMC. In the
second interpretation, called Interval Markov Decision Process (IMDP) [18], the
uncertainty is resolved through non-determinism. In other words, each time a
state is visited, a transition distribution that respects the interval constraints is
adversarially picked, and a probabilistic step is taken according to the chosen
distribution. Thus, IMDPs allow the possibility of modeling a non-deterministic
choice made from a set of (possibly) uncountably many choices.

The problem of model checking PCTL specifications for IDTMC was studied
in [18]. PSPACE model checking algorithms were given for both UMCs and
IMDPs. The model checking problem for UMCs was shown to be both NP-hard
and coNP-hard. For IMDPs, a PTIME-hardness was shown; in fact, this is a
consequence of the PTIME-hardness of (classical) DTMC model checking [6].

The logic PCTL [9], which extends computation tree logic (CTL) with proba-
bilities, does not allow arbitrarily nested path formulas. Therefore, PCTL cannot
express properties that depend on the set of states that appears infinitely often,
e.g., liveness properties cannot be expressed in PCTL. In order to address this
limitation of PCTL, we introduce ω-PCTL. In ω-PCTL, we allow Büchi condi-
tions, that require a set of states to be visited infinitely often, its dual coBüchi
conditions, and their boolean combinations. Since we allow Büchi conditions,
liveness (or weak-fairness) conditions can be expressed in ω-PCTL. Moreover,
since we allow boolean combinations of Büchi and coBüchi conditions, strong
fairness conditions can also be expressed in ω-PCTL. The logic ω-PCTL can
express all ω-regular conditions, and thus forms a robust specification language
to specify properties that commonly arise in verification of probabilistic systems.

In addition to the UMC interpretation, we also consider the sub-class of UMC
interpretation that restricts the DTMCs obtained from an IDTMC as follows: if
the upper bound of a transition probability is positive, then the actual transition
probability is also positive. In many situations the upper bound on a transition
probability is positive if the transition is observed (i.e., the actual transition



304 K. Chatterjee, K. Sen, and T.A. Henzinger

probability is positive, though no positive lower bound may be known). We call
this sub-class as PUMCs (Positive UMCs).

In this paper, we study the problem of model checking ω-PCTL specifica-
tions for DTMCs and IDTMCs. We first show that the ω-PCTL model checking
problem for DTMCs can be solved in polynomial time. We then show that the ω-
PCTL model checking problem for PUMC and UMC interpretations is decidable
in PSPACE and for IMDP interpretations is decidable in coNP. These results ex-
tend and improve the best known PSPACE bound for PCTL model checking to
a much richer logic that can express ω-regular properties. We also show that the
qualitative fragment of the logic (called ω-QPCTL) can be solved in polynomial
time for the PUMCs and in coNP for the UMCs. The results of PCTL model
checking algorithm do not extend straightforwardly to ω-PCTL model check-
ing. We first present the model checking algorithm for PUMC semantics using
results on Markov chains, and then reduction to a formula in the existential the-
ory of reals. The result for UMC semantics is then obtained by partitioning the
UMCs in equivalence classes of PUMCs. The IMDP model checking algorithm
requires a precise characterization of optimal strategies in MDPs with Müller
objectives. We also prove lower bounds for these model checking problems: we
show that the PCTL model checking problem is both NP-hard and coNP-hard
for PUMCs, and the NP and coNP-hardness for PCTL model checking for UMCs
follows from [18]. We also present model checking algorithms for IDTMCs with
LTL path formulas for PUMC, UMC, and IMDP interpretations, and the result
is obtained by reduction to ω-PCTL formulas. Table 1 summarizes the complex-
ity of model checking of the various classes of Markov chains under uncertainty
with respect the various fragments of ω-PCTL.

Table 1. Complexity of DTMC and IDTMC model checking

PCTL ω-QPCTL ω-PCTL

Models Lower Upper Lower Upper Lower Upper
Bound Bound Bound Bound Bound Bound

DTMC PTIME PTIME PTIME PTIME PTIME

PUMC NP and coNP PSPACE PTIME NP and coNP PSPACE

UMC NP and coNP PSPACE coNP NP and coNP PSPACE

IMDP PTIME coNP coNP PTIME coNP

2 Formal Models

In this section, we recall the definitions of IDTMC, UMC, and IMDP from [18]
and introduce the definition of PUMC.

Definition 1. A discrete-time Markov chain (DTMC) is a 3-tupleM=(S,P, L),
where (1) S is a finite set of states; (2) P : S × S → [0, 1] is a transition
probability matrix, such that

∑
s′∈S P(s, s′) = 1; and (3) L : S → 2AP is a

labeling function that maps states to sets of atomic propositions from a set AP.



Model-Checking ω-Regular Properties of Interval Markov Chains 305

A non-empty sequence π = s0s1s2 · · · is called a path of M, if each si ∈ S and
P(si, si+1) > 0 for all i ≥ 0. We denote the ith state in a path π by π[i] = si.
We let Path(s) be the set of paths starting at state s. A probability measure on
paths is induced by the matrix P as follows.

Let s0, s1, . . . , sk∈S with P(si, si+1) > 0 for all 0 ≤ i < k. Then C(s0s1 . . . sk)
denotes a cylinder set consisting of all paths π ∈ Path(s0) such that π[i] = si
(for 0 ≤ i ≤ k). Let B be the smallest σ-algebra on Path(s0) which contains
all the cylinders C(s0s1 . . . sk). The measure μ on cylinder sets can be de-
fined as follows: μ(C(s0s1 . . . sk)) = 1 if k = 0; otherwise μ(C(s0s1 . . . sk)) =
P(s0, s1) · · ·P(sk−1, sk). The probability measure on B is then defined as the
unique measure that agrees with μ (as defined above) on the cylinder sets.

Definition 2. An Interval-valued Discrete-time Markov chain (IDTMC) is a 4-
tuple I = (S, P̌, P̂, L), where (1) S is a finite set of states; (2) P̌ : S×S → [0, 1]
is a transition probability matrix, where each P̌(s, s′) gives the lower bound of
the transition probability from the state s to the state s′; (3) P̂ : S×S → [0, 1] is
a transition probability matrix, where each P̂(s, s′) gives the upper bound of the
transition probability from the state s to the state s′; and (4) L : S → 2AP is a
labeling function that maps states to sets of atomic propositions from a set AP.

We consider two semantic interpretations of an IDTMC model, namely Uncertain
Markov Chains (UMC) and Interval Markov Decision Processes (IMDP).

Uncertain Markov Chains (UMCs). An IDTMC I may represent an infinite
set of DTMCs, denoted by [I], where for each DTMC (S,P, L) ∈ [I] the following
is true: P̌(s, s′) ≤ P(s, s′) ≤ P̂(s, s′) for all pairs of states s and s′ in S. In the
Uncertain Markov Chains semantics, or simply, in the UMCs, we assume that
the external environment non-deterministically picks a DTMC from the set [I]
at the beginning and then all the transitions take place according to the chosen
DTMC. Note that in this semantics, the external environment makes only one
non-deterministic choice. Henceforth, we will use the term UMC to denote an
IDTMC interpreted according to the Uncertain Markov Chains semantics.

Positive Uncertain Markov Chains (PUMCs). We consider Positive Un-
certain Markov Chains (PUMCs) semantics, for which we will obtain more effi-
cient model checking algorithms for the qualitative fragment of the logic that we
will consider, and the results will also be useful in the analysis of UMCs. Given
an IDTMC I, we denote by [I]P ⊆ [I] the infinite set of DTMCs (S,P, L) such
that the following conditions hold: (1) P̌(s, s′) ≤ P(s, s′) ≤ P̂(s, s′) for all pairs
of states s and s′ in S; (2) if P̂(s, s′) > 0, then P(s, s′) > 0, for all s, s′ ∈ S. In
the semantics for Positive Uncertain Markov Chains (PUMCs), we assume that
the external environment non-deterministically picks a DTMC from [I]P .

Interval Markov Decision Processes. In the Interval Markov Decision Pro-
cesses semantics, or simply, in the IMDPs, we assume that before every transition
the external environment non-deterministically picks a DTMC from the set [I]
and then takes a one-step transition according to the probability distribution of



306 K. Chatterjee, K. Sen, and T.A. Henzinger

the chosen DTMC. Note that in this semantics, the external environment makes
a non-deterministic choice before every transition. Henceforth, we will use the
term IMDP to denote an IDTMC interpreted according to the Interval Markov
Decision Processes semantics. We now formally define this semantics.

Let Steps(s) be the set of probability density functions over S defined as
follows: Steps(s) = {μ : S → R≥0 | ∑

s′∈S μ(s′) = 1 and P̌(s, s′) ≤ μ(s′) ≤
P̂(s, s′) for all s′ ∈ S}. In an IMDP, at every state s ∈ S, a probability density
function μ is chosen non-deterministically from the set Steps(s). A successor
state s′ is then chosen according to the probability distribution μ over S.

A path π in an IMDP I = (S, P̌, P̂, L) is a non-empty sequence of the form
s0

μ1→ s1
μ2→ . . ., where si ∈ S, μi+1 ∈ Steps(si), and μi+1(si+1) > 0 for all i ≥ 0.

A path can be either finite or infinite. We use πfin to denote a finite path. Let
last(πfin) be the last state in the finite path πfin. As in DTMC, we denote the
ith state in a path π by π[i] = si. We let Path(s) and Pathfin(s) be the set
of all infinite and finite paths, respectively, starting at state s. To associate a
probability measure with the paths, we resolve the non-deterministic choices by
an adversary, which is defined as follows:

Definition 3. An adversary A of an IMDP I is a function mapping every finite
path πfin of I onto an element of the set Steps(last(πfin)). Let AI denote the set
of all possible adversaries of the IMDP I. Let PathA(s) denote the subset of
Path(s) which corresponds to A.

The behavior of an IMDP I = (S, P̌, P̂, L) under a given adversary A is purely
probabilistic. The behavior of a IMDP I from a state s can be described by
an infinite-state DTMC MA = (SA,PA, LA) where (a) SA = Pathfin(s); (b)

PA(πfin, π
′
fin) = A(πfin)(s′) if π′fin is of the form πfin

A(πfin)→ s′; and 0 otherwise.
There is a one-to-one correspondence between the paths of MA and PathA(s)
of I. Therefore, we can define a probability measure ProbAs over the set of paths
PathA(s) using the probability measure of the DTMC MA.

3 ω-Probabilistic Computation Tree Logic (ω-PCTL)

In this paper, we consider an extension of PCTL that can express ω-regular
properties. We call the logic ω-PCTL. The formal syntax and semantics of this
logic is as follows.

ω-PCTL Syntax. We define the syntax of ω-PCTL and its qualitative fragment
as follows:

φ ::= true | a | ¬φ | φ ∧ φ | P��p(ψ)
ψ ::= φ U φ | Xφ | ψω

ψω ::= Buchi(φ) | coBuchi(φ) | ψω ∧ ψω | ψω ∨ ψω

where a ∈ AP is an atomic proposition, and ��∈ {<,≤, >,≥}, p ∈ [0, 1]. Here φ
represents a state formula, ψ represents a path formula, and ψω represents path
formulas that depend on the set of states that appear infinitely often in a path



Model-Checking ω-Regular Properties of Interval Markov Chains 307

(we call them infinitary path formulas). The qualitative fragment of the logic,
denoted as ω-QPCTL, consists of formulas φQ such that in all sub-formulas
P��p(ψ) of φQ we have p ∈ {0, 1}, i.e., the comparison of the probability of
satisfying a path formula is only made with 1 and 0 only. The logic PCTL is
obtained from ω-PCTL where only path formulas of the form φ U φ and Xφ
are considered, i.e., formulas obtained as ψω are not allowed. The canonical
Rabin and Streett conditions (strong fairness conditions) can be expressed as
conjunction and disjunction of Büchi and coBüchi conditions. Hence ω-PCTL
can express Rabin and Streett conditions. Since Rabin and Streett conditions
are canonical forms to express ω-regular properties [19], ω-PCTL can express
ω-regular properties.

ω-PCTL Semantics for DTMC. The notion that a state s (or a path π)
satisfies a formula φ in a DTMCM is denoted by s |=M φ (or π |=M φ), and is
defined inductively as follows:

s |=M true
s |=M a iff a ∈ L(s)
s |=M ¬φ iff s �|=M φ
s |=M φ1 ∧ φ2 iff s |=M φ1 and s |=M φ2

s |=M P��p(ψ) iff Prob{π ∈ Path(s) | π |=M ψ} �� p
π |=M Xφ iff π[1] |=M φ
π |=M φ1 U φ2 iff ∃i ≥ 0 (π[i] |=M φ2 and ∀j < i. π[j] |=M φ1)
π |=M Buchi(φ) iff ∀i ≥ 0.∃j ≥ i. (π[j] |=M φ)
π |=M coBuchi(φ) iff ∃i ≥ 0.∀j ≥ i. (π[j] |=M φ)
π |=M ψω

1 ∧ ψω
2 iff π |=M ψω

1 and π |=M ψω
2

π |=M ψω
1 ∨ ψω

2 iff π |=M ψω
1 or π |=M ψω

2 .

It can shown that for any path formula ψ and any state s, the set {π ∈ Path(s) |
π |=M ψ} is measurable [21]. For a path formula ψ we denote by Probs(ψ) the
probability of satisfying ψ from s, i.e., Probs(ψ) = Prob[{π ∈ Path(s) | π |=M
ψ}]. A formula P��p(ψ) is satisfied by a state s if Probs[ψ] �� p. The path formula
Xφ holds over a path if φ holds at the second state on the path. The formula
φ1 U φ2 is true over a path π if φ2 holds in some state along π, and φ holds along
all prior states along π. The formula Buchi(φ) is true over a path π if the path
infinitely often visits states that satisfy φ. The formula coBuchi(φ) is true over
a path π if after a finite prefix the path visits only states that satisfy φ. Given a
DTMCM and an ω-PCTL state formula φ, we denote by [[φ]]M = {s | s |=M φ}
the set of the states that satisfy φ. Given a DTMC M and an ω-PCTL path
formula ψ we denote by WM(ψ) = {s | Probs(ψ) = 1} the set of states that
satisfy ψ with probability 1.

ω-PCTL Semantics for UMC. Given an IDTMC I and an ω-PCTL state
formula φ, we denote by [[φ]]I =

⋂
M∈[I][[φ]]M. Note that s �∈ [[φ]]I does not imply

that s ∈ [[¬φ]]I . This is because there may exist M,M′ ∈ [I] such that s |=M φ
and s |=M′ ¬φ. The semantics of ω-PCTL for PUMCs are obtained similarly:
given an IDTMC I and an ω-PCTL state formula φ, we denote by [[φ]]IP =⋂
M∈[I]P [[φ]]M.



308 K. Chatterjee, K. Sen, and T.A. Henzinger

ω-PCTL Semantics for IMDP. The interpretation of a state formula and a
path formula of PCTL for IMDPs is same as for DTMCs except for the state
formulas of the form P��p(ψ). The notion that a state s (or a path π) satisfies a
formula φ in an IMDP I is denoted by s |=I φ (or π |=I φ), and the semantics
is very similar to the one of DTMC other than path formulas with probabilistic
operator which is defined below:

s |=I P��p(ψ) iff ProbA
s ({π ∈ PathA(s) | π |=I ψ}) �� p for all A ∈ A

The model checking of IDTMC with respect to the two semantics can give
different results. An example illustrating this fact for the PCTL logic can be
found in [18].

4 DTMC Model Checking

In this section we outline the basic model checking algorithm for (classical)
DTMCs for ω-PCTL. We start with a few notations.

Graph of a DTMC. Given a DTMC M = (S,P, L) we define a graph GM =
(SM, EM, LM) for M where SM = S, LM = L, and the set of edges EM =
{(s, s′) | P(s, s′) > 0} consists of state pairs (s, s′) such that the transition
probability from s to s′ is positive. Given two DTMCs M1 and M2, they are
graph equivalent, denoted by M1 ≡ M2, iff SM1 = SM2 , EM1 = EM2 , and
LM1 = LM2 , i.e., the set of states, the set of edges, and the labeling function
in M1 and M2 coincide. Observe that though the set of edges in M1 and M2

coincide, the exact transition probabilities in M1 and M2 can be different.
For a state formula φ (resp. a set U ⊆ S of states) we denote by ♦φ (resp.
♦U) eventually φ (resp. eventually U), i.e., the PCTL formula true U φ (resp.
true U U).

Lemma 1. Given a DTMC M and an infinitary path formula ψω, we have
Probs(ψω) = Probs

(
♦(WM(ψω))

)
.

Graph equivalence and ω-QPTCL. The truth of a qualitative PCTL formula
φ (i.e., a QPCTL formula) does not depend on the precise transition probabil-
ities of a DTMC, but depends only on the underlying graph structure of the
DTMC. Lemma 2 extends the result to ω-QPCTL formulas. Formally, we have
the following lemma.

Lemma 2. For all DTMCs M1 and M2, if M1 ≡M2, then for all ω-QPCTL
state formulas φ we have [[φ]]M1 = [[φ]]M2 .

Model checking ω-PCTL for DTMCs. The model checking algorithm for
ω-PCTL for DTMCs is as follows. Given a DTMCM the set of closed recurrent
sets of states in M can be computed in linear time by computing the maximal
strongly connected components of GM [5]. From the proof of Lemma 1 it fol-
lows that once the set of closed recurrent set of states in M is computed, the



Model-Checking ω-Regular Properties of Interval Markov Chains 309

computation of an ω-PCTL formula can be reduced to a PCTL formula. The
model checking algorithm for QPCTL formulas on DTMCs is very similar to
CTL model checking on graphs, and the CTL like model checking algorithm is
applied on the graph of the DTMC. The model checking of PCTL for DTMCs
can be solved in polynomial time [6] by solving a set of linear constraints. Thus
we have the following result.

Theorem 1. Given a DTMCM and an ω-PCTL state formula φ, the following
assertions hold: (1) the set [[φ]]M can be computed in time polynomial in |M|
times 	; (2) if φ is an ω-QPCTL formula, then the set [[φ]]M can be computed in
O(|M| · 	) time; where |M| denotes the size ofM and 	 denotes the length of φ.

Reduction to existential theory of reals. We now present a reduction of the
model checking problem for DTMCs with ω-PCTL formulas to the existential
theory of reals, which is decidable in PSPACE [2]. The reduction will be later
useful for model checking algorithms for IDTMCs under the PUMC and UMC
semantics. Since the model checking of DTMCs for ω-PCTL formulas can be
done in polynomial time and the NP-complete SAT problem can be reduced
to the existential theory of reals, it follows that the model checking problem
of DTMCs with ω-PCTL formulas can be reduced to the existential theory of
reals. Formally, for all DTMCs M, for all ω-PCTL formulas φ, for all states s
of M, there is a formula Γ (M, φ, s) in the existential theory of reals such that
(a) Γ (M, φ, s) is true iff s |=M φ, (b) Γ (M, φ, s) is polynomial in size inM and
φ; (c) Γ (M, φ, s) can be constructed in polynomial time in size of M and φ.

Here we make an important observation. For two DTMCs M1 and M2, if
M1 ≡M2, then Γ (M1, φ, s) and Γ (M2, φ, s) have the same structure in which
the transition probabilities only differ. However, the converse is not true. This
important observation makes the model checking algorithms for PUMC and
UMC different—the UMC model checking algorithm gets more complex.

5 PUMC Model Checking

We first present a polynomial time model checking algorithm for ω-QPCTL for
PUMC interpretation of IDTMCs. We then present a PSPACE model checking
algorithm for ω-PCTL for PUMC interpretation of IDTMCs, and show that the
problem is both NP-hard and coNP-hard. The algorithms exploit the fact that
for an IDTMC I and for all M1,M2 ∈ [I]P , we have M1 ≡M2.

Model checking ω-QPCTL. Given an IDTMC I, all the DTMCs in the
PUMC interpretation of I are graph equivalent. Formally, for allM1,M2 ∈ [I]P
we haveM1 ≡M2. The above observation and Lemma 2 lead directly to the fol-
lowing model checking algorithm: given an IDTMC I, pick a DTMCM1 ∈ [I]P ,
then for all ω-QPCTL state formulas φ, we have [[φ]]M1 = [[φ]]IP . This is because
for all M2 ∈ [I]P we have [[φ]]M1 = [[φ]]M2 . Thus we obtain a polynomial time
model checking algorithm for PUMC semantics for ω-QPCTL, by just picking a
DTMC M1 from [I]P and model checking M1.



310 K. Chatterjee, K. Sen, and T.A. Henzinger

Theorem 2. Given an IDTMC I and an ω-QPCTL state formula φQ, the set
[[φQ]]IP can be computed in O(|I| · 	) time, where |I| denotes the size of I and 	
denotes the length of the formula φQ.

Model checking ω-PCTL. We will now present a PSPACE model checking
algorithm for ω-PCTL. The result is obtained by reduction to the existential
theory of reals, and using the PSPACE decision procedure for the existential
theory of reals [2]. Recall that for a DTMCM, an ω-PCTL formula φ and a state
s ofM, there is a formula Γ (M, φ, s) in the existential theory of reals such that
s |=M φ if and only if Γ (M, φ, s) is true; moreover, Γ (M, φ, s) is polynomial in
the size ofM and length of φ, and Γ (M, φ, s) can be constructed in polynomial
time. Given an IDTMC I = (S, P̌, P̂, L), consider values 0 ≤ ps,s′ ≤ 1 for
all s, s′ ∈ S such that (a) P̌(s, s′) ≤ ps,s′ ≤ P̂(s, s′), for all s, s′ ∈ S; and
(b)

∑
s′∈S ps,s′ = 1, for all s ∈ S. Let us denote p for all the values ps,s′ .

We denote by I(p) = (S,P, L) the DTMC obtained by assigning ps,s′ for the
transition probability P(s, s′). Given an IDTMC I, an ω-PCTL formula φ and
a state s of I, we first observe that s ∈ [[φ]]IP if and only if for all M ∈ [I]P
we have s ∈ [[φ]]M, i.e., in other words, s �∈ [[φ]]IP if and only if there is a DTMC
M ∈ [I]P such that s |= ¬φ. Thus for an IDTMC I = (S, P̌, P̂, L), an ω-PCTL
formula and a state s we obtain a formula Φ(I, φ, s) in the existential theory of
reals such that s �∈ [[φ]]IP if and only if Φ(I, φ, s) is true. The formula Φ(I, φ, s)
is as follows:

Φ(I, φ, s) = ∃p. ∧
s,s′∈S

(
P̌(s, s′) ≤ ps,s′ ≤ P̂(s, s′)

) ∧ ∧
s∈S

( ∑
s′∈S ps,s′ =1

)

∧
s,s′∈S

(
P̂(s, s′) > 0⇒ ps,s′ > 0

) ∧ ∧
Γ (I(p),¬φ, s)

The first two sets of constraints specify the transition probability restriction
on p such that p represents a valid probability transition for M ∈ [I]. The
third set of constraints specify that if P̂(s, s′) > 0, then ps,s′ > 0, and thus
ensures that p represents a valid probability transition for M ∈ [I]P . The last
constraint specifies that the DTMC I(p) satisfies ¬φ at s. Note that the formula
Γ (I(p),¬φ, s) has the same form for all M ∈ [I]P , because for all M1,M2 ∈
[I]P , M1 ≡ M2. This is not the case if

∧
s,s′∈S

(
P̂(s, s′) > 0 ⇒ ps,s′ > 0

)
does

not hold as in UMC. Therefore, this model checking algorithm is not applicable
for UMCs. Since the existential theory of reals can be decided in PSPACE [2],
we have the following theorem.

Theorem 3. Given an IDTMC I and an ω-PCTL state formula φ, the set [[φ]]IP

can be computed in space polynomial in size of I times the length of φ.

Hardness of PCTL model checking. We next demonstrate the intractabil-
ity of the model checking problem for PUMC by reducing the satisfiability and
validity of propositional boolean formulas to the model checking problem. Con-
sider a propositional boolean formula ϕ over the propositions {p1, . . . , pm}. We
consider the UMC I = (S, P̌, P̂, L) where



Model-Checking ω-Regular Properties of Interval Markov Chains 311

– S = {sI , s1, . . . , sm, s⊥}
– L(sI) = L(s⊥) = {}, L(si) = {pi} for each 1 ≤ i ≤ m
– P̌(sI , si) = 1/m3 and P̂(sI , si) = 1/m for all 1 ≤ i ≤ m
– P̌(sI , s⊥) = 1/m3 and P̂(sI , s⊥) = 1
– P̌(si, si) = P̂(si, si) = 1 for all 1 ≤ i ≤ m
– P̌(si, sj) = P̂(si, sj) = 0 for all 1 ≤ i ≤ m and 1 ≤ j ≤ m and i �= j

– P̌(s⊥, s⊥) = P̂(s⊥, s⊥) = 1

We consider the PCTL formula φ′ obtained from φ by syntactically replacing
every occurrence of pi in φ by P> 1

2m
(Xpi) for 1 < i < m.

Lemma 3. The following assertions hold: (a) ϕ is satisfiable iff sI ∈ [[¬φ]]IP ;
and (b) ϕ is valid iff sI ∈ [[φ]]IP .

Proof. Suppose ϕ is satisfiable and let a be the satisfying assignment. Consider
the DTMC Ma, where P(sI , si) = 1

2m if a(pi) = false and P(sI , si) = 1
m+1 if

a(pi) = true; P(sI , s⊥) is thus determined by this assignment. It is easy to see
that Ma ∈ [I] and Ma |= φ. Similarly, if M ∈ [I] such that M |= φ, then we
can construct a satisfying assignment for ϕ: a(pi) = false if P(sI , si) ≤ 1

2m and
a(pi) = true if P(sI , si) > 1

2m . These observations also imply that ϕ is valid iff
sI ∈ [[φ]]IP . �

Since the satisfiability of general propositional boolean formulas is NP-hard and
the validity of general propositional boolean formulas is coNP-hard [10], the
lower bounds follow immediately from Lemma 3.

Theorem 4. Given an IDTMC I, a PCTL formula φ, and a state s of I the
decision problem of whether s ∈ [[φ]]IP is NP-hard and coNP-hard.

6 UMC Model Checking

In this section we present a PSPACE model checking algorithm for UMC se-
mantics. The PSPACE algorithm is obtained by a reduction to PUMC model
checking. The basic reduction is obtained by partitioning the set of DTMCs [I]
of IDTMC I into several PUMCs.

Partitioning [I] of an IDTMC I. Given an IDTMC I = (S, P̌, P̂, L), let
B = {(s, s′) | s, s′ ∈ S, P̌(s, s′) = 0 and P̂(s, s′) > 0} be the set of transitions
that have a positive upper bound and the lower bound is 0. We consider the
following set of IDTMCs IB for B ⊆ B: we have IB = (S, P̌, P̂B , L) such that
P̂B(s, s′) = 0 if (s, s′) ∈ B; and P̂(s, s′) otherwise. In other words, in IB the
upper of the transition probabilities for the set B is set to 0, and otherwise it
behaves like I. The key partitioning property is as follows: [I] =

⋃
B⊆B[IB]P ,

i.e., the union of the DTMCs obtained from the PUMCs semantics of IB is the



312 K. Chatterjee, K. Sen, and T.A. Henzinger

set of DTMCs obtained from the UMC semantics of [I]. Thus we obtain that
for all ω-PCTL formulas φ we have [[φ]]I =

⋂
B⊆B[[φ]]IB

P
.

Model checking ω-QPCTL. The model checking problem for IDTMCs for
ω-QPCTL formulas under UMC semantics can be solved in coNP. Given an
IDTMC I, an ω-QPCTL formula φ, and a state s, to show that s �∈ [[φ]]I , it
suffices to guess B ⊆ B and prove that s �∈ [[φ]]IB

P
. Hence the guess (or the witness)

is B and Theorem 2 provides the polynomial time verification procedure. Hence
we obtain the following theorem.

Theorem 5. Given an IDTMC I, an ω-QPCTL state formula φQ, and a state
s of I whether s ∈ [[φQ]]I can be decided in coNP.

Model checking ω-PCTL. Similar to the model checking algorithm for the
ω-QPCTL, we can obtain a NPSPACE model checking algorithm, by guessing
B ⊆ B and then using the PSPACE model checking algorithm for ω-PCTL for
PUMC semantics.

Theorem 6. Given an IDTMC I and an ω-PCTL state formula φ, the set [[φ]]I
can be computed in space polynomial in size of I times the length of φ.

Hardness of PCTL model checking. The hardness result follows from the
result for PUMC. In the hardness proof for PUMC, the IDTMCs I considered
satisfied that [I] = [I]P ; and hence the UMC and PUMC semantics coincide for
I. This gives us the following result.

Theorem 7. Given an IDTMC I, a PCTL formula φ, and a state s of I the
decision problem of whether s ∈ [[φ]]I is NP-hard and coNP-hard.

7 IMDP Model Checking

We consider the problem of model checking IMDPs in this section. We will solve
the problem by showing that we can reduce IMDP model checking to model
checking (classical) a Markov Decision Process (MDP). Before presenting this
reduction we recall some basic properties of the feasible solutions of a linear
program and the definition of an MDP.

Linear programming. Consider an IMDP I = (S, P̌, P̂, L). For a given s ∈ S,
let IE(s) be the following set of inequalities over the variables {pss′ | s′ ∈ S}:∑

s′∈S pss′ = 1, where P̌(s, s′) ≤ pss′ ≤ P̂(s, s′) for all s′ ∈ S.

Definition 4. A map θs : S → [0, 1] is called a basic feasible solution (BFS) to
the above set of inequalities IE(s) iff {pss′ = θs(s′) | s′ ∈ S} is a solution of
IE(s) and there exists a set S′ ⊆ S such that |S′| ≥ |S| − 1 and for all s′ ∈ S′
either θs(s′) = P̌(s, s′) or θs(s′) = P̂(s, s′).



Model-Checking ω-Regular Properties of Interval Markov Chains 313

Let Θs be the set of all BFS of IE(s). The set of BFS of a linear program has
the special property that every other feasible solution can be expressed as a
linear combination of basic feasible solutions. This is the content of the next
proposition.

Proposition 1. Let {pss′ = p̄ss′ | s′ ∈ S} be some solution of IE(s). Then there
are 0 ≤ αθs ≤ 1 for all θs ∈ Θs, such that

p̄ss′ =
∑

θs∈Θs αθsθs(s′) for all s′ ∈ S and
∑
s∈S αθs = 1

Lemma 4. The number of basic feasible solutions of IE(s) in the worst case can
be O(|S|2|S|−1).

Markov Decision Processes (MDP). A Markov decision process (MDP)
is a Markov chain that has non-deterministic transitions, in addition to the
probabilistic ones. In this section we formally introduce this model along with
some well-known observations about them.

Definition 5. If S is the set of states of a system, a next-state probability
distribution is a function μ : S → [0, 1] such that

∑
s∈S μ(s) = 1.

Definition 6. A Markov decision process (MDP) is a 3-tuple D = (S, τ, L),
where (1) S is a finite set of states; (2) L : S → 2AP is a labeling function that
maps states to sets of atomic propositions from a set AP; and (3) τ is a function
which associates to each s ∈ S a finite set τ(s) = {μs1, . . . , μsks

} of next-state
probability distributions for transitions from s.

A path π in an MDP D = (S, τ, L) is a non-empty sequence of the form s0
μ1→

s1
μ2→ . . ., where si ∈ S, μi+1 ∈ τ(si), and μi+1(si+1) > 0 for all i ≥ 0. A

path can be either finite or infinite. We use πfin to denote a finite path. Let
last(πfin) be the last state in the finite path πfin. As in DTMC, we denote the
ith state in a path π by π[i] = si. We let Path(s) and Pathfin(s) be the set
of all infinite and finite paths, respectively, starting at state s. To associate a
probability measure with the paths, we resolve the non-deterministic choices by
a randomized adversary, which is defined as follows:

Definition 7. A randomized history dependent adversary A of an MDP D
is a function mapping every finite path πfin of D and an element of the set
τ(last(πfin)) to [0, 1], such that for a given finite path πfin of D,

∑
μ∈τ(last(πfin))

A(πfin)(μ) = 1. Let AD denote the set of all possible randomized history depen-
dent adversaries of the MDP D. An adversary is memoryless if it is independent
of the history and only depends on the current state. Let PathA(s) denote the
subset of Path(s) which corresponds to an adversary A.

The behavior of an MDP under a given randomized adversary is purely prob-
abilistic. If an MDP has evolved to the state s after starting from the state
sI and following the finite path πfin, then it chooses the next-state distribution
μs ∈ τ(s) with probability A(πfin, μ

s). Then it chooses the next state s′ with



314 K. Chatterjee, K. Sen, and T.A. Henzinger

probability μs(s′). Thus the probability that a direct transition to s′ takes place
is

∑
μs∈τ(s)A(πfin, μ

s)μs(s′). Thus as for IMDPs, one can define DTMC DA that
captures the probabilistic behavior of MDP D under adversary A and also asso-
ciate a probability measure on execution paths. Given an MDP D, an ω-PCTL
formula ϕ, and a state s we can define when s |=D ϕ in a way analogous to the
IMDPs.

The reduction. We are now ready to describe the model checking algorithm
for IMDPs. Consider an IMDP I = (S, P̌, P̂, L). Recall from the description of
linear programming that we can describe the transition probability distributions
from state s that satisfy the range constraints as the feasible solutions of the
linear program IE(s). Furthermore, we denote by Θs the set of all BFS of IE(s).
Define the following MDP D = (S′, τ, L′) where S′ = S, L′ = L, and for all
s ∈ S, τ(s) = Θs. Observe that D is exponentially sized in I, since τ(s) is
exponential (see Lemma 4). The main observation behind the reduction is that
the MDP D “captures” all the possible behaviors of the IMDP I. This is the
formal content of the next proposition. Theorem 8 follows from the following
proposition.

Proposition 2. For any adversary A for I, we can define a randomized adver-

sary A′ such that ProbI
A

s = ProbD
A′

s for every s, where ProbX
A

s is measure on
paths from s defined by X under A. Similarly for every adversary A for D, there
is an adversary A′ for I that defines the same probability measure on paths.

Theorem 8. Given an IMDP I, for all ω-PCTL formulas ϕ and for all states
s, we have s |=I ϕ iff s |=D ϕ.

Thus, in order to model check IMDP I, we can model check the MDP D. The
model checking algorithm for MDPs requires the solution of MDPs with infini-
tary path formulas, and solution of MDPs with PCTL formulas. Algorithms that
run in polynomial time (and space) for MDPs with Büchi and coBüchi conditions
are known from [4,7], and it is straightforward to extend the algorithms to in-
finitary path formulas that are obtained as conjunction and disjunction of Büchi
and coBüchi conditions. Algorithms that run in polynomial time (and space) for
MDPs with PCTL formulas are available in [1,17]. Thus, if we directly model
check D we get an EXPTIME model checking algorithm for I. However, we can
improve this to get a coNP procedure. The reason for this is that it is known that
as far as model checking MDPs is concerned, we can restrict our attention to
certain special class of memoryless adversaries, i.e., adversaries that always pick
a fixed probability distribution over a set of non-deterministic choices whenever
a state is visited. It follows from the results of [3] that in MDPs with Müller
conditions (that subsumes the infinitary path formulas of ω-PCTL) an uniform
randomized memoryless optimal strategy exists such that the size of the support
of the memoryless optimal strategy is bounded by the size of the state space.
Formally, we have the following lemma.

Lemma 5. For an MDP D = (S, τ, L) and an infinitary path formula ψω, there
exists an randomized memoryless adversary A such that (1) (Support of size at



Model-Checking ω-Regular Properties of Interval Markov Chains 315

most |S|). for all s ∈ S we have |Supp(A(s))| ≤ |S|; (2) (Uniform). for all s ∈ S
and μ ∈ Supp(A(s)) we have A(s)(μ) = 1

|Supp(A(s))| ; and (3) (Optimal). for all

s ∈ S we have ProbD
A

s (ψω) = supA′∈A ProbD
A′

s (ψω).

The existence of deterministic memoryless strategies for formulas in PCTL
(where the sub-formulas are already evaluated) for MDPs follows from the results
of [1,17]. Thus we obtain the following theorem.

Proposition 3 ([1,17,3]). Let D = (S, τ, L) be an MDP. Let Aunf be the set
of uniform randomized memoryless adversaries with support of size at most |S|
for MDP D, i.e., for all A ∈ Aunf , A(s)(μ) = 1

|Supp(A(s))| for μ ∈ Supp(A(s))
and |Supp(A(s))| ≤ |S|. Consider an ω-PCTL formula ϕ = P��p(ψ) such that the
truth or falsity of every subformula of ψ in every state of D is already determined.
Then D |= ϕ iff DA |= ϕ for all A ∈ Aunf .

For every subformula of the form ϕ = P��p(ψ), if the formula ϕ is not true at a
state s, in the IMDP semantics, then we can guess A ∈ Aunf and then verify that
in DA the formula ϕ is not true at s. The witness A is the polynomial witness
and the polynomial time algorithm for Markov chains presents the polynomial
time verification procedure. In case of general formulas, the above procedure
needs to be applied in a bottom up fashion.

Theorem 9. Given an IDTMC I and an ω-PCTL state formula φ, and a state
s, whether the state s |= φ under the IMDP semantics can be decided in coNP.

Lower bound. It follows from the results of [6] that the model checking problem
for DTMCs with PCTL formulas is PTIME-hard. Since DTMCs are a special
case of IMDPs, the PTIME-time lower bound follows for model checking IMDPs
with PCTL and ω-PCTL formulas.

8 Model Checking of Linear Time Formulas

Finally, we consider the model checking problem of IDTMCs with LTL formulas.
In other words, we consider LTL path formulas ψ, and formulas of the form
P��p(ψ). For the model checking problem we apply the following procedure: we
first convert ψ to an equivalent non-deterministic Büchi automata [20], and then
determinize it to obtain an equivalent deterministic Rabin automata Q(ψ) [16].
The deterministic Rabin automata Q(ψ) has 22l

states, where l is the length
of the formula ψ, and has 2l Rabin pairs. Given a IDTMC I and a formula
ϕ = P��p(ψ), the model checking problem for the UMC and IMDP semantics
are solved as follows. In both case we construct the Rabin automata Q(ψ).

1. For the IMDP semantics, we construct the product IDTMC of I and Q(ψ),
denoted as I × Q(ψ), and solve it under the IMDP semantics with respect
to a Rabin objective (applying the results of Section 7).



316 K. Chatterjee, K. Sen, and T.A. Henzinger

2. For the PUMC semantics, we construct the product IDTMC of I and Q(ψ),
denoted as I×Q(ψ). For the formula ϕ, we write a formula in the existential
theory of reals: the formula is similar to the formula of Section 5 with the
additional constraints that for two states in I×Q(ψ), if the state component
of I is the same, then the chosen distribution at the states must also be
same, i.e., for two states (s, q1) and (s, q2) we require that the probability
distribution chosen from the interval must be the same. The result for UMC
semantics is similar. We thus obtain the following result.

Theorem 10. Given an IDTMC I, an LTL path formula ψ, and a state formula
φ = P��p(ψ), the following assertions hold: (1) the sets [[φ]]IP and [[φ]]I can be
computed in PSPACE in the size of I and 2EXPTIME in the length of the
formula ψ; and (2) given a state s, whether the state s |= φ under the IMDP
semantics can be decided in coNP in the size of I and 2EXPTIME in the length
of the formula ψ.

9 Conclusion

We have investigated the model checking problem of ω-PCTL and its qualitative
fragment for three semantic interpretations of IDTMCs, namely UMC, PUMC
and IMDP. We proved upper bounds and lower bounds on the complexity of the
model checking problem for these models. Some of our bounds however are not
tight. Finding tight lower and upper bounds for these model checking problems
is an interesting open problem. We also present model checking algorithm for
LTL formulas.

References

1. Bianco, A., de Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, Springer,
Heidelberg (1995)

2. Canny, J.: Some algebraic and geometric computations in PSPACE. In: STOC
1988, pp. 460–467. ACM, New York (1988)

3. Chatterjee, K., de Alfaro, L., Henzinger, T.: Trading memory for randomness. In:
QEST 2004, IEEE, Los Alamitos (2004)

4. Chatterjee, K., Jurdziński, M., Henzinger, T.: Quantitative stochastic parity games.
In: SODA 2004, ACM-SIAM (2004)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. MIT Press and McGraw-Hill (1990)

6. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
Journal of ACM 42(4), 857–907 (1995)

7. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford
University (1997)

8. Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari,
A. (ed.) SPIN 2006. LNCS, vol. 3925, Springer, Heidelberg (2006)

9. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)



Model-Checking ω-Regular Properties of Interval Markov Chains 317

10. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, MA (1979)

11. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS 1991, IEEE, Los Alamitos (1991)

12. Kemeny, J., Snell, J., Knapp, A.: Denumerable Markov chains. Springer, Heidelberg
(1976)

13. Kozine, I.O., Utkin, L.V.: Interval-valued finite Markov chains. Reliable Comput-
ing 8(2), 97–113 (2002)

14. Kuznetsov, V.P.: Interval statistical models. Radio and Communication (1991)
15. Rutten, J., Kwiatkowska, M., Norman, G., Parker, D.: Mathematical Techniques

for Analyzing Concurrent and Probabilistic Systems. American Mathematical So-
ciety (2004)

16. Safra, S.: Complexity of automata on infinite objects. PhD thesis, Weizmann In-
stitute of Science (1989)

17. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, MIT (1995)

18. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, Springer, Heidelberg (2006)

19. Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages.
Beyond Words, ch. 7, vol. 3, Springer, Heidelberg (1997)

20. Vardi, M., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: LICS 1986, IEEE, Los Alamitos (1986)

21. Vardi, M.Y.: Automatic verification of probabilistic concurrent finite-state pro-
grams. In: FOCS 1985, IEEE, Los Alamitos (1985)

22. Walley, P.: Measures of uncertainty in expert systems. Artificial Intelligence 83,
1–58 (1996)



Prevision Domains and Convex Powercones�

Jean Goubault-Larrecq

LSV, ENS Cachan, CNRS, INRIA Futurs
61, av. du président-Wilson, 94230 Cachan, France

goubault@lsv.ens-cachan.fr

Abstract. Two recent semantic families of models for mixed probabilistic and
non-deterministic choice over a space X are the convex powercone models, due
independently to Mislove, and to Tix, Keimel, and Plotkin, and the continuous
prevision model of the author. We show that, up to some minor details, these mod-
els are isomorphic whenever X is a continuous, coherent cpo, and whether the
particular brand of non-determinism we focus on is demonic, angelic, or chaotic.
The construction also exhibits domains of continuous previsions as retracts of
well-known continuous cpos, providing simple bases for the various continuous
cpos of continuous previsions. This has practical relevance to computing approx-
imations of operations on previsions.

1 Introduction

Continuous lower and upper previsions, and forks, were proposed in [5] as adequate
models for mixed non-deterministic (demonic, angelic, and chaotic respectively) and
probabilistic choice. At the end of this paper, it was claimed that there was a strong
relation between this model and that discovered independently by Mislove [13] and by
Tix [16,17], consisting of convex non-empty subsets of continuous valuations, which
are also compact saturated, resp. closed, resp. (compact) lenses—the so-called convex
powercones. We make this connection more precise, and to show that this “strong rela-
tion” is in fact an isomorphism, providedX is a coherent continuous pointed cpo.

Before we go on, let us mention that Keimel and Plotkin [10] solved a very sim-
ilar problem, under the guise of finding predicate transformers characterizing con-
vex powercones. Keimel and Plotkin’s so-called functional representations of predicate
transformers map elements of convex powercones over a cpo X to certain continuous
functionals very much like our continuous previsions (essentially, up to the replacement
of R+ by R+ = R+ ∪ {+∞}). However, Keimel and Plotkin’s convex powercones
are composed of convex subsets of continuous valuations, and the latter may be un-
bounded. In practice, convex subsets of continuous probabilities (such that the measure
of the whole space is 1) or subprobabilities (at most 1) seem to fit more tightly our
needs in modeling probabilistic choice, and Keimel and Plotkin note that “it would be
more natural, from the point of view of computer science applications, to restrict to
subprobability valuations, rather than allowing all of them.” This is what we do here.

Our isomorphism result is not a consequence of the theorems of Keimel and Plotkin,
although it is likely that adapting their proofs (and in fact, making them murkier) would

� Partially supported by the INRIA ARC ProNoBis.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 318–333, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

goubault@lsv.ens-cachan.fr


Prevision Domains and Convex Powercones 319

give us the desired results. We take the route of [7, Section 11.7], and prove the isomor-
phism in two steps: first, isomorphism theorems on fairly general classes of topological
spaces X , but where convexity has to be replaced by a slightly stronger notion; sec-
ond, the proof that the strong notions of convexity coincide with ordinary convexity on
coherent continuous pointed cpos.

Outline. We quickly go over preliminaries in Section 2, then show our first isomor-
phism theorem in the demonic case, in Section 3. This relies on the notion of strong
convexity, and uses notions of barycenters à la Choquet-Bishop-de Leeuw. Showing
that strong convexity reduces to convexity in the case of cpos is the subject of Sec-
tion 4, and is the only section that relies on theorems by Tix, Keimel, and Plotkin. We
deal with the angelic case in Section 5, which we reduce to the demonic case by the so-
called convex-concave duality. The chaotic case is now ripe for treatment in Section 6.
We conclude in Section 7.

Related Work. Clearly [16,17,10] and [5] are most relevant. Other relevant material
will be cited on the fly.

2 Preliminaries

See [1,3,12] for background material on domain theory and topology. A cpo X is a
partially ordered set (poset) in which every directed set has a least upper bound, or sup.
We write ≤ its ordering. The Scott topology on a poset has as opens all upward-closed
subsets U such that whenever (zi)i∈I is a directed family having a sup z in U , then
some zi is in U already. The way-below relation � on a poset is defined by x � y
iff whenever (zi)i∈I is a directed family having a sup z with y ≤ z, then x ≤ zi for
some i ∈ I . A poset X is continuous iff every x ∈ X is the directed sup of all elements
y � x. A basis of X is then a subset B of X such that every x ∈ X is the directed sup
of all elements y ∈ B such that y � x. The Scott topology then has a basis of open
sets of the form ↑↑y = {x ∈ X |y � x}, y ∈ B.

For any topological space (e.g., cpo) X , let 〈X → R+〉 be the poset of all bounded
continuous maps fromX to R+. We take R+ with the Scott topology, whose non-trivial
opens are the open intervals (t,+∞), t ∈ R+, and order 〈X → R+〉 pointwise. A
continuous prevision F on a topological space (e.g., a cpo) X [5] is a Scott-continuous
map from 〈X → R+〉 to R+ such that F (af) = aF (f) for every a ∈ R+ (positive
homogeneity). A prevision F is lower iff F (h + h′) ≥ F (h) + F (h′) for every h, h′,
upper iff F (h + h′) ≤ F (h) + F (h′) for every h, h′, linear iff F (h + h′) = F (h) +
F (h′), normalized iff F (a+h) = a+F (h) for every function h and constant a ∈ R+,
subnormalized iff F (a + h) ≤ a + F (h) for every h and constant a. A fork is a pair
(F−, F+) of continuous previsions, where F− is lower, F+ is upper, and Walley’s
condition F−(h + h′) ≤ F−(h) + F+(h′) ≤ F+(h + h′) holds for every h, h′. A
fork is normalized, resp. sub-normalized, whenever both F− and F+ are. We shall
concentrate on normalized previsions and forks in the sequel.

It was shown in [5] that, among continuous normalized previsions, the lower
brand was an adequate model of mixed probabilistic and demonically non-deterministic
choice, the upper brand was one of mixed probabilistic and angelically non-deterministic



320 J. Goubault-Larrecq

choice, while normalized forks were an adequate model of mixed probabilistic and
chaotically non-deterministic choice. It was essentially well-known since Tix [15] that
the space of continuous (subnormalized, resp. normalized) linear previsions were iso-
morphic to Jones’ space V≤1(X) (resp., V1(X)) of subprobability (resp. probabil-
ity) valuations. A valuation is a map p from the set O(X) of all opens of X to R+

that is strict (p(∅) = 0), monotone (U ⊆ V implies p(U) ≤ p(V )), and modular
(p(U ∪ V ) + p(U ∩ V ) = p(U) + p(V )). Subprobability valuations (resp., probability
valuations) are those such that p(X) ≤ 1 (resp., p(X) = 1). The valuation p is continu-
ous iff p(

⋃
i∈I Ui) = supi∈I p(Ui) for every directed family (Ui)i∈I of opens ofX . We

shall always equip each cpo, and in fact each poset,X with its Scott topology. However,
we shall consider more general topological spaces in the sequel. For every open U , let
χU map x to 1 if x ∈ U , to 0 otherwise. The isomorphism between the space P�1 (X)
of continuous normalized linear previsions G on X and V1(X) maps G to p = γC(G)
defined by p(U) = G(χU ) for every open U , and conversely, maps p to G = αC(p)
defined by letting G(h) be the Choquet integral of h along p [5]. (The Choquet integral
of h ∈ 〈X → R+〉 along p, which we shall write C

∫
x∈X h(x)dp, is defined as the or-

dinary Riemann integral
∫ +∞
0 p(h−1(t,+∞))dt. This is a continuous linear prevision

of h and is also linear and Scott-continuous in p, whenever p is a continuous valuation.
Note that Choquet integration is also defined when p is merely a so-called game [4].)

Let
�

P1(X) be the space of continuous normalized lower previsions onX , P�1 (X)
that of all continuous normalized linear previsions (with the Scott topology, ordered
pointwise), and P�1 wk(X) the same space with the weak topology, defined as the small-
est that contains the subbasic opens [f > r] = {G ∈ P�1 wk(X)|G(f) > r}, f ∈
〈X → R+〉, r ∈ R+. The Scott topology is always finer than the weak topology. When
X is a continuous cpo with a least element, both topologies coincide, i.e., P�1 wk(X) =
P�1 (X). This is easily obtained from the coincidence of the two topologies on spaces
of valuations, through the isomorphism between continuous valuations and continuous
linear previsions above (see [9], who refers to Tix [15, Satz 4.10], who cites Kirch [11,
Satz 8.6]; see also [7, Proposition 3.7.12].)

The relation between spaces of previsions and sets of convex subsets of valuations
alluded to in the introduction takes the following form, in the demonic case [5, Propo-
sition 4]. Let the Smyth powerdomain Q(Y ) of a topological space be the set of all
non-empty compact saturated subsets (see below) of Y , ordered by reverse inclusion⊇.
(This is a standard model of demonic non-determinism alone [1].) Then, there is a map
CCoeur1 :

�
P1(X) → Q(P�1 wk(X)) sending each continuous normalized lower

previsionF to its heartCCoeur1(F ) = {G ∈ P�1 (X)|F ≤ G}. WheneverX is stably
compact (see below), the heart is non-empty and compact saturated. (Both properties
are non trivial.) Moreover, the heart is convex: for any two G,G′ ∈ CCoeur1(F ), for
any α ∈ [0, 1], αG+ (1−α)G′ is in CCoeur1(F ) (trivial). Conversely, there is a map
�

: Q(P�1 wk(X))→ �
P1(X), sending Q to λh ∈ 〈X → R+〉 ·minG∈QG(h). (The

min is, indeed, attained.) CCoeur1 and
�

are Scott-continuous, and form a Galois in-
sertion, i.e.,

�◦CCoeur1 = id (Rosenmuller’s Theorem), andCCoeur1◦
� ⊇ id. We

shall denote Galois connections, i.e., pairs of monotone maps α, γ such that α ◦ γ ≤ id
and id ≤ γ ◦ α, by α � γ; so CCoeur1 �

�
(recall that ≤ is ⊇ on Q(P�1 wk(X))).



Prevision Domains and Convex Powercones 321

A subset Q of X is compact iff one can extract a finite subcover from every open
cover of Q. It is saturated iff it is the intersection of all opens containing it, a.k.a. it
is upward-closed in the specialization quasi-ordering ≤, defined by x ≤ y iff every
open containing x contains y. A topological space X is stably compact (taking Jung’s
definitions [9]) iff X is T0 (≤ is an ordering), well-filtered (for every filtered family
(Qi)i∈I of compact saturated subsets, for every open U , if

⋂
i∈I Qi ⊆ U then Qi ⊆ U

already for some i ∈ I), locally compact (whenever x ∈ U with U open, there is a
compact saturated subset Q such that x ∈ int(Q) ⊆ Q ⊆ U , where int(Q) denotes
the interior of Q), coherent (the intersection of any two compact saturated subsets is
again so) and compact. Every continuous cpo X is well-filtered and locally compact. If
additionally X is pointed, i.e., has a least element, then X is compact. If finally X is
also coherent, then X is stably compact. Stable compactness has a long history, going
back to Nachbin (1948; see [9]).

3 Demonic Non-determinism + Probabilistic Choice

The central question of this paper, in the demonic case, is whether the pair CCoeur1 ��
actually defines an isomorphism between

�
P1(X) and some suitable subset of

Q(P�1 wk(X)). One natural candidate is Qcvx(P�1 wk(X)), the space of all elements
of Q(P�1 wk(X)) that are convex—since the heart is always convex.

However, the right notion we need is that of strong convexity, defined below. (Con-
noisseurs will note that the same idea is the root of the classic Choquet-Bishop-de
Leeuw extension to the Krein-Milman Theorem.) One first notes that convex sets Q

of linear previsions are those that are stable by taking finite barycenters, i.e., such
that for any finite set G0, G1, . . . , Gn of n + 1 elements of Q, for any coefficients
a0, a1, . . . , an ∈ R+ with

∑n
i=0 ai = 1,

∑n
i=0 aiGi is again in Q. On any space Y ,

the Dirac valuation δy defined so that δy(V ) = 1 if y ∈ V , 0 otherwise, is a con-
tinuous probability valuation, and so are the simple probability valuations of the form∑n

i=0 aiδyi , with a0, a1, . . . , an as above. The Choquet integral of h ∈ 〈Y → R+〉
along such a simple probability valuation yields

∑n
i=0 aih(yi). It follows that we can

rewrite the finite barycenter
∑n

i=0 aiGi as λh ∈ 〈X → R+〉 · C
∫
G∈P�

1 wk(X)
G(h)dP,

where P is the simple probability valuation
∑n

i=0 aiδGi on P�1 wk(X) (an element of
P�1 (P�1 wk(X))!). This allows us to define the general notion of barycenter Bary(P)
of a continuous probability valuation P ∈ P�1 (P�1 wk(X)) as λh ∈ 〈X → R+〉 ·
C
∫
G∈P�

1 wk(X)
G(h)dP ∈ P�1 (X).

Say that P is supported on Q ⊆ P�1 wk(X) iff P(U) = 1 for every open set of
continuous probability valuations containing Q. This intuitively says that P bears no
mass outside Q. One can check that

∑n
i=0 aiGi is supported on Q (where Q is upward-

closed) iff Gi ∈ Q for all i such that ai �= 0.
We then say that Q is strongly convex iffBary(P)∈Q for every P ∈ P�1 (P�1 wk(X))

that is supported on Q. Whenever Q is strongly convex, this property must hold when-
ever P is a simple probability valuation, showing that every strongly convex upward-
closed set is convex. The converse fails, as we now show. Let X be N ∪ {+∞}, with
the usual ordering and its Scott topology. Let Q be the set of all linear previsions of the



322 J. Goubault-Larrecq

form λh ·∑n
i=0 aih(ki), where a0, . . . , an are as above and ki ∈ N. This is the convex

hull of the set of linear previsions of the form αC(δk), k ∈ N, and is therefore convex.
(Recall that αC(δk) is the image of δk through the isomorphism between continuous
valuations and continuous linear previsions, and maps h to h(k).) It is clear that δ+∞
is not in Q. However, δ+∞ arises as Bary(δδ+∞), and we check that δδ+∞ is supported
on Q: any open containing Q must contain, say, δ0, hence also δ+∞, since δ0 ≤ δ+∞.

Proposition 1. Let X be stably compact, and F ∈ �
P1(X). Then CCoeur1(F ) is

strongly convex.

Proof. We first observe that, given any compact saturated subset Q of a space Y , given
any continuous probability valuation p on Y that is supported on Q, for any h ∈ 〈Y →
R+〉: (∗) C

∫
y∈Y h(y)dp ≥ miny∈Q h(y). Let a = miny∈Q h(y) (which is attained since

Q is compact). For all t < a, f−1(t,+∞) contains Q, so p(f−1(t,+∞)) = 1; hence
C
∫
y∈Y h(y)dp =

∫ +∞
0

p(f−1(t,+∞))dt ≥ ∫ a
0
p(f−1(t,+∞))dt = a.

For f an arbitrary element of 〈X → R+〉, apply (∗) to the case Y = P�1 wk(X), p =
P supported on Q = CCoeur1(F ), taking h(G) = G(f). (Note that h is continuous,
precisely because Y is equipped with the weak topology.) We get C

∫
G∈P�

1 wk(X)G(f)dP
≥ minG∈QG(f) =

�
Q(f). However, remember that

� ◦ CCoeur1 = id, so
�

Q =
F . Also, C

∫
G∈P�

1 wk(X)G(f)dP = Bary(P)(f). So Bary(P) ≥ F , i.e., Bary(P) ∈
CCoeur1(F ). ��

The converse direction, that strongly convex non-empty compact saturated subsets of
P�1 wk(X) arise from some element of

�
P1(X), relies on the following key Proposi-

tion 2. To appreciate it, look at the case when Q is the upward closure ↑ {G1, . . . , Gn}
of {G1, . . . , Gn} in P�1 wk(X): up to some details, the proposition states that if for each
h, there is an i with G(h) ≥ Gi(h) (not necessarily the same i for each h), then there
are coefficients a0, a1, . . . , an with

∑n
i=0 ai = 1 such that G(h) ≥ ∑n

i=0 aiGi(h) for
all h. (This is similar to a key step in some proofs of the minimax theorem.)

The proof relies on Roth’s Sandwich Theorem ([14], [17, Theorem 3.1]), which
states that on every ordered cone C, for every positively homogeneous super-additive
function q : C → R+ and every positively homogeneous sub-additive function p : C →
R+ such that a ≤ b implies q(a) ≤ p(b) (e.g., when q ≤ p and either q or p is mono-
tonic), then there is a monotonic linear function f : C → R+ such that q ≤ f ≤ p.
A cone is a set C, together with a binary operation + turning it into a commutative
monoid and a scalar multiplication · from R+ × C to C, such that 1 · a = a, 0 · a = 0,
(rs) · a = r · (s · a), r · (a+ b) = r · a+ r · b, and (r+ s) · a = r · a+ s · a. An ordered
cone is equipped in addition with a partial ordering ≤ making + and · monotonic. The
function q is positively homogeneous iff q(s ·a) = sq(a) for all s ∈ R+, super-additive
iff q(a+ b) ≥ q(a) + q(b), sub-additive iff q(a+ b) ≤ q(a) + q(b), and linear iff it has
all three properties.

Proposition 2. LetX be stably compact, Q be a non-empty compact saturated subset of
P�1 wk(X), G ∈ P�1 wk(X) such that

�
Q ≤ G. Then there is a continuous probability

valuation P on P�1 wk(X) that is supported on Q, and such that Bary(P) ≤ G.



Prevision Domains and Convex Powercones 323

Proof. Consider the ordered cone C = 〈P�1 wk(X) → R+〉, with the obvious +
and ·, and the pointwise ordering. For every ϕ ∈ 〈P�1 wk(X) → R+〉, let q(ϕ) =
minG∈Q ϕ(G). This is clearly positively homogeneous, super-additive, and monotonic.
In fact, q is even (Scott-)continuous: recall from [4] that, for any compact saturated sub-
setQ of a space Y , the unanimity game uQ (mapping each openU containingQ to 1 and
all others to 0) is a continuous game, that the Choquet integral C

∫
y∈Y f(y)duQ equals

miny∈Q f(y)—so that q(ϕ) = C
∫
G∈P�

1 wk(X) ϕ(G)duQ—and that Choquet integration
wrt. a continuous game is Scott-continuous in the integrated function.

Let p(ϕ) = inf f∈〈X→R
+〉

∀G′∈Q·ϕ(G′)≤G′(f)

G(f). (We take this to mean +∞ if the inf is taken

over an empty family of values.) It is easy to see that p(aϕ) = ap(ϕ) for every a ∈ R+:
the case a = 0 works by realizing that f = 0 satisfies ϕ(G′) = G′(f) for all G ∈ Q,
and thenG(f) = 0, the case a �= 0 works by substituting f/a for f in the formula for p.
Checking that p is super-additive is only slightly harder: p(ϕ) + p(ϕ′) equals the inf of
G(f)+G(g) = G(f + g) when f and g range over functions such that ϕ(G′) ≤ G′(f)
and ϕ(G′) ≤ G′(g) for all G′ ∈ P�1 wk(X). Since every such G’ is linear, they all
satisfy (ϕ+ϕ′)(G′) ≤ G′(f + g), so p(ϕ) + p(ϕ′) is greater than of equal to the inf of
G(f + g) when f and g satisfy the weaker condition (ϕ + ϕ′)(G′) ≤ G′(f + g). This
is then greater than or equal to p(ϕ+ ϕ′).

We now check that q ≤ p. This is where we use the assumption
�

Q ≤ G. Fix
ϕ ∈ 〈P�1 wk(X)→ R+〉. For all f ∈ 〈X → R+〉 such that ∀G′ ∈ Q · ϕ(G′) ≤ G′(f),
we have G(f) ≥ �

Q(f) = minG′∈QG
′(f) ≥ minG′∈Q ϕ(G′) = q(ϕ). Now take infs

over f on each side, whence p(ϕ) ≥ q(ϕ).
Using Roth’s Sandwich Theorem, there is a monotonic linear functional G0 from

〈P�1 wk(X)→ R+〉 to R+ such that q ≤ G0 ≤ p. We claim that G0 never takes the value
+∞. Indeed, for any ϕ ∈ 〈P�1 wk(X) → R+〉, letting a = supG′∈P�

1 wk(X) ϕ(G′),
G0(ϕ) ≤ p(ϕ) ≤ ap(χP�

1 wk(X)) ≥ G(χX) = 1 because we may take f = χX in

the definition of p, as ϕ(G′) ≤ a = aG′(χX), G′ being normalized. So G0 is a linear
prevision. Since q ≤ G0 and q(χP�

1 wk
(X)) = 1, it follows that G0(χP�

1 wk
(X)) = 1;

since G0 is linear, this is enough to show that G0 is normalized.
But G0 is not necessarily continuous. We use the machinery, based on the Scott ex-

tension formula, developed in [5, Long version, Appendix], and which we recall briefly
now. By Claim Q of op.cit., for any stably compact space Y (the result is stated for
the slightly more general class of compact, stably core compact spaces), we may de-
fine a continuous functional r(F ) from 〈Y → R+〉 to R+ from any functional F from
〈Y → R+〉 to R+ by the formula r(F )(f) = supg∈B,g�f F (g), where B is a basis
of the continuous poset 〈Y → R+〉 (described in Claim K) and � is its way-below
relation; then r(F ) is the largest continuous functional below F , and is a continuous
normalized linear prevision whenever F is a normalized linear prevision.

In our case, observe that Y = P�1 wk(X) is stably compact: the isomorphism αC,
γC between P�1 (X) and V1(X) also defines an isomorphism between P�1 wk(X) and
V1 wk(X) (where the latter is defined with the weak topology, whose subbasic opens
are [f > r] = {p ∈ V1(X)| C∫

x∈X f(x)dp > r} are in one to one correspondence

to those of P�1 wk(X)). And V1 wk(X) is stably compact as soon as X is, a result



324 J. Goubault-Larrecq

due to Jung [9, Theorem 3.2]. So the machinery applies: G = r(G0) is a continuous
normalized linear prevision, and G ≤ G0. Moreover, since G is the largest continuous
functional below G0, and q is continuous, we have q ≤ G ≤ G0 ≤ p.

Using the isomorphism αC, γC, let P = γC(G): this is a continuous normalized
valuation on P�1 wk(X). We claim it is supported on Q. For every open U containing
Q indeed, q(χU) ≤ G(χU). But q(χU) = minG′∈Q χU(G′) = 1, and G(χU) = P(U).
Since P(U) ≤ 1 anyway, P(U) = 1.

For every f ∈ 〈X → R+〉, let ϕ be the function mapping G′ to G′(f). Note that
G(ϕ)=αC(P)(ϕ)= C

∫
G′∈P�

1 wk(X)
ϕ(G′)dP= C

∫
G′∈P�

1 wk(X)
G′(f)dP = Bary(P)(f),

while p(ϕ) = inf g∈〈X→R
+〉

∀G′∈Q·ϕ(G′)≤G′(g)

G(g) = inf g∈〈X→R
+〉

∀G′∈Q·G′(f)≤G′(g)

G(g) ≤ G(f). So

Bary(P) ≤ G, as announced. ��

LetConv(Q), the strong convex closure of Q, be {Bary(P) | P supported on Q}. Using
Proposition 2, we may characterize the action of CCoeur1 ◦

�
by CCoeur1(

�
Q) =

↑ Conv(Q) for every Q ∈ Q(P�1 wk(X)). Recall that Q ⊆ CCoeur1(
�

Q). By Proposi-
tion 1, it follows that Conv(Q) ⊆ CCoeur≤1(

�
Q). Since the heart is upward-closed,

↑ Conv(Q) ⊆ CCoeur1(
�

Q). Conversely, if G ∈ CCoeur1(
�

Q), i.e.,
�

Q ≤ G,
then by Proposition 2, there is a continuous probability valuation P supported on Q,
such that Bary(P) ≤ G. This means that Bary(P) ∈ Conv(Q), so G ∈ ↑ Conv(Q).

Theorem 1 (Isomorphism). Let X be stably compact. Then CCoeur1 and
�

define
an isomorphism between

�
P1(X) and the space QCvx(P�1 wk(X)) of strongly convex

non-empty compact saturated subsets of P�1 wk(X), ordered by ⊇.

Proof. It is enough to realize that for every Q ∈ QCvx(P�1 wk(X)), ↑ Conv(Q) =
↑ Q = Q, while CCoeur1(

�
Q) = ↑ Conv(Q). The identity

� ◦ CCoeur1 = id is
already known from [5]. ��

4 The Cpo Case

We may refine Theorem 1 and replace strong convexity by the mere notion of convexity,
when X is a coherent, continuous and pointed (hence stably compact) cpo. This comes
close to the results of Keimel and Plotkin [10], who show that the space of super-
additive, positively homogeneous and Scott-continuous functionals from [X → R+] to
R+, is isomorphic to Qcvx(V(X)), where [X → Y ] denotes the cpo of all continuous
maps from X to Y (not just the bounded ones), and V(X) is the set of all valuations
(not just the normalized ones, not even those that are bounded, i.e. do not take the
value +∞). Note also the use of Qcvx here instead of QCvx. Despite the apparent added
generality of the results of [10], they do not seem to entail ours. (Try it!)

The key to our result is to realize that any compact saturated, convex subset of
P�1 wk(X) is in fact strongly convex. We need the following easily proved variant of
[17, Theorem 3.8] first [6, Appendix A]. Call continuous cone any ordered cone C
which is continuous qua poset, and where + and · are Scott-continuous. (This is as the
continuous d-cones of [17], except we don’t require C to be a cpo.) It is additive iff



Prevision Domains and Convex Powercones 325

x1 � y1 and x2 � y2 imply x1 + x2 � y1 + y2. Call a subset Z of an additive contin-
uous cone regular whenever Z is continuous as a sub-partial order of C, and whenever
x, y ∈ Z are such that x �Z y, then x �C y, where�Z and�C are the way-below
relations of Z and C respectively.

Proposition 3. Let C be an additive continuous cone, and Z a regular subspace of C.
For every convex compact subset K of Z , for every non-empty convex closed subset
F of Z disjoint from K , there is a ∈ R+, a > 1, and a continuous linear function
f : C → R+ such that f(z) > a for all z ∈ K and f(y) ≤ 1 for every y ∈ F .

Caveat: The topology of Z is that induced by that of C (whose opens are of the form
V ∩ Z , V open in C), but there is no reason in general that this should coincide with
the Scott topology of the ordering ≤ on Z . Such pathologies do not arise when Z is
a regular subspace of C [6, Claim D, Appendix A]. For every continuous cpo Y , the
space C = V(Y ) of all continuous bounded valuations is an additive continuous cone,
and Z = V≤1(Y ) is a regular subspace of C [6, Claim F, Appendix A]. However,
V1(Y ) is not regular in V(Y ), when Y has a least element ⊥, as δ⊥ �V1(X) δ⊥ but
δ⊥ ��V(X) δ⊥ (the family rδ⊥, r < 1, has the right-hand side as sup, but no element
of this family is greater than or equal the left-hand side).

Recall that a saturated subset is one that is the intersection of all opens containing
it. Say that a subset A is linearly saturated iff A is the intersection of all convex opens
containing it. It is tempting to think that any convex saturated subset should be lin-
early saturated. This is indeed the case for those subsets that are also compact, as the
following variant of [17, Corollary 3.13], due to Jung, shows.

Proposition 4. Let C be a continuous cone, Z be a regular convex subspace of C.
Every convex compact saturated subset Q of Z is linearly saturated.

Proof. We must show that for every x ∈ Z \ Q, there is a convex open subset V
containing Q but not x. Let F = {z ∈ Z|z ≤ x}: this is convex, non-empty, and
disjoint from Q. Build f and a as in Proposition 3. The open V = f−1(a,+∞) ∩ Z of
Z fits the bill. In particular, V is convex because f is linear. ��
Theorem 2. Let X be a continuous pointed cpo. Every convex compact saturated sub-
set Q of P�1 (X) = P�1 wk(X) is strongly convex.

Proof. Fix X , with least element ⊥. By Edalat’s variant of Jones’ Theorem [2, Sec-
tion 3], Y = V1(X) is then also a continuous pointed cpo, with least element δ⊥. Using
a trick by Edalat, X ′ = X \ {⊥} is a continuous cpo again, and V1(X) is isomorphic
to V≤1(X ′). (Send ν ∈ V1(X) to λU ∈ O(X ′) · ν(U), and send back ν ∈ V≤1(X ′)
to ν′ defined as ν′(U) = ν(U) if U �= X , i.e., ⊥ �∈ U , ν′(U) = 1 otherwise.) Take
C = V(X ′), Z = V≤1(X ′). Let Q be a convex saturated compact of Z , P an element
of V1(Z) supported on Q. Since Z is a continuous pointed cpo again, we use again one
of Edalat’s results [2, Section 3]: every element of V1(Z) is the sup of a directed family
of simple probability valuations Pi, i ∈ I . Fix an arbitrary convex open U containing
Q. By definition of the Scott topology, some Pi is in U, from which we deduce easily
that the subfamily of those Pi that are in U is again directed, with sup P. Let J be the
set of indices i such that Pi ∈ U. However, since U is convex and Pi is simple, the finite



326 J. Goubault-Larrecq

barycenterBary(Pi) is in U. It is easy to see that the family (Bary(Pi))i∈J is directed.
Its sup is in U, since U is upward-closed. Since Choquet integration is continuous in the
valuation argument, Bary is continuous, so this sup is just Bary(P). We have shown
that Bary(P) ∈ U for every convex open U containing Q. By Proposition 4, Q is the
intersection of all such convex opens, so Bary(P) ∈ Q. This shows that every convex
compact saturated subset of Z = V≤1(X ′) is strongly convex. Now note that Z is iso-
morphic to V1(X), which is isomorphic to P�1 (X) = P�1 wk(X). ��
Since convex and strong convexity coincide for compact saturated subsets, the follow-
ing is immediate.

Corollary 1 (Isomorphism). Let X be a continuous, coherent pointed cpo.
CCoeur1 and

�
define an isomorphism between

�
P1(X) and Qcvx(P�1 wk(X)) =

Qcvx(P�1 (X)) ∼= Qcvx(V1(X)).

Note that CCoeur1 and
�

also exhibit
�

P1(X) as a retract of Q(P�1 (X)), i.e., they
are continuous, and

� ◦ CCoeur1 = id. (
�

is the retraction, and CCoeur1 the as-
sociated section.) By [2], P�1 (X) ∼= V1(X) has a basis of simple normalized linear
previsions, i.e., previsions of the form αC(p), with p a simple probability valuation.
Concretely, these are previsions of the form λh ∈ 〈X → R+〉 ·∑n

i=0 aih(xi), where
a0, a1, . . . , an ∈ R+,

∑n
i=0 ai = 1. It is well-known that, whenever Y is a continuous

cpo, Q(Y ) is also a continuous cpo with basis given by the finitary compacts ↑ E, E a
finite subset of Y [1]. It is also known that any retractZ ′ of a continuous cpo Z is again
a continuous cpo, with basis given by the image of any basis of Z by the retraction. So:

Theorem 3. For any continuous, coherent pointed cpo X ,
�

P1(X) is a continuous,
coherent pointed cpo. A basis is given by previsions of the form λh ∈ 〈X → R+〉 ·
minmi=1

∑n
j=1 aijh(xj), where aij ∈ R+ and

∑n
j=1 aij = 1 for each i.

Proof. The only things that remain to be proved are that
�

P1(X) has a least element
(λh · h(⊥), i.e., αC(δ⊥)), and that

�
P1(X) is coherent. Note that Q(P�1 (X)) is a

bc-domain, i.e., a continuous cpo where any two elements Q1 and Q2 having an upper
bound have a least upper bound (namely Q1 ∩ Q2, which is non-empty because Q1

and Q2 have an upper bound Q ⊆ Q1, Q2). Every bc-domain is coherent, hence stably
compact (see, e.g., [8]), and by a result of Lawson quoted by Jung [9], every retract of
a stably compact space is again stably compact. ��
The above theorem means that we can always approximate, from below, any continuous
normalized lower prevision by one that is computable, using only finitely many min, +
and · operations. It is remarkable that we know no proof of this fact that would avoid
the relatively daunting constructions above.

5 Angelic Non-determinism + Probabilistic Choice

Let the Hoare powerdomain H(Y ) be the set of all non-empty closed subsets of Y ,
ordered by inclusion (a standard model of angelic non-determinism alone). This is
also a cpo, which is continuous as soon as Y is, and is usually used to model angelic



Prevision Domains and Convex Powercones 327

non-determinism. Let
�

P1(X) be the space of all continuous normalized upper previ-
sions onX . Then [5, Proposition 5] there is a mapCPeau1 :

�
P1(X)→H(P�1 wk(X)),

defined by CPeau1(F ) = {G ∈ P�1 (X)|G ≤ F}, and a map
⊔

: H(P�1 wk(X)) →�
P1(X), sending F to λh ∈ 〈X → R+〉 · supG∈F G(h). When X is stably com-

pact,
⊔ � CPeau1 defines what we called a Galois surrection, i.e.,

⊔
and CPeau1 are

monotonic,
⊔ ◦ CPeau1 = id, and CPeau1 ◦

⊔
(F) ⊇ F for all F.

⊔
is continuous,

but we do not know whether CPeau1 is continuous in general.
We shall prove that

⊔
and CPeau1 define an isomorphism similar to those of the

previous sections. The main trick is in using a nice duality between demonic and an-
gelic non-determinism, which we called convex-concave duality on games in [4], and
which extends to previsions. Very roughly, the idea is to turn any prevision F into the
functionalF⊥ = λh ∈ 〈X → R+〉·−F (−h). If F is lower, then F⊥ will be upper, and
conversely, moreover F⊥⊥ = F . Unfortunately, F (−h) is in general ill-defined: First,
−h does not take its values in R+ (easy to repair, see below); second, −h is very far
from being continuous from X to R+: the inverse image of the (Scott-)open (t,+∞)
by −h is h−1(−∞,−t), of which we know nothing.

To correct the first problem, extend any normalized prevision F onX to a functional
F̂ : 〈X → R〉 → R by letting F̂ (f) = F (f + a) − a, for any a ≥ − infx∈X f(x).
(As before, 〈X → R〉 is the space of all bounded continuous maps from X to R, with
the Scott topology of the pointwise ordering.) This is independent of a, because F is
normalized. It is easy to see that F̂ is monotonic (if f ≤ f ′ then F̂ (f) ≤ F̂ (f ′)),
positively homogeneous (if r ≥ 0 then F̂ (rf) = rF̂ (f)), normalized, and lower, resp.
upper, resp. linear, resp. Scott-continuous when F is.

Solving the second problem is harder. We will have to approximate functions −h
with h ∈ 〈X → R+〉 by functions g not from X , but from the de Groot dual Xd

of X , to R+. This is defined (when X is stably compact) as X , only with the so-
called cocompact topology, whose opens are the cocompacts, i.e., subsets of the form
X \ Q, Q compact saturated subset of X . Observe that well-filternedness, coherence,
and compactness imply that this is indeed a topology. ThenXd is again stably compact,
and Xdd = X (see [9] for more background material on this).

A function f : X → R is a step function if and only if it is of the form
∑n
i=0 aiχUi ,

where X = U0 ⊇ U1 ⊇ . . . ⊇ Un is a sequence of opens, and a0 ∈ R, a1, . . . , an ∈
R+. It is well-known (see e.g., [15]) that any element f of 〈X → R〉 is the sup of a

directed family of step functions, namely fK = a + 1
2K

∑(b−a)2K�
k=1 χf−1(a+ k

2K ,+∞),

K ∈ N, where a is any lower bound for f and b is any upper bound for f .

Definition 1 (F⊥). Let X be a stably compact space, F a normalized prevision on
X . The dual F⊥ of F is the map from 〈Xd → R+〉 to R+ defined by F⊥(g) =
− inff step function

f≥−g
F̂ (f).

We sum up the main properties of this construction. The proof is omitted for lack of
space, but can be found in [6, Appendix B].

Theorem 4. Let X be a stably compact space. For every normalized prevision F on
X , F⊥ is a normalized prevision on Xd. Moreover: (1) F⊥ is continuous; (2) if F is



328 J. Goubault-Larrecq

lower, then F⊥ is upper; (3) if F is upper, then F⊥ is lower; (4) if F is linear, then so
is F⊥; (5) if F is continuous, then F⊥⊥ = F ; (6) if F ≤ F ′ then F ′⊥ ≤ F⊥.

The main step is to show that, when g is a step function, F⊥(g) can be defined alter-
natively as − inff�d−g F̂ (f), where �d is a more constrained relation: f �d −g iff
one can write f as −∑n

i=0 aiχX\Ui
(Ui opens, ∅ = U0 ⊆ U1 ⊆ . . . ⊆ Un, a0 ∈ R,

a1, . . . , an ∈ R+), g as
∑n

i=0 aiχX\Qi
(Qi compact saturated subsets, ∅ = Q0 ⊆

Q1 ⊆ . . . ⊆ Qn), with the same coefficients ai, and Qi ⊆ Ui for each i. While the
proofs require �d, we observe that Definition 1 can be simplified by eliminating the
recourse to step functions [6, Appendix C].

Lemma 1. Let X be a stably compact space, and F a normalized continuous prevision
on X . For every g ∈ 〈Xd → R〉, F⊥(g) = − inff∈〈X→R〉

f≥−g
F̂ (f).

For every continuous game ν in the sense of [4] (in particular, a continuous valuation)
on a stably compact space, we may define ν⊥ as γC(F⊥) where F = αC(ν). One
may check that ν⊥(X \ Q) = 1 − ν†(Q), where ν†(Q) = infU⊇Q ν(U) [6, Claim X,
Appendix B]. In the case where ν is a continuous valuation, the ν† construction was
already studied by Tix [15, Satz 3.4].

Proposition 5. Let X be stably compact. The map p �→ p⊥ defines an isomorphism be-
tween V1 wk(X)d and V1 wk(Xd). The mapF �→ F⊥ defines an isomorphism between
P�1 wk(X)d and P�1 wk(X

d).

Proof. The second claim follows from the first through the isomorphism αC, γC. For
any compact saturated subsetQ ofX , for any real r, let 〈Q < r〉 = {p ∈ V1(X)|p†(Q)
< r}. By [9, Concluding remarks], the sets 〈Q < r〉 form a subbasis of the cocompact
topology on V1 wk(X), provided X is stably compact. (This is stated in terms of sets
written [K ≥ r], which are the complements of 〈K < r〉. See [7, Section 6.4] for a
proof.) So p �→ p⊥ is continuous. Then apply Theorem 4 (6). ��
For lower previsions, we used probability valuations P supported on a compact sat-
urated subsets Q of P�1 wk(X). Upper previsions require us to use cosupports instead.
Say that P is co-supported on F ⊆ P�1 wk(X) iff P(U) = 0, where U is the complement
of the closure cl(F) of F. It is easy to see that P is supported on the compact saturated
subset Q of P�1 wk(X) iff P⊥ is co-supported on the closed subset Q of P�1 wk(X)d.

Say that a subset F of P�1 wk(X) is co-strongly convex iff Bary(P) ∈ F for every
P ∈ V1(P

�
1 wk(X)) that is co-supported on F. When P is simple, say P =

∑n
i=0 aiδGi ,

then P is co-supported on F (when F is downward-closed) iff every Gi such that ai �=
0 is in F; so every co-strongly convex downward-closed set is convex. We shall use
this notion when F is a closed subset of P�1 wk(X), in which case F will always be
downward-closed. By an argument similar to that of Proposition 1 [6, Appendix D]:

Proposition 6. Let X be stably compact, and F ∈ �
P1(X). Then CPeau1(F ) is

co-strongly convex.

The key argument for the converse is the following proposition, which states howBary
behaves w.r.t. the dualizing operation _⊥. For any continuous map f : Y → Z , and



Prevision Domains and Convex Powercones 329

every p ∈ V1 wk(Y ), the image, a.k.a. push-forward continuous valuation f [p] ∈
V1 wk(Z) is that which sends each V ∈ O(Z) to p(f−1(V )). The change-of-variables
formula for Choquet integration states that C

∫
z∈Z g(z)df [p] = C

∫
y∈Y g(f(y))dp (an easy

consequence of the definition). We use the notation _⊥[P′] below (with P′ = P⊥),
where _⊥ : P�1 wk(X)d → P�1 wk(X

d).

Proposition 7. Let X be stably compact. For any continuous probability valuation P

on P�1 wk(X), (Bary(_⊥[P⊥]))⊥ = Bary(P).

Proof. Using the change-of-variables formula, Bary(_⊥[P⊥]) = λg ∈ 〈Xd → R+〉 ·
C
∫
G′∈P�

1 wk(Xd)G
′(g)d_⊥[P⊥] = λg ∈ 〈Xd → R+〉 · C

∫
G∈P�

1 wk(X)d G
⊥(g)dP⊥ =

λg ∈ 〈Xd → R+〉·−infϕ∈〈P�
1 wk(X)→R〉

ϕ≥λG∈P�
1 wk(X)d·−G⊥(g)

C
∫
G∈P�

1 wk(X)
ϕ(G)dP (using the definition

of P⊥ as αC(P⊥) = αC(P)⊥, and Lemma 1).

For each g∈〈Xd → R〉, and each constant a≥ − infx∈X g(x), then, ̂Bary(_⊥[P⊥])
(g) = −inf ϕ∈〈P�

1 wk(X)→R〉
ϕ≥λG∈P�

1 wk(X)d·−G⊥(g+a)

C
∫
G∈P�

1 wk(X)
ϕ(G)dP − a. So, for all h ∈ 〈X →

R+〉, with a ≥ supx∈X h(x), we obtain:

(Bary(_⊥[P⊥]))
⊥

(h) =sup
g∈〈Xd→R〉
g≥−h

inf
ϕ∈〈P�

1 wk(X)→R〉
ϕ≥λG∈P�

1 wk(X)d·−G⊥(g+a)

C

∫

G∈P�
1 wk(X)

ϕ(G)dP + a (1)

using Lemma 1. For every open U in X , we claim that (Bary(_⊥[P⊥]))⊥(χU ) ≤
Bary(P)(χU ). For every g ∈ 〈Xd → R〉 with g ≥ −χU , we have χU ≥ −g,
so (since G⊥ is normalized) G⊥(g + a) = G⊥(g) + a = supf≥−g −G(f) + a ≥
−G(χU )+a. For everyϕ ∈ 〈P�1 wk(X)→ R〉with ϕ ≥ λG ∈ P�1 wk(X)d·G(χU )−a,
therefore, ϕ ≥ λG ∈ P�1 wk(X)d · −G⊥(g + a). So infϕ∈〈P�

1 wk(X)→R〉
ϕ≥λG∈P�

1 wk(X)d·G(χU )−a
C
∫
G∈P�

1 wk(X)

ϕ(G)dP ≥ inf ϕ∈〈P�
1 wk(X)→R〉

ϕ≥λG∈P�
1 wk(X)d·−G⊥(g+a)

C
∫
G∈P�

1 wk(X) ϕ(G)dP. The left-hand side is exactly

Bary(P)(χU ) − a: take ϕ = λG ∈ P�1 wk(X)d · G(χU ) − a, and use the fact that
Bary(P) is normalized. (The key point is that this ϕ is indeed in 〈P�1 wk(X)→ R〉, in
particular continuous, as the inverse image of (t,+∞) is the open [χU > a + t].)
So, using (1), (Bary(_⊥[P⊥]))⊥(χU ) ≤ supg∈〈Xd→R〉

g≥−χU

Bary(P)(χU ) − a + a =

Bary(P)(χU ).
Conversely, let us show that, for any two opens U and V of X with V � U ,

Bary(P)(χV ) ≤ (Bary(_⊥[P⊥]))⊥(χU ). The relation � is the way-below relation on
O(X), ordered by inclusion; on every locally compact space, U � V iff U ⊆ Q ⊆ V
for some compact saturated set Q, and O(X) is then a continuous cpo [3]. Let Q be a
compact saturated subset such that V ⊆ Q ⊆ U . Then g = −χQ satisfies g ≥ −χU , so

(Bary(_⊥[P⊥]))⊥(χU ) ≥ inf ϕ∈〈P�
1 wk

(X)→R〉
ϕ≥λG∈P�

1 wk(X)d·−G⊥(a−χQ)

C
∫
G∈P�

1 wk(X)
ϕ(G)dP + a.



330 J. Goubault-Larrecq

Let us estimate−G⊥(a−χQ) = inf f∈〈X→R
+〉

f≥−(a−χQ)

G(f) (using Lemma 1). Whenever f ≥

−(a−χQ), we have f ≥ χQ−a ≥ χV −a, so−G⊥(a−χQ) ≥ inff∈〈X→R
+〉

f≥χV −a
G(f) ≥

G(χV −a) = G(χV )−a, sinceG is normalized. Using (1), (Bary(_⊥[P⊥]))⊥(χU ) ≥
inf ϕ∈〈P�

1 wk(X)→R〉
ϕ≥λG∈P�

1 wk(X)d·G(χV )−a
C
∫
G∈P�

1 wk(X)
ϕ(G)dP + a = C

∫
G∈P�

1 wk(X)
G(χV )dP − a + a =

Bary(P)(χV ).
Let p = γC(Bary(P)), p′ = γC((Bary(_⊥[P⊥]))⊥). We have shown that p′(U) ≤

p(U) for every open U of X , and that p′(U) ≥ p(V ) whenever V � U . Since O(X)
is a continuous cpo, and p is continuous, p(U) = supV�U p(V ) ≤ p′(U). So p = p′.
Since αC, γC form an isomorphism,Bary(P) = (Bary(_⊥[P⊥]))⊥. ��

Let Conv∗(F), the co-strong convex closure of F, be {Bary(P) | P co-supported
on F}, and ↓ be the downward-closure operator. Similarly to Section 3, we show that
CPeau1(

⊔
F) = ↓ Conv∗(F) for every F ∈ H(P�1 wk(X)). It is easy to see that

(on stably compact X), for any normalized continuous upper prevision F on X ,
CPeau1(F )⊥ = CCoeur1(F⊥); this is because _⊥ is antitone (Theorem 4 (6)). For
every non-empty closed subset F of P�1 wk(X), CPeau1(

⊔
F)⊥=CCoeur1((

⊔
F)⊥)

= CCoeur1(
�

F⊥) (because _⊥ is antitone) = ↑ Conv(F⊥) (see Section 3). Apply

_⊥, using Theorem 4 (5) to get CPeau1(
⊔

F) = ↑ Conv(F⊥)⊥ = ↓ Conv(F⊥)⊥ =
↓ Conv∗(F). The latter equality is a straightforward exercise, using Proposition 7, and
the easily proved facts that, for any continuous function f : Y → Z , for any continuous
probability valuation p on Y : (a) if p is supported on some subset A of X , then f [p] is
supported on the direct image f(A); (b) if f [p] is co-supported on some closed subset
F of Y , then p is co-supported on f−1(F ) [6, Appendix E].

Theorem 5 (Isomorphism). Let X be stably compact. Then CPeau1 and
⊔

define
an isomorphism between

�
P1(X) and the space HCvx∗

(P�1 wk(X)) of co-strongly
convex non-empty closed subsets of P�1 wk(X), ordered by ⊆.

The case where X is a cpo is much simpler than for the demonic case (Section 4).

Lemma 2. Let X be a continuous pointed cpo. Every convex closed subset of P�1 (X)
is co-strongly convex.

Proof. LetZ = P�1 (X), F a convex closed subset ofZ , and P a continuous probability
valuation on Z , co-supported on F: P(Z \ F) = 0. Since Z ∼= V1(X) is a continuous
pointed cpo, V1(Z) is one, too, with a basis of simple probability valuations [2]. So
write P as the sup of a directed family (Pi)i∈I , with Pi ≤ P. In particular, Pi(Z \F) =
0, so Pi is co-supported on F. Write Pi as

∑n
j=1 ajδGj , where each Gj is in F, and

a1 + . . . + an = 1. F is convex so Bary(Pi) =
∑n

j=1 ajGj is in F. Now Bary is
continuous, soBary(P) = supi∈I Bary(Pi). As F is Scott-closed,Bary(P) ∈ F. ��

Writing Hcvx(Y ) the subset of H(Y ) consisting of convex subsets, it follows:



Prevision Domains and Convex Powercones 331

Corollary 2 (Isomorphism). Let X be a continuous, coherent pointed cpo. CPeau1

and
⊔

define an isomorphism between
�

P1(X) and Hcvx(P�1 wk(X)) =
Hcvx(P�1 (X)) ∼= Hcvx(V1(X)).

One may also show the following [6, Appendix F]. This depends crucially on the fact
that CPeau1(

⊔
F) = ↓ Conv∗(F).

Proposition 8. Let X be a continuous, coherent, pointed cpo. Then CPeau1 is a con-
tinuous map from

�
P1(X) to H(P�1 wk(X)).

Recall that, in this case, Y = P�1 wk(X) = P�1 (X) has a basis of simple normalized
linear previsions. For any continuous cpo Y , H(Y ) is continuous cpo too, with basis
given by the finitary closed subsets ↓ E, E a finite subset of Y [1]. As for Theorem 3,
we can therefore conclude:

Theorem 6. For any continuous, coherent pointed cpo X ,
�

P1(X) is a continuous,
coherent pointed cpo. A basis is given by previsions of the form λh ∈ 〈X → R+〉 ·
maxmi=1

∑n
j=1 aijh(xj), where aij ∈ R+ and

∑n
j=1 aij = 1 for each i.

So we can also approximate from below any continuous normalized upper prevision by
one that is computable, using only finitely max, +, and · operations.

6 Chaotic Non-determinism + Probabilistic Choice

In chaotic non-determinism we replace Q(Y ) or H(Y ) by the Plotkin powerdomain
P	(Y ). This is the set of all lenses L, which are non-empty intersections of a compact
saturated subset Q of Y and a closed subset F of Y . A canonical way of writing L as
Q ∩ F is then to take Q = ↑ L, F = cl(L). We order P	(Y ) by the topological Egli-
Milner ordering �EM defined by L �EM L′ iff ↑ L ⊇ ↑ L′ and cl(L) ⊆ cl(L′). If Y
is a continuous, coherent pointed cpo, then P	(Y ) is one, too. (See [1, Section 6.2.3].)
Among all lenses, call strong those that obey the stronger property F = ↓ L.

Let F1(X) be the space of all normalized forks on X . Then [5, Proposition 6] there
is a map CCorps1 : F1(X) → P	(P�1 wk(X)), defined by CCorps1(F−, F+) =
CCoeur1(F−) ∩ CPeau1(F+). Moreover, CCoeur1(F−) = ↑ CCorps1(F ) and
CPeau1(F+) = ↓ CCorps1(F ). (So CCorps1(F−, F+) is a strong lens.) It is clear
from our results on CCoeur1 and CPeau1 that

� ⊔ ◦ CCorps1 = id; the map
� ⊔

:
P	(P�1 wk(X))→ F1(X) is defined by

� ⊔
L = (

�
Q,

⊔
C), where Q = ↑ L and C =

cl(L). The following is an immediate consequence of the results of previous sections:

Proposition 9. A subset A of P�1 wk(X) is bi-strongly convex iff for every continuous
probability valuation P supported on A, Bary(P) is in ↑ A, and for every continuous
probability valuation P co-supported on A, Bary(P) is in ↓ A.

Let X be stably compact. For every lens L on P�1 wk(X), CCorps1(
� ⊔

L) =
↑ Conv(L)∩↓ Conv∗(L). CCorps1 and

� ⊔
define an isomorphism between F1(X)

and the space PLbiCvx(P�1 wk(X)) of all strong bi-strongly convex lenses on P�1 wk(X).



332 J. Goubault-Larrecq

Let now X be a continuous, coherent pointed cpo. It is an easy consequence of Theo-
rem 2 and Lemma 2 that any strong lens L on P�1 wk(X) is bi-strongly convex. Also,
every lens is in fact strong [1, Lemma 6.2.20]. Write P	cvx(Y ) the subspace of convex
lenses in P	(X):

Theorem 7. Let X be a continuous, coherent pointed cpo. CCorps1 and
� ⊔

de-
fine an isomorphism between F1(X) and P	cvx(P�1 wk(X)) = P	cvx(P�1 (X)) ∼=
P	cvx(V1(X)).

7 Conclusion

We have solved the problem of relating domains of continuous previsions and forks à
la [5], and convex powercones à la [17]: in standard cases, they are isomorphic. This
question was raised under this form at the end of [5], while Keimel and Plotkin [10]
show similar results for (unbounded) valuations instead of normalized valuations. They
justify working on unbounded valuations because “the mathematics seems to be more
natural if we take all the valuations, since one can then work with notions of linearity
rather than convexity”. I hope to have convinced the reader that the mathematics of the
normalized case, once generalized to the topological case, is both beautiful and deep.
Note in particular that the notion of (generalized) barycenters Bary(P), and above all
the convex-concave duality work naturally at the topological level, not directly on cpos.

Acknowledgements. Thanks to the anonymous referees, and to Roberto Segala for their
careful rereading.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E.
(eds.) Handbook of Logic in Computer Science, OUP, vol. 3, pp. 1–168 (1994)

2. Edalat, A.: Domain theory and integration. Theor. Comp. Sci. 151, 163–193 (1995)
3. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.: Continuous

lattices and domains. In: Encycl. Mathematics and its Applications, CUP, vol. 93 (2003)
4. Goubault-Larrecq, J.: Continuous capacities on continuous state spaces. In: Arge, L., Cachin,

C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 764–776. Springer,
Heidelberg (2007)

5. Goubault-Larrecq, J.: Continuous previsions. In: Duparc, J., Henzinger, T.A. (eds.) CSL
2007. LNCS, vol. 4646, pp. 542–557. Springer, Heidelberg (2007)

6. Goubault-Larrecq, J.: Prevision domains and convex powercones. Research Report LSV-07-
33, Laboratoire Spécification et Vérification, ENS Cachan, France, 34 pages (October 2007)

7. Goubault-Larrecq, J.: Une introduction aux capacités, aux jeux et aux prévisions (June 2007),
http://www.lsv.ens-cachan.fr/~goubault/ProNobis/pp_1_8.pdf

8. Jung, A.: Cartesian Closed Categories of Domains. PhD thesis, T.H. Darmstadt (1998)
9. Jung, A.: Stably compact spaces and the probabilistic powerspace construction. In: Deshar-

nais, J., Panangaden, P. (eds.) CADE 1980. Electronic Notes in Theoretical Computer Sci-
ence, vol. 87, Elsevier, Amsterdam (2004)

10. Keimel, K., Plotkin, G.: Predicate transformers for convex powerdomains. Mathematical
Structures in Computer Science, pages 42 (submitted, 2007)

http://www.lsv.ens-cachan.fr/~goubault/ProNobis/pp_1_8.pdf


Prevision Domains and Convex Powercones 333

11. Kirch, O.: Bereiche und Bewertungen. Diplom, T.H. Darmstadt (1993)
12. Mislove, M.: Topology, domain theory and theoretical computer science. Topology and Its

Applications 89, 3–59 (1998)
13. Mislove, M.: Nondeterminism and probabilistic choice: Obeying the law. In: Palamidessi, C.

(ed.) CONCUR 2000. LNCS, vol. 1877, pp. 350–364. Springer, Heidelberg (2000)
14. Roth, W.: Hahn-Banach type theorems for locally convex cones. J. Australian Math.

Soc. 68(1), 104–125 (2000)
15. Tix, R.: Stetige Bewertungen auf topologischen Räumen. Diplom, T.H. Darmstadt (June

1995)
16. Tix, R.: Continuous D-Cones: Convexity and Powerdomain Constructions. PhD thesis, T.U.

Darmstadt (1999)
17. Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-

determinism. Electronic Notes in Theor. Comp. Sci. 129, 1–104 (2005)



RPO, Second-Order Contexts, and λ-Calculus�

Pietro Di Gianantonio, Furio Honsell, and Marina Lenisa

Dipartimento di Matematica e Informatica, Università di Udine
via delle Scienze 206, 33100 Udine, Italy

{digianantonio,honsell,lenisa}@dimi.uniud.it

Abstract. We apply Leifer-Milner RPO approach to the λ-calculus, en-
dowed with lazy and call by value reduction strategies. We show that,
contrary to process calculi, one can deal directly with the λ-calculus syn-
tax and apply Leifer-Milner technique to a category of contexts, provided
that we work in the framework of weak bisimilarities. However, even in
the case of the transition system with minimal contexts, the resulting
bisimilarity is infinitely branching, due to the fact that, in standard con-
text categories, parametric rules such as β can be represented only by
infinitely many ground rules. To overcome this problem, we introduce the
general notion of second-order context category. We show that, by car-
rying out the RPO construction in this setting, the lazy (call by value)
observational equivalence can be captured as a weak bisimilarity equiv-
alence on a finitely branching transition system. This result is achieved
by considering an encoding of λ-calculus in Combinatory Logic.

1 Introduction

Recently, much attention has been devoted to derive labelled transition systems
and bisimilarity congruences from reactive systems, in the context of process lan-
guages and graph rewriting, [Sew02,LM00,SS03,GM05,BGK06,BKM06,EK06].
In the theory of process algebras, the operational semantics of CCS was orig-
inally given via a labelled transition system (lts), while more recent process
calculi have been presented via reactive systems plus structural rules. Reactive
systems naturally induce behavioral equivalences which are congruences w.r.t.
contexts, while lts’s naturally induce bisimilarity equivalences with coinductive
characterizations. However, such equivalences are not congruences in general, or
else it is an heavy, ad-hoc task to prove that they are congruences.

Generalizing [Sew02], Leifer and Milner [LM00] presented a general categor-
ical method for deriving a transition system from a reactive system, in such a
way that the induced bisimilarity is a congruence. The labels in Leifer-Milner’s
transition system are those contexts which are minimal for a given reaction to
fire. Minimal contexts are identified via the categorical notion of relative pushout
(RPO). Leifer-Milner’s central result guaranties that, under a suitable categori-
cal condition, the induced bisimilarity is a congruence w.r.t. all contexts.

� Work supported by ART PRIN Project prot. 2005015824 (funded by MIUR).

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 334–349, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



RPO, Second-Order Contexts, and λ-Calculus 335

In the literature, some case studies have been carried out in the setting of
process calculi, for testing the expressivity of Leifer-Milner’s approach. Some dif-
ficulties have arisen in applying the approach directly to such languages, viewed
as Lawvere theories, because of structural rules. Thus more complex categorical
constructions have been introduced in [Lei01], and by Sassone and Sobocinski
in [SS03,SS05]. Moreover, often intermediate encodings have been considered, in
graph theory, for which the approach of “borrowed contexts” has been developed
[EK06], and in Milner’s bigraph theory [Mil07].

In this paper, we focus on the prototypical example of reactive system given
by the λ-calculus, endowed with lazy and call by value (cbv) reduction strategies.
We show that, in principle, contrary to process calculi, one could deal directly
with the λ-calculus syntax and apply Leifer-Milner technique to the category
of term contexts induced by the λ-terms, provided that we work in the setting
of weak bisimilarities. However, even in the case of the transition system with
minimal contexts, the lts and the induced bisimilarity turn out to be infinitely
branching. This is mainly due to the fact that, in the category of contexts, the
β-rule cannot be described parametrically, but it needs to be described exten-
sionally using an infinite set of pairs of ground terms. In order to overcome this
problem, we consider the combinatory logic and we introduce the general no-
tion of category of second-order term contexts. Our main result amounts to the
fact that, by carrying out Leifer-Milner’s construction in this setting, the lazy
(cbv) contextual equivalence can be captured as a weak bisimilarity equivalence
on a (finitely branching) transition system. Technically, this result is achieved by
considering an encoding of the lazy (cbv) λ-calculus in KS Combinatory Logic
(CL), endowed with a lazy (cbv) reduction strategy, and by showing that the
lazy (cbv) contextual equivalence on λ-calculus can be recovered as a lazy (cbv)
equivalence on CL. It is necessary to consider such encoding, since the approach
of second-order context categories proposed in this paper works for reaction rules
which are “local”, that is the reaction does not act on the whole term, but only
locally. But the substitution operation on λ-calculus is not local.

Finally, the second-order approach carried out in this paper for the λ-calculus
suggests a new general technique for dealing with any calculus with parametric
rules, alternative to the one of luxes in [KSS05]. Moreover, the correspondence
results obtained in this paper about the observational equivalences on λ-calculus
and CL are interesting per se and, although natural and ultimately elementary,
had not appeared previously in the literature.

Summary. In Section 2, we summarize the theory of reactive systems of [LM00].
In Section 3, we present the λ-calculus together with lazy and cbv reduction
strategies and observational equivalences, and we discuss the RPO approach
applied to the λ-calculus endowed with a structure of context category. In
Section 4, we focus on Combinatory Logic (CL), we show how to recover on
CL the lazy and cbv strategies and observational equivalences, and we discuss
the RPO approach applied to CL, viewed as a context category. In Section 5,
we introduce the notion of second-order context category, and we apply the
RPO approach to CL viewed as a second-order rewriting system, thus obtaining



336 P. Di Gianantonio, F. Honsell, and M. Lenisa

characterizations of lazy and cbv observational equivalences as weak bisimilar-
ities on finitely branching lts’s. Final remarks and directions for future work
appear in Section 6. For lack of space, proofs are omitted in this paper, however
they are available in [DHL08].

2 The Theory of Reactive Systems

In this section, we summarize the theory of reactive systems proposed in [LM00]
to derive lts’s and bisimulation congruences from a given reduction semantics.
Moreover, we discuss weak variants of Leifer-Milner’s bisimilarity equivalence.

The theory of [LM00] is based on a categorical formulation of the notion of
reactive system, whereby contexts are modeled as arrows of a category, terms
are arrows having as domain 0 (a special object which denotes no holes), and
reaction rules are pairs of terms.

Definition 1 (Reactive System). A reactive system C consists of:
– a category C;
– a distinguished object 0 ∈ |C|;
– a composition-reflecting subcategory D of reactive contexts;
– a set of pairs R ⊆ ⋃

I∈|C| C[0, I]× C[0, I] of reaction rules.

Reactive systems on term languages can be viewed as a special case of reactive
systems in the sense of Leifer-Milner by instantiating C as a suitable category of
term and contexts, also called the (free) Lawvere category, [LM00].

Given a reaction system with reactive contexts D and reaction rules R, the
reaction relation → is defined by: t → u iff t = dl, u = dr for some d ∈ D and
〈l, r〉 ∈ R.

The behavior of a reactive system is expressed as an unlabelled transition
system. On the other hand, many useful behavioral equivalences are only defined
for lts’s. The passage from reactive systems to lts’s is obtained as follows.

Definition 2 (Context Label Transition System). Given a reactive system
C, the associated context lts is defined as follows:
– states: arrows t : 0→ I in C, for any I;
– transitions: t c−→Cu iff c ∈ C and ct→ u.

In the case of a reactive system defined on a category of contexts, a state is
a term t, and an associated label is a context c such that ct reduces. In the
following, we will consider also lts’s obtained by reducing the set of transitions
of the context lts. In the sequel, we will use the word lts to refer to any such lts
obtained from a context lts. In the standard way, any lts induces a bisimilarity
relation. In [LM00], the authors proposed a categorical criterion for identifying
the “smallest context allowing a reaction”.

Definition 3 (RPO/IPO)
i) Let C be a category and let us consider the commutative diagram in Fig. 1(i).
Any tuple 〈I5, e, f, g〉 which makes diagram in Fig. 1(ii) commute is called a



RPO, Second-Order Contexts, and λ-Calculus 337

I4

I2

c

����������
I31q

d

����������

0

t

���������� l

����������

(i)

I4

I2
e ��

c

����������
I5

g

��

I3
f��

d

����������

0

t

���������� l

		��������

(ii)

I6

I2
e ��

e′
		��������
I5

h

��

I3
f��

f ′
��								

(iii)

I4

I6

g′
		��������
I5

h��

g

��

(iv)

Fig. 1. Redex Square and Relative Pushout

candidate for (i). A relative pushout is the smallest such candidate, i.e. it satis-
fies the universal property that given any other candidate 〈I,e′, f ′, g′〉, there exists
a unique mediating morphism h : I5 → I6 such that both diagrams in Fig. 1(iii)
and Fig. 1(iv) commute.
ii) A commuting square such as diagram in Fig 1(i) is an idem pushout if
〈I4, c, d, idI4〉 is its RPO.

Definition 4 (IPO Transition System)

– States: arrows t : 0→ I in C, for any I;
– transitions: t c−→Idr iff d ∈ D, 〈l, r〉 ∈ R and the diagram in Fig. 1(i) is an

IPO.

That is, if inserting t into the context c matches dl, and c is the “smallest” such
context (IPO condition), then t transforms to dr with label c, where r is the
reduct of l. Let ∼I denote the bisimilarity induced by the IPO lts.

Definition 5 (Redex Square). Let C be a reactive system and t : 0→ I2 an
arrow in C. A redex square (see Fig. 1(i)) consists of a left-hand side l : 0→ I3
of a reaction rule 〈l : 0 → I3, r : 0 → I3〉 ∈ R, a context c : I2 → I4 and a
reactive context d : I3 → I4 such that ct = dl.

A reactive system is said to have redex RPOs if every redex square has an
RPO.

The following is Leifer-Milner’s central result:

Theorem 1 ([LM00]). Let C be a reactive system having redex RPOs. Then
the IPO bisimilarity ∼I is a congruence w.r.t. all contexts, i.e. if a∼Ib then for
all c of the appropriate type, ca∼Icb.

2.1 Weak Bisimilarity

For dealing with the λ-calculus, it will be useful to consider the weak versions of
the context and IPO lts’s defined above, together with the corresponding notions
of weak bisimilarities.

One can proceed in general, by defining a weak lts from a given lts:



338 P. Di Gianantonio, F. Honsell, and M. Lenisa

Definition 6 (Weak lts and Bisimilarity). Let α−→ be a lts, and let τ be a
label (identifying an unobservable action).

i) We define the weak lts α=⇒ by

t
α=⇒ u iff

{
t

τ−→∗ u if α = τ

t
τ−→∗ t′ α−→ u′ τ−→∗ u otherwise .

where τ−→∗ denotes the reflexive and transitive closure of τ−→.
ii) Let us call weak bisimilarity the bisimilarity induced by the weak lts.

The above definition differs from the one proposed in [LM00]. We cannot use
that in [LM00], since it discriminates λ-terms which are equivalent in the usual
semantics. The following easy lemma gives a useful characterization of the weak
bisimilarity, whereby any α−→-transition is mimicked by a α=⇒-transition:

Lemma 1. Let α−→ be a lts and let α=⇒ be the corresponding weak lts. The
induced weak bisimilarity is the greatest symmetric relation R s.t.:

〈a, b〉 ∈ R ∧ a
f−→ a′ =⇒ ∃b′. b f

=⇒ b′ ∧ 〈a′, b′〉 ∈ R .

For dealing with the λ-calculus, we will consider a notion of weak IPO bisim-
ilarity, where the identity context is unobservable. Such notions of weak IPO
bisimilarities are not congruences w.r.t. all contexts, in general, however, as ob-
served in [LM00] (end of Section 5), they are congruences at least w.r.t. reactive
contexts:

Theorem 2. Let C be a reactive system having redex RPOs. Then the weak
IPO bisimilarity ≈I, where the identity context is unobservable, is a congruence
w.r.t. reactive contexts.

3 The Lambda Calculus

First, we recall the λ-calculus syntax together with lazy and cbv reduction
strategies and observational equivalences. Then, we show how to apply the RPO
technique to λ-calculus, viewed as a context category, and we discuss some prob-
lematic issues.

The set of λ-terms Λ is defined by (Λ �) M ::= x | MM | λx.M , where
x ∈ Var is an infinite set of variables. Let FV (M) denote the set of free variables
in M , and let us denote by Λ0 the set of closed λ-terms.

As usual, λ-terms are taken up-to α-conversion, and application associates to
the left. We consider the standard notions of β-rule (λx.M)N →β M [N/x] and
βV -rule (λx.M)N →βV M [N/x]. We denote by =β and =βV the corresponding
conversions.

A reduction strategy on the λ-calculus determines, for each term which is not
a value, a suitable β-redex appearing in it to be contracted. The lazy and cbv
reduction strategies are defined on closed λ-terms as follows:



RPO, Second-Order Contexts, and λ-Calculus 339

Definition 7 (Reduction Strategies)

i) The lazy strategy →l⊆ Λ0 × Λ0 reduces the leftmost β-redex, not appearing
within a λ-abstraction. Formally, →l is defined by the axiom:

(λx.M)N →l M [N/x]
N →l N

′
NP →l N

′P

ii) The call by value strategy →v⊆ Λ0 × Λ0 reduces the leftmost βV -redex, not
appearing within a λ-abstraction. Formally, →v is defined by the following rules:

(λx.M)V →v M [V/x]
N →v N

′
NP →v N

′P
N →v N

′
(λx.M)N →v (λx.M)N ′

where V is a λ-abstraction.

We denote by →∗σ the reflexive and transitive closure of a strategy →σ, for
σ ∈ {l, v}, by Valσ the set of values, i.e. the set of terms on which the reduction
strategy halts (which coincides with the set of λ-abstractions in both cases), and
by M ⇓σ the fact that there exists V ∈ Valσ such that M →∗σ V .

As we will see in Section 3.1 below, each strategy defines a reactive system
on λ-terms in the sense of Definition 1. To this aim, it is useful to notice that
the above reduction strategies can be alternatively determined by specifying
suitable sets of reactive contexts, which are subsets of the following (closed)
unary contexts, i.e. contexts with a single hole: C[ ] ::= [ ] | PC[ ] | C[ ]P .

Remark 1. i) The lazy strategy→l is the closure of the β-rule under the reactive
contexts, corresponding to the (closed) applicative contexts: D[ ] ::= [ ] |D[ ]P ,
ii) The cbv strategy→v is the closure of the βV -rule under the following (closed)
reactive contexts: D[ ] ::= [ ] | D[ ]P | (λx.M)D[ ] .

Each strategy induces an observational (contextual) equivalence à la Morris on
closed terms, when we consider programs as black boxes and only observe their
“halting properties”.

Definition 8 (σ-observational Equivalence). Let→σ be a reduction strategy
and let M,N ∈ Λ0. The observational equivalence ≈σ is defined by M ≈σ N iff
for any unary context C[ ], C[M ] ⇓σ⇔ C[N ] ⇓σ .
The definition of ≈σ can be extended to open terms by considering closing sub-
stitutions, i.e. for M,N ∈ Λ s.t. FV (M,N) ⊆ {x1, . . . , xn}, we define: M≈̂σN
iff for all closing substitutions P , M [P /x] ≈σ N [P /x].

Remark 2. Notice that the definition of unary contexts does not include λ-
abstraction contexts, i.e. contexts where the hole appears under the scope of
a λ-abstraction. Namely, such contexts are not relevant, since ≈σ is defined on
closed terms. Moreover, often in the literature, the observational equivalence is
defined by considering multi-holed contexts. However, it is easy to see that the
two notions of observational equivalences, obtained by considering just unary or
all multi-holed contexts, coincide.



340 P. Di Gianantonio, F. Honsell, and M. Lenisa

The problem of reducing the set of contexts in which we need to check the
behavior of two terms has been widely studied in the literature. In particular,
for both strategies in Definition 7 above, a Context Lemma holds, which allows us
to restrict ourselves to applicative contexts of the shape [ ]P , where P denotes a
list of terms. Let us denote by ≈appσ the observational equivalence which checks
the behavior of terms only in applicative contexts. This admits a coinductive
characterization as follows:

Definition 9 (Applicative σ-bisimilarity)
i) A relation R ⊆ Λ0×Λ0 is an applicative σ-bisimulation if the following holds:
〈M,N〉 ∈ R =⇒ (M ⇓σ ⇔ N ⇓σ) ∧ ∀P ∈ Λ0. 〈MP,NP 〉 ∈ R.
ii) The applicative equivalence ≈appσ is the largest applicative bisimulation.

The Context Lemma, a well-known resut [AO93,EHR92], states ≈σ=≈appσ . By
the Context Lemma, the class of contexts in which we have to check the behavior
of terms is smaller, however it is still infinite, thus the applicative bisimilarity
is infinitely branching. In the following, we will study alternative coinductive
characterizations of the observational equivalences, arising from the application
of Leifer-Milner technique.

3.1 Lambda Calculus as a Reactive System

Both lazy and cbv λ-calculus can be endowed with a structure of reactive system
in the sense of Definition 1, by considering a suitable variant of context category.

Definition 10 (Lazy, cbv λ-reactive Systems). Cλ
σ, for σ ∈ {l, v}, consists

of

– the category whose objects are 0, 1, where the morphisms from 0 to 1 are the
closed terms (up-to α-equivalence), the morphisms from 1 to 1 are the unary
contexts (up-to α-equivalence), and composition is context insertion;

– the subcategory of reactive contexts is determined by the reactive contexts for
the lazy and cbv strategy, respectively, presented in Remark 1;

– the (infinitely many) reaction rules are (λx.M)N →βσ M [N/x], for all
M,N .

The above definition is well-posed, in particular the subcategory of reactive
contexts is composition-reflecting.

One can easily check that the system Cλ
σ admits RPOs; since there are no

abstraction contexts, this fact can be proved by repeating the corresponding
proof for the category of term contexts, [Sew02].

Lemma 2. The reactive system Cλ
σ, for σ ∈ {l, v}, has redex RPOs.

The IPO contexts of a closed term for the lazy and cbv reactive systems are
summarized in the first two tables of Fig. 2. The applicative IPO contexts appear
in the third table. This class of contexts is interesting, since it is sufficient for
determining the observational equivalence (see Theorem 3 below).



RPO, Second-Order Contexts, and λ-Calculus 341

Lazy lts

term IPO contexts

λx.M [ ]P, PC[ ]

(λx.M)NP [ ], PC[ ]

Cbv lts

term IPO contexts

λx.M [ ]P , RC[ ], (λx.Q)[ ]

(λx.M)NP [ ], RC[ ]

Lazy/cbv appl. lts’s

term IPO cont.

λx.M [ ]P

(λx.M)NP [ ]
where R is not a cbv value.

Fig. 2. IPO contexts for the lazy/cbv lts’s and for their applicative restrictions

The strong versions of context and IPO bisimilarities are too fine, since they
take into account reaction steps, and tell apart β-convertible terms. Trivially, I
and II, where I = λx.x, are equivalent neither in the context bisimilarity nor in

the IPO bisimilarity, since I
[ ]

�→, while II
[ ]→ (both in the lazy and cbv case). On

the other hand, one can easily check that the weak context bisimilarity, where the
identity context [ ] is unobservable, equates all closed terms.

The main result of this section, whose proof can be found in [DHL08], is the
following:

Theorem 3. Both for lazy and cbv strategies, the observational equivalence,
the weak IPO bisimilarity (where the identity context is unobservable), and the
applicative weak IPO bisimilarity (where only applicative contexts are considered)
coincide.

Theorem 3 above gives us interesting characterizations of lazy and cbv obser-
vational equivalences, in terms of lts’s where the labels are significantly re-
duced. However, such lts’s (and bisimilarities) are still infinitely branching, e.g.
λx.M

P→I , for all P ∈ Λ0. This is due to the fact that the context categories un-
derlying the reactive systems Cλ

l and Cλ
v allow only for a ground representation

of the β-rule through infinitely many ground rules. In order to overcome this
problem, one should look for alternative categories which allow for a parametric
representation of the β-rule as (λx.X)Y → X [Y/x], where X,Y are parameters.
To this aim, we introduce the category of second-order term contexts (see Sec-
tion 5 below). However, as we will see, this approach works only if the reaction
rules are “local”, that is they do not act on the whole term, but only locally. In
particular, the operation of substitution on the λ-calculus is not local and thus
it is not describable by a finite set of reaction rules. To avoid this problem, in
the following section we consider encodings of the λ-calculus into Combinatory
Logic (CL) endowed with suitable strategies and equivalences, which turn out
to correspond to lazy and cbv equivalences.

4 Combinatory Logic

In this section, we focus on Combinatory Logic [HS86] with Curry’s combinators
K,S, and we study its relationships with the λ-calculus endowed with lazy and
cbv reduction strategies. An interesting result that we prove is that we can define



342 P. Di Gianantonio, F. Honsell, and M. Lenisa

suitable reduction strategies on CL-terms, inducing observational equivalences
which correspond to lazy and cbv equivalences on λ-calculus. As a consequence,
we can safely shift our attention from the reactive system of λ-calculus to the
simpler reactive system of CL. In this section, we apply Leifer-Milner construc-
tion to CL viewed as a (standard) context category, and we study weak versions
of context and IPO bisimilarities. Our main result is that we can recover lazy
and cbv observational equivalences as weak IPO equivalences on CL∗, a variant
of standard CL. Here the approach is first-order, thus the IPO equivalences are
still infinitely branching. However, the results in this section are both interesting
in themselves, and useful for our subsequent investigation of Section 5, where
CL is viewed as a second-order rewriting system, and characterizations of the
observational equivalences as finitely branching IPO bisimilarities are given.

Definition 11 (Combinatory Terms). The set of combinatory terms is de-
fined by: (CL �) M ::= x | K | S | MM , where K, S are combinators.
The set of combinatory terms is endowed with the following reaction rules:

KMN →M SMNP → (MP )(NP )

Let CL0 denote the set of closed CL-terms.

4.1 Correspondence with the λ-Calculus

Let Λ(K,S) denote the set of λ-terms built over constants K,S. The following
is a well-known encoding, [HS86]:

Definition 12 (λ-encoding). Let T : Λ(K,S) → CL be the transformation
defined as follows:

T (x) = x T (C) = C if C ∈ {K,S}
T (MN) = T (M)T (N) T (λx.MN) = ST (λx.M)T (λx.N)
T (λx.x) = SKK T (λx.λy.M) = T (λx.T (λy.M))
T (λx.y) = Ky T (λx.C) = KT (C) if C ∈ {K,S}
In particular, if we restrict the domain of T to Λ, we get an encoding of the

λ-calculus into CL.
Vice versa, there is a natural embedding of CL into the λ-calculus E : CL→ Λ:

E(K) = λxy.x E(S) = λxyz.(xz)(yz) E(x) = x E(MN) = E(M)E(N)

Definition 13 (Lazy/cbv Reduction Strategy on CL)

i) The lazy reduction strategy →l⊆ CL0 × CL0 reduces the leftmost outermost
CL-redex. Formally:

SM1M2M3 →l (M1M3)(M2M3) KM1M2 →l M1

M →l M
′

MP →l M
′P

ii) The cbv strategy →v⊆ CL0 × CL0 is defined by



RPO, Second-Order Contexts, and λ-Calculus 343

SV1V2V3 →v (V1V3)(V2V3) KV1V2 →v V1

M1 →v M
′
1

KM1 →v KM ′1
M2 →v M

′
2

KV1M2 →v KV1M
′
2

M1 →v M
′
1

SM1 →v SM ′1
M2 →v M

′
2

SV1M2 →v SV1M
′
2

M3 →v M
′
3

SV1V2M3 →v SV1V2M
′
3

M →v M
′

MP →v M
′P

where V1, V2, V3 are values, i.e. non →v-reducible CL-terms:

V ::= K | S | KV |SV | SV V.

Alternatively we could define the lazy strategy→l as the closure of CL-reaction
rules under the following reactive contexts (which coincide with the applicative
ones): D[ ] ::= [ ] | D[ ]P.

Similarly, by considering the restriction to values of the reaction rules of Def-
inition 11, we could define the cbv strategy →v as the closure of CL-reaction
rules under the following reactive contexts:

D[ ] ::= [ ] | D[ ]P | KD[ ] | KV D[ ] | SD[ ] | SV D[ ] | SV1V2D[ ].

Let ↓σ denote the convergence relation on CL, for σ ∈ {l, v}.

Definition 14 (Lazy/cbv Equivalence on CL)

i) A relation R ⊆ CL0 × CL0 is a CL lazy/cbv bisimulation if:
〈M,N〉 ∈ R =⇒ (M ↓σ ⇔ N ↓σ) ∧ ∀P ∈ Λ0. 〈MP,NP 〉 ∈ R.
ii) Let �σ⊆ CL0 × CL0 be the largest CL lazy/cbv bisimulation.
iii) Let �̂σ ⊆ CL×CL denote the extension of �σ to open terms defined by: for
M,N ∈ CL s.t. FV (M,N) ⊆ {x1, . . . , xn}, M�̂σN iff for all closing substitu-
tions P , M [P /x] �σ N [P /x].

The following theorem, whose proof is in [DHL08], is interesting per se:

Theorem 4. For all M,N ∈ Λ, M≈̂σN ⇐⇒ T (M)�̂σT (N).

4.2 The First-Order Approach: CL as a Context Category

In the lazy case, where the reactive contexts coincide with the applicative ones,
we can endow CL with a structure of reactive system in the sense of [LM00], by
considering the smaller context category consisting of just applicative contexts.
This allows us to obtain directly an lts with only applicative labels. In the cbv
case, where the set of reactive contexts is larger, one can reduce the labels of
the IPO bisimilarity only a posteriori, see [DHL08] for more details. For lack of
space and in order to focus on other important aspects, we work out in detail
only the lazy case.

Definition 15 (Lazy CL Reactive System). The lazy CL reactive system
C1
l consists of:



344 P. Di Gianantonio, F. Honsell, and M. Lenisa

– the context category whose objects are 0, 1, where the morphisms from 0 to
1 are the closed terms, the morphisms from 1 to 1 are the closed applicative
contexts, and composition is context substitution;

– the reactive contexts are all the closed applicative contexts;
– the reaction rules are KM1M2 → M1 and SM1M2M3 → (M1M2)(M1M3),

for all M1,M2,M3.

It is easy to prove that the reactive system C1
l has redex RPOs. One can easily

check that the minimal contexts are of the shape [ ]P , where P has the minimal
length for the top-level reaction to fire.

The strong versions of context and IPO bisimilarities are too fine, since, as
in the λ-calculus case, they take into account reduction steps, and tell apart
β-convertible terms. Thus we consider weak variants of such equivalences, where
the identity context [ ] is unobservable. Weak context bisimilarity is too coarse,
since it equates all terms. However, we will prove that the weak IPO bisimilarity
“almost” coincides with the lazy equivalence. Moreover, we will show how to
recover the exact correspondence by considering a suitable variant of CL.

First of all, let �lI denote the lazy weak IPO bisimilarity obtained by consid-
ering the identity context as unobservable. By Theorem 2, �lI is a congruence
w.r.t. reactive contexts, i.e.:

Proposition 1. For all M,N,P ∈ CL0, M �lI N =⇒ MP �lI NP .

The rest of this section is devoted to compare the lazy weak IPO bisimilarity
�lI with the lazy equivalence on CL �l defined in Definition 14.

Using coinduction and Proposition 1 one can easily prove that �lI⊆�l.
However, the converse inclusion, i.e. �l⊆�lI , does not hold, since e.g. K �l

S(KK)(SKK), while K ��lI S(KK)(SKK). Namely S(KK)(SKK)
[ ]P−→I , while

K
[ ]P

�→I . The problem arises since the equivalence �lI tells apart terms whose top-
level combinators expect a different number of arguments to reduce. In order
to overcome this problem, we consider an extended calculus, CL∗, where the
combinators K and S become unary, at the price of adding new intermediate
combinators and intermediate reductions (the reactive contexts are the ones in
Definition 15).

Definition 16. Let CL∗ be the combinatory calculus defined by

– Terms: M ::= x | K | S | K′M | S′M | S′′MN | MN
where K, K′, S, S′, S′′ are combinators.

– Rules: KM → K′M K′MN →M
SM → S′M S′MN → S′′MN S′′MNP → (MP )(NP )

Notice that the calculus in the above definition is well-defined, since the set of
terms is closed under the reaction rules.

Now let use denote by �∗lI the weak IPO bisimilarity obtained by considering
the lazy reactive system over CL∗. Then, we have K �∗lI S(KK)(SKK). More
in general, by considering the reactive system over CL∗, the induced weak IPO
bisimilarity �∗lI coincides with the lazy equivalence on CL:



RPO, Second-Order Contexts, and λ-Calculus 345

Theorem 5. For all M,N ∈ CL0, �∗lI=�l.
As a consequence of Theorem 4 and Theorem 5 above, we can recover the lazy
observational equivalence on λ-terms as weak IPO bisimilarity on CL∗.

Proposition 2. For all M,N ∈ Λ0, M ≈l N ⇐⇒ T (M) �∗lI T (N).

However, such notion of weak IPO bisimilarity still suffers of the problem of being
infinitely branching, since IPO contexts are either [ ] or [ ]P , for all P ∈ (CL∗)0.
This problem will be solved in Section 5.1, where CL∗ is endowed with a structure
of second-order context category.

5 Second-Order Term Contexts

The definition of term context category [LM00] can be generalized to a definition
of second-order term context. The generalization is obtained by extending the
term syntax with function (second-order) variables, that is variables not standing
for terms but instead for functions on terms. The formal definition is the following

Definition 17 (Category of Second-order Term Contexts). Let Σ be
a signature for a term language. The category of second-order term contexts
over Σ is defined by: objects are finite lists of naturals 〈n1, . . . , nk〉, an arrow
〈m1, . . . ,mh〉 → 〈n1, . . . , nk〉 is a k-tuple 〈t1, . . . , tk〉, where the term ti is de-
fined over the signature Σ ∪ {Fm1

1 , . . . , Fmh

h } ∪ {Xi,1 . . . , Xi,ni}, where Fmi

i is a
function variable of arity mi, Xi,j is a ground variable. The category of second-
order linear term context, T ∗2 (Σ), is the subcategory whose arrows are n-tuples
of terms, satisfying the condition that the n-tuples have to contain exactly one
use of each function variable Fmi

i .

One can check that the standard category of term contexts over Σ coincides with
the subcategory whose objects are the lists containing only copies of the natural
number 0; in fact this subcategory uses function variables with no arguments
and the ground variables do not appear.

Since the simplest way to define composition in category T ∗2 (Σ), and more gen-
erally in the category of second-order term context, is in terms of β-reduction, it
is useful to represent morphisms, i.e. terms on the signature Σ∪{Fm1

1 , . . . , Fmh

h }
∪ {Xi,1, . . . , Xi,ni}, using a λ-notation for binding variables, that is, instead of
writing a term with free variables, we write its lambda closure. To avoid ambi-
guities we use a different symbol λλ for this form of lambda abstraction. With
this notation a term t on the signature Σ ∪ {Fm1

1 , . . . , Fmh

h } ∪ {X1, . . . , Xn}
is written as: λλFm1

1 . . . Fmh

h .λλX1 . . . Xn.t, or as λλF .λλX.t for brevity. In general
a second-order context 〈t1, . . . , tk〉 : 〈m1, . . . ,mh〉 → 〈n1, . . . , nk〉 is written as
λλF .〈 λλX1.t1, . . . , λλXk.tk〉.

(i) The identity on 〈n1, . . . , nk〉 is: λλF .〈 λλX1.F
n1
1 (X1), . . . , λλXk.F

nk

k (Xk)〉.
(ii) The composition between the morphisms λλF .〈 λλX1.s1, . . . , λλXk.sk〉 :
〈l1, . . . , lh〉 → 〈m1, . . . ,mk〉 and λλG.〈 λλY 1.t1, . . . , λλY j .tj〉 : 〈m1, . . . ,mk〉 →



346 P. Di Gianantonio, F. Honsell, and M. Lenisa

〈n1, . . . , nj〉 is the β-normal form of the expression λλF .(λλG.〈λλY 1.t1, . . . ,
λλY j .tj〉) (λλX1.s1, . . . ,λλXk.sk) : 〈l1, . . . , lh〉 → 〈n1, . . . , nj〉. Informally, the
composition is given by a j-tuple of expressions ti in which every function vari-
able Gl is substituted by the corresponding expression sl, with the ground vari-
ables of sl substituted by the corresponding parameters of Gl in ti. For example,
considering the signature for natural numbers {0, S,+}, the composition between
λλF. λλX1.F (X1, 0) : 〈2〉 → 〈1〉 and λλG. λλY1Y2.(G(S(Y1)) + Y2) : 〈1〉 → 〈2〉 is

the second order context: λλF. λλY1Y2.F (S(Y1), 0) + Y2 : 〈2〉 → 〈2〉.
Note that the identity morphism is defined as a λ-term implementing the

identity function, while composition on morphisms is defined by the function
composition in the λ-setting. Given this correspondence, it is easy to prove that
the categorical properties for the identity hold, while the associativity of com-
position essentially follows from the unicity of the normal form.

The main general result on second-order term contexts is the following:

Proposition 3. For any signature Σ, the category of second-order linear term
contexts over Σ admits RPOs.

5.1 CL as Second-Order Rewriting System

In this section, we consider the second-order context category for the combina-
tory calculus CL∗ and we show that the weak IPO bisimilarity thus obtained
coincides with the observational equivalence on λ-calculus. Interestingly, the
second-order open bisimilarity gives a uniform characterization also on open
terms. For simplicity, we work out in detail only the lazy case. However, the
main result holds also in the cbv case.

Note that the terms of CL are defined by signature ΣCL = {K,S, app}, where
app is the binary operation of application that is usually omitted. So the term
SKK actually stands for app(app(S,K),K).

Definition 18 (Lazy CL∗ Second-order Reactive System). The lazy
second-order Reactive system C2∗

l consists of:

– the category whose objects are the lists with at most one element, and whose
arrows ε→ 〈n〉 are the terms of CL∗ with, at most, n (first order) variables,
and the whose 〈m〉 → 〈n〉 are the second-order applicative contexts of the
shape F (M1, . . . ,Mm)N1 . . . Nk, with, at most, n (first order) variables;

– the reactive contexts are all the second-order applicative contexts;
– the reaction rules are:

KX1 → K′X1 K′X1X2 → X1

SX1 → S′X1 S′X1X2 → S′′X1X2 S′′X1X2X3 → (X1X2)(X1X3).

To maintain the notation for contexts used in Sections 3, 4, in the sequel a second-
order applicative context F (M1, . . . ,Mm)N1 . . . Nk : 〈m〉 → 〈n〉 will be more
conveniently written as [ ]θN1 . . . Nk, where θ is a substitution s.t. θ(Xi) = Mi

for all i = 1, . . . ,m, moreover we write M
[ ]θP→ M ′ iff (Mθ)P → M ′. Given

Proposition 3, and the underlined RPOs construction, we have:



RPO, Second-Order Contexts, and λ-Calculus 347

Corollary 1. The reactive system C2∗
l has redex RPOs.

Using Lemma 1, one can check that the lazy weak IPO bisimilarity for C2∗
l , ob-

tained by considering the identity context as unobservable, can be characterized
as follows:

Lemma 3 (Second-order Lazy Weak IPO bisimilarity)

i) A symmetric relation R on terms of CL∗ is a second-order lazy weak IPO

bisimulation if the following holds 〈M,N〉 ∈ R and M
[ ]θP−→ I M

′ then there exists

N ′ such that N
[ ]θP
=⇒ I N

′ and 〈M ′, N ′〉 ∈ R.
ii) The second-order lazy weak IPO bisimilarity �2∗

lI is the greatest second-order
lazy weak IPO bisimulation.

Notice that, for a given term, there could be infinitely many second-order IPO
reductions, where the redex is entirely contained in the context. E.g. for the

term XM1, XM1

[ ]{KY/X}−→ K′YM1 and XM1

[ ]{KY1Y2/X}−→ K′Y1Y2M1 are both
IPO reductions of this shape. However, there are only finitely many IPO contexts
s.t. the redex is not entirely contained in the context. One can show that such
IPO reductions are sufficient for determining the weak IPO bisimilarity, thus
getting a finitely branching characterization.

Example: Let M = XM1. The “relevant” IPO reductions of M (i.e. those which
are not entirely contained in the context) are the following:

XM1

[ ]{K/X}−→ K′M1; XM1

[ ]{K′Y/X}−→ Y ; XM1

[ ]{K′/X}Y−→ M1; XM1

[ ]{S/X}−→ S′M1;

XM1

[ ]{S′Y/X}−→ S′′YM1; XM1

[ ]{S′/X}Y−→ S′′M1Y ; XM1

[ ]{S′′Y Z/X}−→ (Y Z)

(YM1); XM1

[ ]{S′′Y/X}Z−→ (YM1)(Y Z); XM1

[ ]{S′′/X}Y Z−→ (M1Y )(M1Z).
In general, the relevant IPO contexts are summarized in the following table:

term IPO contexts
X [ ]{CY/X}, [ ]{C/X}Y
XNP [ ]{C/X}
C [ ]∅X
CNP [ ]∅

In order to prove that the IPO contexts in
the table are sufficient for determining the
weak IPO bisimilarity, one can show (by
“coinduction up-to”) that the bisimilarity
obtained by considering only such contexts
is a congruence w.r.t. substitutions.

C ∈ {K,S,K′M,S′M,S′′MN | M,N ∈ CL}
C ∈ {K,S,K′Z,S′Z,S′′Z1Z2 | Z,Z1, Z2 fresh variables}.

More in general, by Theorem 2, �2∗
lI is a congruence w.r.t. reactive contexts:

Proposition 4. For all terms of CL∗ M,N , for all substitutions θ, for all CL∗-
terms P1, . . . , Pn, M �2∗

lI N =⇒ (Mθ)P �2∗
lI (Nθ)P .

The following is the main result of this section:

Proposition 5. For all M,N ∈ Λ, M≈̂lN ⇐⇒ T (M) �2∗
lI T (N).



348 P. Di Gianantonio, F. Honsell, and M. Lenisa

The proof of the above proposition, which appears in [DHL08], proceeds by
showing that �2∗

lI coincides with the natural extension of �∗lI to open terms.
Notice that Proposition 5 gives a uniform finitely branching characterization

also on open terms.

6 Final Remarks and Directions for Future Work

– There are several other attempts to deal with parametric rules in the literature.
In particular, in [KSS05], the authors introduce the notion of luxes to generalize
the RPO approach to cases where the rewriting rules are given by pairs of arrows
having a domain different from 0. When instantiated to the category of contexts,
the luxes approach allows to express rewriting rules not formed by pairs of ground
terms but, instead formed by pairs of contexts (open terms), and so allowing
parametricity. Compared to our approach, based on the notion of second-order
context, the approach of luxes is more abstract and can be applied to a wider
range of cases (categories). However, if we compare the two approaches in the
particular case of context categories, we find that luxes approach has a more
restricted way to instantiate a given parametric rule. This restriction results in
a not completely satisfactory treatment of the λ-calculus. It remains the open
question whether substituting the notion of second-order contexts with a more
abstract one, that should look like a general second-order Lawvere theory. In
this way, it should be possible to recover the extra generality of luxes.

– A possible alternative approach for dealing with the λ-calculus in Leifer-
Milner’s RPO setting, it that of using suitable encodings in the (bi)graph frame-
work [Mil07]. However, we feel that our term solution based on second-order
context categories and CL is simpler and more direct. Alternatively, in place of
CL, one could also consider a λ-calculus with explicit substitutions, in order to
obtain a convenient encoding of the β-rule, allowing for a representation as a
second-order reactive system. This is an experiment to be done. Here we have
choosen CL, since it is simpler; moreover, the correspondence between the stan-
dard λ-calculus and the one with explicit substitutions deserves further study.

– We have considered lazy and cbv strategies, however also other strategies,
e.g. head and normalizing could be dealt with, possibly at the price of some
complications due to the fact that such strategies are usually defined on open
terms. It would be also interesting to explore non-deterministic strategies on
λ-calculus.

References

AO93. Abramsky, S., Ong, L.: Full Abstraction in the Lazy Lambda Calculus.
Information and Computation 105(2), 159–267 (1993)

BKM06. Bonchi, F., Konig, B., Montanari, U.: Saturated Semantics for Reactive
Systems. In: LICS (2006)



RPO, Second-Order Contexts, and λ-Calculus 349

BGK06. Bonchi, F., Gadducci, F., Konig, B.: Process Bisimulation via a Graphical
Encoding. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozen-
berg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidel-
berg (2006)

DHL08. Di Gianantonio, P., Honsell, F., Lenisa, M.: RPO, Second-order Contexts,
and λ-calculus, Extended version (2008),
www.dimi.uniud.it/pietro/papers/socl.pdf

EHR92. Egidi, L., Honsell, F., Ronchi Della Rocca, S.: Operational, Denotational
and Logical Descriptions: A Case Study. Fundamenta Inf. 16(2), 149–169
(1992)

EK06. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO ap-
proach to graph rewriting with borrowed contexts. Mathematical Structure
in Computer Science 16(6), 1133–1163 (2006)

GM05. Gadducci, F., Montanari, U.: Observing Reductions in Nominal Calculi via
a Graphical Encoding of Processes. In: Middeldorp, A., van Oostrom, V.,
van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps
on the Road to Infinity. LNCS, vol. 3838, pp. 106–126. Springer, Heidelberg
(2005)

HS86. Hindley, R., Seldin, J.: Introduction to combinators and l-calculus. Cam-
bridge University Press, Cambridge (1986)

KSS05. Klin, B., Sassone, V., Sobocinski, P.: Labels from reductions: Towards a
general theory. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten,
J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 30–50. Springer, Heidelberg
(2005)

Lei01. Leifer, J.: Operational congruences for reactive systems, PhD thesis, Uni-
versity of Cambridge Computer Laboratory (2001)

LM00. Leifer, J., Milner, R.: Deriving bisimulation congruences for reactive sys-
tems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–
258. Springer, Heidelberg (2000)

Mil07. Milner, R.: Local bigraphs and confluence: Two conjectures. In: Proc. Ex-
press 2006. ENTCS, vol. 175, pp. 65–73 (2007)

SS03. Sassone, V., Sobocinski, P.: Deriving bisimulation congruences: 2-categories
vs precategories. In: Gordon, A.D. (ed.) FOSSACS 2003. LNCS, vol. 2620,
pp. 409–424. Springer, Heidelberg (2003)

SS05. Sassone, V., Sobocinski, P.: Reactive systems over cospans. In: LICS 2005,
pp. 311–320. IEEE, Los Alamitos (2005)

Sew02. Sewell, P.: From rewrite rules to bisimulation congruences. Theoretical Com-
puter Science 274(1–2), 183–230 (2002)

Sob04. Sobocinski, P.: Deriving process congruences from reduction rules, PhD the-
sis, University of Aarhus (2004)

www.dimi.uniud.it/pietro/papers/socl.pdf


Erasure and Polymorphism

in Pure Type Systems

Nathan Mishra-Linger and Tim Sheard

Portland State University
{rlinger,sheard}@cs.pdx.edu

Abstract. We introduce Erasure Pure Type Systems, an extension to
Pure Type Systems with an erasure semantics centered around a type
constructor ∀ indicating parametric polymorphism. The erasure phase
is guided by lightweight program annotations. The typing rules guaran-
tee that well-typed programs obey a phase distinction between erasable
(compile-time) and non-erasable (run-time) terms.

The erasability of an expression depends only on how its value is
used in the rest of the program. Despite this simple observation, most
languages treat erasability as an intrinsic property of expressions, leading
to code duplication problems. Our approach overcomes this deficiency by
treating erasability extrinsically.

Because the execution model of EPTS generalizes the familiar notions
of type erasure and parametric polymorphism, we believe functional pro-
grammers will find it quite natural to program in such a setting.

1 Background and Motivation

Statically typed programming languages have evolved ever more expressive type
systems. The drive towards increased expressiveness inevitably leads to depen-
dent types, a proven technology for verifying strong correctness properties of
real programs [15,9,5,8]. For this reason, researchers have long sought practical
ways to include dependent types in programming languages.

Heavy use of the expressive power of dependent types involves the embedding
of proofs of program properties into the program text itself. Often, such proofs
play no essential part in the execution of the program. They are necessary only
as evidence used by the type-checker. Because these proofs can be quite large,
an erasure semantics is critical for practical implementation of a dependently
typed programming language.

However, proofs are not the only erasable parts of a program. Any time a
program exhibits parametric polymorphism (whether it be polymorphism over
proofs, types, numbers, or any other type of value) there are portions of the
program that should be erased. One thesis of this paper is that parametric
polymorphism can be understood entirely in terms of erasability.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 350–364, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Erasure and Polymorphism in Pure Type Systems 351

1.1 Erasability Is Extrinsic Rather than Intrinsic

Which parts of a program1 may be erased in an erasure-semantics? Our inves-
tigation of erasure semantics is grounded in a simple observation: Erasability
of a program expression is not a property of the expression itself but rather a
property of the context in which we find it. Erasability of a program expression
is determined not by what it is, but by how it is used. In other words, erasabil-
ity is an extrinsic rather than an intrinsic property. We give several examples
demonstrating this principle.

Type annotations. The domain annotation A in the β rule,

(λx:A.M) N →β M [N/x]

is simply discarded. For this reason, we may safely erase the domain annota-
tions of all λ-abstractions in a program without changing their computational
behavior. In this case, the context in which A appears determines its erasability.

Dummy λ-binders. The erasure of domain annotations may cause some λ-
binders to become superfluous. Consider the term (λα:Type. λx:α. x) Nat 5. Af-
ter erasing type annotations, we are left with (λα. λx. x) Nat 5, in which the
binder λα is superfluous because α no longer appears anywhere in its scope. For
any such dummy binder λx, the resulting specialized β rule

(λx.M) N →β M if x �∈ FV (M)

discards both the dummy binder and the argument which it would otherwise bind
to x. Therefore we may erase both the binding site λx and any argument N at an
application site to which this λ-abstraction may flow during program execution.
By this reasoning, we may erase the underlined portions of our previous example
term, resulting in (λx. x) 5.

However, other λ-abstractions may flow to some of those same application
sites. We should not erase the argument N at an application site2 M@N unless
every λ-abstraction that may flow to be the value of M has a dummy binder.
In general, the “may-flow-to” relation induces a bipartite graph (see Figure 1).
In order to decide if a given λ-binder or @-argument may be safely erased, we
must analyze its entire connected component (CC) in this λ/@ graph.

In this type of erasure step, the usage of a term determines its erasability.
The (local) erasability of a binder λx depends on how x is (or is not) used in
its scope. The erasability of an argument N depends on its context — whether
the function that is applied to it always ends up being a λ-abstraction with a
dummy binder.

1 For our purposes here, a program is a term in a typed λ-calculus.
2 We sometimes write @ for application in order to have a more tangible notation than

mere juxtaposition.



352 N. Mishra-Linger and T. Sheard

λ1

@4

λ2

@5

λ3

@6

let f = λ1x. 5 in
let g = λ2y. y in
let h = λ3z. z@47 in
(h@5f, h@6g)

Fig. 1. The λ/@ graph induced by the “may-flow-to” relation of a simple program.
The use of y in λ2’s body prevents erasure of both the @4-argument and the λ1-binder.

Cascading Erasure. Erasure of @-arguments may make other λ-binders into
dummies, thereby enabling erasure in other CCs of the λ/@ graph. Consider the
following family of identity functions.

let id0 = λa:s. λx:a. x in
let id1 = λa:s. λx:a. id0 a x in
let id2 = λa:s. λx:a. id1 a x in
let id3 = λa:s. λx:a. id2 a x in
· · ·

⇒

let id0 = λa. λx. x in
let id1 = λa. λx. id0 a x in
let id2 = λa. λx. id1 a x in
let id3 = λa. λx. id2 a x in
· · ·

After the initial erasure of domain annotations, a cascading sequence of λ/@
erasure steps is possible in this program. (Consider the λa binders).

1.2 Intrinsic Notions of Erasability Beget Code Duplication

Most prior attempts to combine dependent types and erasure semantics treat
erasability as an intrinsic property. These attempts may be divided into two
categories: erasure first and dependent types first.

Erasure first. Languages in this category start with a commitment to era-
sure semantics in the form of a syntactic phase distinction whereby types and
program values may not depend on each other computationally. Singleton types
are then used to simulate dependently typed programming. Examples of this
approach include Dependent ML [22], Ωmega [20,19], Applied Type Systems [7],
and Haskell with generalized algebraic datatypes [16].

Singleton types are type families T :I → Type for which each type index i:I
uniquely determines the one value of type T i. For example, the declarations

datakind Nat↑ : kind
where Zero↑ : Nat↑

Succ↑ : Nat↑ → Nat↑

datatype Nat! : Nat↑ → Type
where Zero! : Nat! Zero↑

Succ! : Nat! n→ Nat! (Succ↑ n)

introduce a singleton type family for the naturals. The datakind declaration
defines a copy of the natural numbers at the type-level. The singleton type Nat!
then connects the type-level version Nat↑ to the level of run-time expressions.



Erasure and Polymorphism in Pure Type Systems 353

A singleton type acts as a proxy between run-time and compile-time notions
of the same datatype: natural numbers in this case. Whenever a program does
case analysis on the value of a singleton type, the type-checker benefits from the
same case analysis at the type-level. In this way, dependence of types on values
is simulated.

Dependent types first. Languages in this category start with full dependent
types. An erasure phase then strips out parts of the program that are irrelevant to
its run-time execution. Examples of this approach include Cayenne [3], Coq [1],
and Epigram [12,6].

In Cayenne and Coq, the erasability of a subterm depends on its type. All
types (subterms of type Type) are erased in Cayenne and Epigram3. Coq’s pro-
gram extraction mechanism supports erasure of proofs as well as types. A proof
is distinguished by having a proposition as its type, and propositions are distin-
guished as terms of type Prop. In contrast to the universe Prop, Coq has another
universe Set that is the type of the types of all non-erasable program terms.

Code duplication. Because languages in both categories treat erasability as
an intrinsic property of an expression, usually determined by its type, users
of these languages are sometimes forced to duplicate definitions of datatypes
and functions over them in order to achieve a desired erasure behavior. In the
erasure-first approach, programming with singleton types requires duplication of
datatype definitions at the “type” and “kind” levels of the type hierarchy4, as
well as duplication of functions that operate on them. In the dependent-types-
first approach, duplication of datatypes is also required if we want values of a
particular type to be erased in one part of a program but not in another.

1.3 Methodology and Outline

We treat erasability as a property not of a term itself, but of the context in which
it is used. In λ-calculus, functions reify such contexts, so we track erasability as
a property of functions by distinguishing between functions that do not depend
computationally on their arguments (of type ∀x:A.B) and those that might (of
type Πx:A.B).

Note that the same A is used in both cases, because erasability is no longer
an intrinsic property of x, but rather a property of the (functional) contexts
making use of x. In this way we avoid the code duplication problem. We have
one type A and therefore functions over A can be written once.

Pure Type Systems (PTS) are a well-known family of typed λ-calculi that
encompass a wide variety of type systems [4]. Most dependently typed languages

3 Some work on representations of inductive types in Epigram notes that values of
type families need not store certain indices that, regardless of their type, are uniquely
determined by the value’s data constructor.

4 The singleton type itself may be thought of as a maximally informative copy of the
original datatype.



354 N. Mishra-Linger and T. Sheard

have a PTS at their core. Therefore PTS is a good setting for studying features
of dependently types languages. Section 2 briefly reviews the basics of PTS.

Section 3 introduces a conservative extension to PTS called Erasure Pure Type
Systems (EPTS) supporting the ∀ type described above and rules for checking
that programs using this type satisfy a phase distinction.

Section 4 introduces another PTS variant called Implicit Pure Type Systems
(IPTS) that serves as the target language of the erasure phase. This language is
very closely related to Miquel’s Implicit Calculus of Constructions [13].

Section 5 introduces our erasure translation from EPTS to IPTS. This oper-
ation is the basis for the erasure semantics of EPTS (Section 6). We prove that
erasure exhibits properties one would expect: It respects the static and dynamic
semantics of programs and eliminates portions of the source program that do not
affect its final value.

In Sections 7, 8, and 9 we discuss implementation issues, future work, and our
conclusions.

2 Pure Type Systems

Pure Type Systems bring organization to type theory [4]. They generalize Baren-
dregt’s λ-cube, which includes such familiar systems as the simply typed λ-
calculus, Systems F and Fω, the Edinburgh Logical Framework, and the Calculus
of Constructions.

Pure Type Systems are a family of typed lambda calculi. Each PTS has a
specification (S,A,R) consisting of a set S of sorts (a.k.a. universes), a set
A ⊆ S2 of axioms, and a set R ⊆ S3 of rules. We assume a fixed specification
throughout the development. The syntax of PTS is as follows:

M,N,A,B ::= x | λx:A.M |M N | Πx:A.B | s

Note that there is a single syntactic category for types and terms. The metavari-
able s is used to denote sorts. The typing rules of PTS are parameterized by A
and R and can be obtained from those of EPTS (which we will discuss shortly)
by simply ignoring all erasure annotations.

3 Erasure Pure Type Systems

This section introduces Erasure Pure Type Systems (EPTS), an extension of
Pure Type Systems (PTS) with annotations indicating erasable parts of a pro-
gram. The EPTS type system checks the erasability of the parts so annotated.

Syntax. The syntax of EPTS is that of PTS with erasure annotations added.

(terms) M,N,A,B ::= x | λτx:A.M |M@τN | Πτx:A.B | s
(contexts) Γ,Δ ::= ε | Γ, x:τA
(times) τ ::= r | c



Erasure and Polymorphism in Pure Type Systems 355

The metavariable τ ranges over erasure annotations. The annotation r means
“run-time”. Syntax with this annotation behaves just as it would in PTS without
any annotation. The annotation c means “compile-time” and indicates erasable
portions of a program.

All Πs, λs, and @s are annotated. Annotations on Πs distinguish between
computational dependence (Πr) and polymorphism (Πc). In concrete syntax,
we would simply write Π for Πr and ∀ for Πc, but this choice of abstract
syntax affords us economy of presentation. These annotations guide the erasure
operation to be defined in Section 5.

Type System. Figure 2 contains typing rules for EPTS. There are two forms
of judgment, Γ 	 M :c A and Γ 	 M :r A. The judgment Γ 	 M :r A says
that M is a well-formed run-time entity, while Γ 	 M :c A says that M is a
well-formed compile-time (erasable) entity.

The type system needs to check that all λs and @s marked c are erasable.
Recall from Section 1.1 that erasability of λs and @s in the λ/@ graph must be
considered one connected component (CC) at a time. The flow analysis implicit
in the typing rules ensures that every λ and @ in the same CC are annotated
with the same τ . Therefore, if every λc-binder is erasable, then so is every @c-
argument. So we need only verify that each λc is erasable — for each λcx:A.M
in the program, all free occurrences of x in M must appear either inside a type
annotation or inside an @c argument.

The typing rules enforce this invariant using the following technique, due to
Pfenning [17]. Each λc-bound variable x is marked with c when it is added to
the typing context. This mark is then locally switched off (reset) whenever we
check a type annotation or @c argument. We then require that the mark c has
been switched off by the time we reach any occurrence of x. For economy of
presentation, an “off” mark in the typing context is represented as an r mark.
Passing this mark/reset/check test guarantees that each λc is actually erasable.

Definition (Context Reset Operation) Γ ◦

ε◦ = ε (Γ, x:τA)◦ = Γ ◦, x:rA

The key steps of the mark/reset/check test are found in the typing rules Π-
Intro (mark), Π-Elim and Reset (reset), and Var (check). In particular,
notice how rule Π-Intro marks context entries and Π-Elim checks function
arguments for both τ = r and τ = c.

Rules Var, Weak, Π-Intro, and Conv each have a premise of the form
Γ 	 A :c s. The purpose of these rules is to check that A is well-formed as a
type. Because these rules deal explicitly with types, they use the compile-time
typing judgment. In particular, domain annotations are considered as compile-
time entities in the Π-Intro rule.

The Π-Form rule may seem counter-intuitive at first. Because Π is a type
former, one might expect this rule to use c-judgments rather than r ones. How-
ever, in a dependently typed language, terms may compute (at run-time) to



356 N. Mishra-Linger and T. Sheard

Γ � M :τ A

Axiom
(s1, s2) ∈ A

� s1 :r s2

Var
Γ � A :c s

Γ, x:rA � x :r A

Weak
Γ � A :c s Γ � M :r B

Γ, x:τA � M :r B

Π-Form
(s1, s2, s3) ∈ R Γ � A :r s1 Γ, x:rA � B :r s2

Γ � Πτx:A.B :r s3

Π-Intro
Γ � Πτx:A.B :c s Γ, x:τA � M :r B

Γ � λτx:A.M :r Πτx:A.B

Π-Elim
Γ � M :r Πτx:A.B Γ � N :τ A

Γ � M@τN :r B[N/x]

Conv
Γ � M :r A Γ � B :c s A =β B

Γ � M :r B

Reset
Γ ◦ � M :r A

Γ � M :c A

Fig. 2. Typing rules for EPTS. (The typing rules for PTS may be obtained from these
by ignoring all erasure annotations and removing the then useless Reset rule).

types, so the r is appropriate. Another possible surprise is that x is marked with
r rather than τ in the typing context of B. This is because the binding site of
the x will never be erased: The only purpose of the context mark c is to check
erasability of a λc.

If we ignore erasure annotations, these typing rules are exactly those of PTS.
The extra restrictions on erasure annotations ensure the following sort of phase
distinction: evaluation of any well-typed term never depends on its compile-time
portions. We formalize and prove this in Section 5.

Semantics. The default operational semantics of EPTS is simply β-reduction.
We do not commit to any particular evaluation order, so the single-step reduction
relation is non-deterministic.

Actually this is only one of two different operational semantics for EPTS. The
remainder of this paper introduces an erasure semantics with potential for more
efficient execution.

Meta-theory. The top half of Figure 4 depicts the meta-theory of EPTS. Each
box in that figure contains a particular result of the meta-theory. As the devel-
opment follows closely that of Pure Type Systems, we focus on the changes due
to introducing erasure annotations.

First we investigate properties of the context reset operation Γ ◦. It is idempo-
tent (Lemma 1) and weakens the strength of the typing assumptions (Lemma 2).
An admissible phase-weakening rule (Corollary 3) follows immediately from
Lemma 2. Proofs: Lemma 1 is easily proved by induction on Γ . Lemma 2 is
proved by structural induction on the typing derivation. The interesting cases



Erasure and Polymorphism in Pure Type Systems 357

Γ � M : A

Axiom
(s1, s2) ∈ A

� s1 : s2

Var
Γ � A : s

Γ, x:A � x : A

Weak
Γ � A : s Γ � M : B

Γ, x:A � M : B

Π-Form
(s1, s2, s3) ∈ R

Γ � A : s1 Γ, x:A � B : s2

Γ � Πx:A.B : s3

∀-Form
(s1, s2, s3) ∈ R

Γ � A : s1 Γ, x:A � B : s2

Γ � ∀x:A.B : s3

Π-Intro
Γ � Πx:A.B : s Γ, x:A � M : B

Γ � λx.M : Πx:A.B

∀-Intro
x �∈ FV (M)

Γ � ∀x:A.B : s Γ, x:A � M : B

Γ � M : ∀x:A.B

Π-Elim
Γ � M : Πx:A.B Γ � N : A

Γ � M N : B[N/x]

∀-Elim
Γ � M : ∀x:A.B Γ � N : A

Γ � M : B[N/x]

Conv
Γ � M : A Γ � B : s A =β B

Γ � M : B

Fig. 3. Typing rules for IPTS. Note that ∀-Intro and ∀-Elim are not syntax-directed.

are Reset, where Lemma 1 is used, and Var and Weak, which case split on
whether Δ is empty. Corollary 3 is an immediate consequence of Lemma 2.

Next, we prove the Substitution Lemma (4). Note that the mode τ1 of the
typing judgment for the term N to be substituted must match the context entry
mark of the variable x for which it will be substituted. Proof : By induction on
the typing derivation. The interesting cases are Reset (requiring Corollary 3)
and Var and Weak (each proceeding by cases on whether Δ = ε or not).

The Coherence Lemma (5) says that our type system is internally coherent in
the following way — If it can prove that M has type A, then it can also prove
that A is a type. Proof: By structural induction on the typing derivation. The
interesting cases are Reset, which uses Lemma 1, and Π-Elim, which makes
use of Corollary 3 and Lemma 4.

Finally, Subject Reduction (Lemma 6) tells us that evaluation preserves types.
Note that the mode τ of the typing judgment is preserved as well as the type.
Proof: By structural induction on the typing derivation. The most interesting
case is Π-Elim in which we use Lemma 4.

4 Implicit Pure Type Systems

IPTS, the target language of the erasure translation, is an implicitly typed
(Curry-style) calculus with both explicit and implicit dependent products. This



358 N. Mishra-Linger and T. Sheard

calculus is modeled after Miquel’s Implicit Calculus of Constructions (ICC)
[14,13], a Curry-style variant of Luo’s Extended Calculus of Constructions [10].
ICC has a rich notion of subtyping that orders Church encodings at various
levels of type refinement in a natural way [13].

IPTS is both more and less general than ICC. It is more general because
IPTS is defined in terms of an arbitrary PTS specification. It is less general
because ICC (1) uses βη-conversion instead of β-conversion in determining type
equality, (2) supports a notion of universe subtyping called cumulativity as in
Luo’s Extended Calculus of Constructions [10], and (3) contains extra typing
rules ensuring η subject reduction and strengthening.

The syntax of IPTS is as follows:

(terms) M,N,A,B ::= x | λx.M |M N | Πx:A.B | ∀x:A.B | s
(contexts) Γ,Δ ::= ε | Γ, x:A

Note the distinction between Πx:A.B and ∀x:A.B as well as the omission of
domain labels from λ-abstractions.

The difference between explicit and implicit products shows up in the type
system (Figure 3). Whereas the explicit product is introduced by functional
abstraction (rule Π-Intro) and eliminated by function application (rule Π-
Elim), no syntactic cues indicate introduction or elimination of the implicit
product (rules ∀-Intro and ∀-Elim). So Π indicates functional abstraction and
∀ indicates polymorphism.

5 Erasure

We now define erasure as a translation from EPTS to IPTS.

Definition (Erasure). Γ • and M•

ε• = ε (Γ, x:τA)• = Γ •, x:A• x• = x s• = s

(Πrx:A.B)• = Πx:A•. B• (λrx:A.M)• = λx.M• (M@rN)• = M• N•

(Πcx:A.B)• = ∀x:A•. B• (λcx:A.M)• = M• (M@cN)• = M•

The bottom half of Figure 4 sketches out the meta-theory of erasure. We now
discuss the significance of the results listed there.

A pair of key lemmas (7 and 8) characterize which variable occurrences in a
term may survive erasure: those which are tagged with r in the typing context.
Proofs: Lemmas 7 and 8 must be proved simultaneously by structural induction
on typing derivations. The Weak case of the proof of Lemma 7 requires Lemma 8
and the Π-Intro case of the proof of Lemma 8 requires Lemma 7.

Preservation of Reductions. Since computation happens by substitution,
we first show that erasure commutes with substitution (Lemma 9). We then



Erasure and Polymorphism in Pure Type Systems 359

Γ◦◦ = Γ◦1Γ,Δ 	M :τ A
Γ◦,Δ 	M :τ A

2
Γ 	M :r A
Γ 	M :c A

3

Γ, x:τ1A,Δ 	M :τ2 B Γ 	 N :τ1 A
Γ,Δ[N/x] 	M [N/x] :τ2 B[N/x]

4
Γ 	M :τ A

(∃s) A = s ∨ Γ 	 A :c s

5

Γ 	M :τ A M →β N

Γ 	 N :τ A

6

Γ, x:cA 	M :r A
x �∈ FV (M•)

7

Γ 	M :r A
domain(Γ) ⊇ FV (M•)

8

(M [N/x])• = M•[N•/x]
9 Γ 	M :τ A M →β N

M• →β N
• ∨ M• = N•

10

Γ 	M :τ A M →∗β N
M• →∗β N•

11

Γ 	M :τ1 A Δ 	 N :τ2 B
M =β N

M• =β N
•

12

Γ 	M :τ A M• →β E

(∃N) N• = E ∧ M →+
β N

13

Γ◦• = Γ•14Γ 	M :τ A
Γ• 	M• : A•

15

Phase
Weakening

Substitution
Lemma Coherence

Subject
ReductionErasure Reflects Reductions

Erasure
Preserves Types

Erasure
Preserves Reductions

Fig. 4. Identities and admissible rules in the meta-theory of EPTS (above the dotted
line) and erasure (below it). Arrows indicate proof dependencies.



360 N. Mishra-Linger and T. Sheard

show that erasure respects reduction in the following sense: Each reduction step
of a well-formed term in EPTS maps to either one or zero reduction steps in
IPTS (Theorem 10). Proof: Lemma 9 is proved by straightforward induction on
M . Theorem 10 is by straightforward induction over the typing derivation. The
interesting cases are Π-Intro and Π-Elim, where we split by cases on τ . In the
Π-Elim case when the reduction step is β, the proof depends on Lemma 9 in
the case where τ = r and on Lemma 7 in the case where τ = c.

The proof of Theorem 10 shows that some EPTS reductions in fact do no
work when viewed through the lens of erasure. This is precisely why we want an
erasure semantics — to eliminate the work associated with run-time-irrelevant
portions of a program. Examination of the proof shows where erasure eliminates
work. As expected, the eliminated work includes erased redices (terms of the
form (λcx:A.M)@cN , which erase to just M•) as well as unnecessary reduction
steps inside domain-annotations and erased arguments.

Corollaries 11 and 12 follow immediately from Theorem 10. The proof of
Corollary 12 also requires the Church-Rosser Theorem.

Preservation of Typing. Again, we first investigate the properties of the
context reset operation. The erasure operation annihilates it (Lemma 14). Proof:
By induction on Γ .

Then we prove that erasure preserves well-typedness (Theorem 15). Proof:
We prove Theorem 15 by structural induction on the typing derivation. The
interesting cases are: Reset, in which Lemma 14 is used to simplify Γ ◦•; Π-
Intro, in which Lemma 7 is used to ensure the premise x �∈ FV (M•) of the
∀-Intro rule of IPTS; Π-Elim, in which Lemma 9 is used to simplify the type
of the application; and Conv, in which Coherence and Corollary 12 are used to
establish the premise A• =β B

• of the IPTS Conv rule.

Reflection of Reductions. Next we show that a reduction of a post-erasure
IPTS term can be reflected back into one or more EPTS reductions (Theo-
rem 13). Proof: By structural induction on the typing derivation. The interesting
case is Π-Elim when the @-annotation is τ = r and the reduction is a β-step
(λx. P •) N0

• →β P
•[N0

•/x]. In this case, M = M0@rN0 and M0
• = λx. P • and

E = P •[N0
•/x]. The only way M• can be λx. P • is if M0 is a λrx:B.P nested

under some (perhaps zero) “frames” of the form λcy:C. [ ] or [ ]@cL. Because
the type of M0 is Πrx:A.B, we know the top-most frame cannot be a λc. Sim-
ilarly, for typing reasons, the bottom-most frame cannot be a @c, because it is
applied to a λr. Therefore, if there are any frames at all on top of λrx:B.P , then
there are at least two, and at some point there is a λc frame just underneath
a @c one, forming a redex. If we reduce this redex, the rest of the frame struc-
ture remains intact. We repeat this process until no intermediate frames are left.
Then M0 →∗β λrx:B[θ]. P [θ] where θ is the simultaneous substitution effected
by the sequence of reductions. Because θ is comprised solely of substitutions
for λc-bound variables, Lemma 7 tells us there will be no occurrences of these
variables inside P •. Therefore P [θ]• = P •[θ•] = P •. Let N = P [θ][N0/x]. Then

N• = P [θ][N0/x]• = P [θ]•[N0
•/x] = P •[N0

•/x] = E



Erasure and Polymorphism in Pure Type Systems 361

and M →+
β N because

M = M0@rN0 →∗β (λrx:B[θ]. P [θ])@rN0 →β P [θ][N0/x] = N,

thereby completing this case of the proof.
The proof of Theorem 13 shows that certain reduction steps in IPTS (of post-

erasure EPTS terms) require additional reductions in the original EPTS term
before the reduction corresponding to that in IPTS can take place in EPTS.
This means that some of the work that erasure avoids is unavoidable, in general,
without erasure.

Theorem 13 says that any post-erasure reduction corresponds to some poten-
tial pre-erasure reductions. In other words, the erasure of a well-formed EPTS
term cannot reduce in IPTS in a strange way that was not possible in EPTS.

6 Erasure Semantics

The erasure semantics for EPTS is simply this: First erase and then execute in
IPTS. The meta-theory supports the claim that this is a good erasure semantics.

Theorem 10 : erasure eliminates some old work
Theorem 13 : erasure does not introduce any new work
Theorem 15 : erasure preserves the meanings (types) of programs

One final result supports the validity of our erasure semantics for EPTS. We
would not want a PTS program to compute to a value while some annotation of
it diverges under the erasure semantics. Thankfully, this cannot happen.

Theorem (Erasure Preserves Strong Normalization)
For a strongly normalizing PTS, any well-typed term in the corresponding EPTS
erases to a strongly normalizing IPTS term.

Proof: Suppose there is an infinite reduction sequence in IPTS starting with
the erasure of a well-typed term M in EPTS. By Theorem 13 and Lemma 6,
this reflects back into EPTS as an infinite reduction sequence starting with M .
Because  (the erasure-annotation-forgetting map from EPTS to PTS) preserves
both reduction steps and typing judgments, we obtain an infinite reduction se-
quence in the underlying PTS starting with the well-typed term M �. But this
contradicts our assumption that the underlying PTS is strongly-normalizing. ��

7 Implementation

It should be easy to extend an existing type-checker to handle ∀-types. One
must add τ annotations to the abstract syntax and some extra logic to the type-
checker to handle these annotations properly. The only potential increase in the
time complexity of type-checking comes from the context reset operation Γ ◦.



362 N. Mishra-Linger and T. Sheard

However, a clever representation of typing contexts renders reset a constant-
time operation. The new representation of typing contexts is as follows:

Γ ::= (Γ̂ ; i) Γ̂ ::= ε̂ | Γ̂ , x:iA

(where i denotes an integer). The context operations then become

ε = (ε̂ ; 0)
(Γ̂ ; i), x:cA = (Γ̂ , x:i+1A ; i)
(Γ̂ ; i), x:rA = (Γ̂ , x:iA ; i)

(Γ̂ ; i)
◦

= (Γ̂ ; i+ 1)

x:rA ∈ (Γ̂ ; i) iff x:jA ∈ Γ̂ and j ≤ i
The top-level i in Γ = (Γ̂ ; i) counts how many times prefixes of Γ have been
reset. For any binding x:jA ∈ Γ̂ originally introduced with the mark τ , we have
j > i iff (1) τ = c and (2) there have been no resets since x was introduced —
exactly the condition in which the binding for x would be marked with c in the
original implementation. The implementation of x:rA ∈ Γ is therefore correct.

8 Future Work

8.1 Proof Irrelevance

In a dependently typed language, the conversion typing rule reflects the seman-
tics of a language back into its type system. In EPTS, however, there are two
notions of operational semantics. The Conv rule of EPTS reflects the default
semantics rather than the erasure semantics. We may attempt to remedy this
by modifying the Conv rule as follows:

Conv•

Γ 	M :r A Γ 	 B :c s A• =β B
•

Γ 	M :r B

This variant of EPTS is interesting because the Conv• rule seems to yield
a generalized form of irrelevance, including proof irrelevance as a special case.
Proof irrelevance in a conversion rule means that two proofs are considered equal
if they prove the same proposition, regardless of how they each prove it. The
Conv• rule only requires the run-time portions of A and B to be equal —
compile-time portions of A and B (including proofs and perhaps other terms)
are considered irrelevant.

Pfenning’s modal variant of LF with built-in notions of intensional code and
proof irrelevance [17] provided inspiration for EPTS. The conversion rule of that
system seems to us quite similar to Conv•.

8.2 Parametricity

Languages such as Haskell and ML make heavy use of parametric polymorphism
centered around a ∀ type constructor. Parametricity is a property of such lan-
guages enabling one to derive “free theorems” about polymorphic terms based



Erasure and Polymorphism in Pure Type Systems 363

solely on their type [21]. We conjecture that the ∀-types of EPTS satisfy para-
metricity properties similar to those of System F.

Many studies of parametricity for System F are based on denotational seman-
tics. It seems impossible to develop a semantic model for an arbitrary EPTS.
We think a proof-theoretic approach is necessary, somehow generalizing existing
work on System F [18,2,11].

9 Conclusions

Languages combining dependent types with erasure semantics sometimes require
users to maintain more than one copy of a datatype in order to ensure erasure
of some of its values but not others. This problem stems from the treatment of
erasability as an intrinsic property of data, rather than a property of the way
that data is used.

By treating erasability extrinsically — distinguishing functions that don’t
depend computationally on their arguments from those that do — we overcome
the code duplication problem and arrive at a general form of polymorphism over
arbitrary sorts of entities (types, proofs, numbers, etcetera).

This change of perspective leads to a notion of erasure generalizing both
type-erasure and proof-erasure (program-extraction). We hope the resulting no-
tion of computational irrelevance similarly generalizes both proof-irrelevance and
parametricity-style notions of representation independence.

Acknowledgments. Thanks to Andrew Tolmach, Mark Jones, Jim Hook, Tom
Harke, Chuan-Kai Lin, Ki-Yung Ahn, Andrew McCreight, Dan Brown, and John
McCall for their comments on this work. This work is supported by the National
Science Foundation (Grants Nos. CCF-0541447 and CCF-0613969).

References

1. The Coq proof assistant, http://coq.inria.fr
2. Abadi, M., Cardelli, L., Curien, P.-L.: Formal parametric polymorphism. Theoret-

ical Computer Science 121(1–2), 9–58 (1993)
3. Augustsson, L.: Cayenne – A language with dependent types. In: Proceedings of

the Third ACM SIGPLAN International Conference on Functional Programming,
pp. 239–250 (1998)

4. Barendregt, H.P.: Lambda calculi with types. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, Oxford
University Press, Oxford (1992)

5. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

6. Brady, E.: Practical Implementation of a Dependently Typed Functional Program-
ming Language. PhD thesis, University of Durham (2005)

7. Chen, C., Xi, H.: Combining programming with theorem proving. In: Proceedings
of the Tenth ACM SIGPLAN International Conference on Functional Program-
ming, pp. 66–77 (2005)

http://coq.inria.fr


364 N. Mishra-Linger and T. Sheard

8. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: Proceedings of the 33rd ACM SIGPLAN Symposium on
Principles of Programming Languages, pp. 42–54 (2006)

9. Lin, C., McCreight, A., Shao, Z., Chen, Y., Guo, Y.: Foundational typed assembly
language with certified garbage collection. In: First Joint IEEE/IFIP Symposium
on Theoretical Aspects of Software Engineering, pp. 326–338. IEEE Computer
Society Press, Los Alamitos (2007)

10. Luo, Z.: Computation and reasoning: A type theory for computer science. Oxford
University Press, New York, USA (1994)

11. Mairson, H.G.: Outline of a proof theory of parametricity. In: Hughes, J. (ed.)
FPCA 1991. LNCS, vol. 523, pp. 313–327. Springer, Heidelberg (1991)

12. McBride, C., McKinna, J.: The view from the left. Journal of Functional Program-
ming 14(1), 69–111 (2004)

13. Miquel, A.: The implicit calculus of constructions. In: Abramsky, S. (ed.) TLCA
2001. LNCS, vol. 2044, pp. 344–359. Springer, Heidelberg (2001)

14. Miquel, A.: Le Calcul des Constructions Implicite: Syntaxe et Sémantique. PhD
thesis, Université Paris 7 (2001)

15. Necula, G.C.: Proof-carrying code. In: Proceedings of the 24th ACM SIGPLAN
Symposium on Principles of Programming Languages, pp. 106–119 (1997)

16. Peyton-Jones, S., Vytiniotis, D., Weirich, S., Washburn, G.: Simple unification-
based type inference for GADTs. In: Proceedings of the Eleventh ACM SIGPLAN
International Conference on Functional Programming (2006)

17. Pfenning, F.: Intensionality, extensionality, and proof irrelevance in modal type the-
ory. In: LICS 2001: Proceedings of the 16th Annual Symposium on Logic in Com-
puter Science, pp. 221–230. IEEE Computer Society Press, Los Alamitos (2001)

18. Plotkin, G.D., Abadi, M.: A logic for parametric polymorphism. In: Bezem, M.,
Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 361–375. Springer, Heidelberg
(1993)

19. Sheard, T.: Languages of the future. In: Proceedings of the Nineteenth ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA Companion Volume, pp. 116–119 (2004)

20. Sheard, T., Pašalić, E.: Meta-programming with built-in type equality. In: Pro-
ceedings of the Fourth International Workshop on Logical Frameworks and Meta-
Languages (LFM 2004), pp. 106–124 (2004),
http://cs-www.cs.yale.edu/homes/carsten/lfm04/

21. Wadler, P.: Theorems for free! In: Functional Programming Languages and Com-
puter Architecture, pp. 347–359. ACM Press, New York (1989)

22. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings
of the 26th ACM SIGPLAN Symposium on Principles of Programming Languages,
pp. 214–227 (1999)

http://cs-www.cs.yale.edu/homes/carsten/lfm04/


The Implicit Calculus of Constructions as a
Programming Language with Dependent Types

Bruno Barras and Bruno Bernardo

INRIA Futurs and Ecole polytechnique, France
{Bruno.Barras,Bruno.Bernardo}@lix.polytechnique.fr

Abstract. In this paper, we show how Miquel’s Implicit Calculus of Construc-
tions (ICC) can be used as a programming language featuring dependent types.
Since this system has an undecidable type-checking, we introduce a more verbose
variant, called ICC∗ which fixes this issue. Datatypes and program specifications
are enriched with logical assertions (such as preconditions, postconditions, in-
variants) and programs are decorated with proofs of those assertions. The point
of using ICC∗ rather than the Calculus of Constructions (the core formalism of
the Coq proof assistant) is that all of the static information (types and proof ob-
jects) is transparent, in the sense that it does not affect the computational behavior.
This is concretized by a built-in extraction procedure that removes this static in-
formation. We also illustrate the main features of ICC∗ on classical examples of
dependently typed programs.

1 Introduction

In software verification, typing disciplines have shown to be a decisive step towards
safer programs. The success of strongly typed functional languages of the ML family
is an evidence of that claim. Still, in those systems, typing is not expressive enough to
address problems such as array bound checks.

Such issue can be alleviated by using dependent types. Dependent ML [19] is an
extension of SML implementing a restricted form of dependent types. The idea is to an-
notate datatype specifications and program types with expressions in a given constraint
domain. Type-checking generate constraints whose satisfiability is checked automati-
cally. But it is limited to decidable constraint domains since the programmer is not al-
lowed to help the type-checker by providing the proof of the satifiability of constraints.
The main point of having restricted dependent types is that it applies to programming
languages with non-pure features (side-effects, input/output,. . . ).

The system ATS [4] is an evolution of DML that integrates theorem proving in the LF
style in case the automatic solver fails. It lets the programmer prove simple invariants
(there is very little support for proof construction). Proofs systems (let us name a small
number of them: Epigram [8], Agda [13], NuPRL [5] and Coq [17]) provide better tools
for proof automation, but in most of them, the distinction between statics (logical and
typing arguments) and dynamics (actual code) raises problems.

To illustrate this claim, let us recall one typical example in programming with depen-
dent types: vectors. In order to statically check that programs never access a vector out
of its bounds, its type is decorated with an integer representing its length. This can lead

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 365–379, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



366 B. Barras and B. Bernardo

to more efficient programs since no runtime check is necessary. It is also safer since
it is known statically that such program never raises an exception nor returns dummy
values.

In the Calculus of Constructions (CC, the core formalism of Coq), one defines a type
vect parameterized by a natural number and two constructorsnil and cons. vectn
is the type of vectors of length n (A is the type of the elements).

vect : nat → Set
nil : vect 0

cons : Π(n :nat). A → vect n → vect (S n)

For instance the list [x1; x2; x3]is represented as (cons2 x1 (cons 1 x2 (cons 0 x3 nil))).
In fact, the first argument of cons is not intended to be part of the data structure: it is
used only for type-checking purposes. The safe access function can be specified as

get : Π(n :nat) (i :nat).vectn → (i < n) → A,

That is, get is a function taking as argument a vector size n, the accessed index i, a
vector of the specified size and a proof that i is within the bounds of the vector. Here
again, we have two arguments (n and the proof) that do not participate in computing
the result, but merely help type-checking.

We can see that programming in the Calculus of Constructions is quite coarse: pro-
grams have arguments that are indeed only static information (type decorations, proof
objects, dependencies). There exists a procedure called extraction (described in [6]) that
produces source code for a number of functional languages from intuitionistic proofs. It
tries to remove this static information. The decision of keeping or removing an argument
is made by the user when he defines a new type. For this purpose, Coq considers two
sorts (the types of types) Prop and Set that are almost identical regarding typing, but
types of Prop are intended to be logical propositions (like i < n), while types of Set are
the actual datatypes (like nat and vect). In the example, the proof argument of get
would be erased, but the length n would not. This issue could be alleviated by doing a
dead-code analysis [15], but it would not allow the user to specify a priori arguments
that shall not be used in the algorithmic part of the proof. Another drawback of the
extraction approach is that it is external to the system. This means that within the logic,
the programmer deals with the fully decorated term. In situations where datatypes carry
proofs to guarantee invariants, two datastructures may be equal, but containing different
proofs. Since there is no proof-irrelevance, such objects cannot be proven equal in spite
of having the same runtime counterparts.

The Implicit Calculus of Constructions (ICC, see [10] and [11]) offers a more satisfy-
ing alternative to the distinction between Prop and Set. It is a Curry-style presentation
of the Calculus of Constructions.1 It features a so-called implicit product that corre-
sponds to an intersection type rather than a function type. The main drawback of this
system is the undecidability of type-checking. This is mainly because terms do not carry
the arbitrarily complex proofs. This means that programs do not carry enough informa-
tion to recheck them, which is a problem from an implementation point of view. Proving

1 Type Assignment Systems are also type systems in Curry style, but the usage of the polymor-
phic quantification is too restrictive for our purposes.



The Implicit Calculus of Constructions as a Programming Language 367

a skeptical third party that a program is correctly typed requires communicating the full
derivation.

The main idea of this paper is to introduce a more verbose variant of ICC such that
typing is decidable. This is made by decorating terms with the implicit information. The
challenge is to ensure that this information does not get in the way, despite the fact that
it must be maintained consistent when evaluating a term.

The paper is organized as follows: we define a new calculus (ICC∗), and show its
main metatheoretical properties. Consistency is established thanks to a sound and com-
plete translation towards a subset of ICC called ICC−. We also introduce a reduction
on decorated terms that enjoys subject-reduction, meaning that it maintains decorations
consistent. Then we revisit some classical examples and show that a significative part
of the expressiveness of ICC is captured. We also discuss several extensions that would
make the system more akin to be a pratical programming language.

2 A Decidable Implicit Calculus of Constructions

2.1 Syntax

Its syntax (see Figure 1) is the same that in the standard Calculus of Constructions in
Church style, except that we duplicate each operation (product, abstraction and applica-
tion) into an explicit one and an implicit one. As often in Type Theory, terms and types
belong to the same syntactic class, and special constants called sorts represent the types
of types.

Sorts (Typei)i∈N denote the usual predicative universe hierarchy of the Extended
Calculus of Constructions [7]. There is only one impredicative sort, Prop, because the
distinction between propositional types and data types will be made by defining a term
as being explicit (data types) or implicit (propositional types) instead of giving it a type
of type Set or Prop.

Sorts s ::= Prop | Typei (i ∈ N)

Terms M ::= x | s
| Π(x :M1). M2 | λ(x :M1). M2 | M1 M2 (explicit)
| Π [x :M1]. M2 | λ[x :M1]. M2 | M1[M2] (implicit)

Contexts Γ ::= [] | Γ ;x : M

Fig. 1. Syntax of ICC∗

As usual we consider terms up to α-conversion. The set of free variables of term t
is written FV(t). Arrow types are explicit non-dependent products (if x /∈ FV(U), we
write T → U for Π(x :T ). U ). Substitution of the free occurrences of variable x by N
in term M is noted M{x/N}. We write DV(Γ ) the set of variables x that are declared
in Γ , i.e. such that (x : T ) ∈ Γ for some term T .



368 B. Barras and B. Bernardo

2.2 Extraction

We define inductively (see Fig.2) an extraction function M �→ M∗ that associates a
term of ICC to every term of our calculus. This function removes the static information:
domains of abstractions, implicit arguments and implicit abstractions. Beware that ex-
traction does not preserve α-conversion for any term. So, many properties of extraction
will hold only for well-typed terms2.

ICC Terms M ::= x | s | Π(x :M1).M2 | ∀(x :M1).M2 | λx.M | M1M2

(ICC has the same set of sorts S as ICC∗)

Extraction s∗ = s x∗ = x
(Π(x :T ). U)∗ = Π(x :T ∗). U∗ (Π[x :T ]. U)∗ = ∀(x :T ∗).U∗

(λ(x :T ). U)∗ = λx.U∗ (λ[x :T ]. U)∗ = U∗

(MN)∗ = M∗N∗ (M [N ])∗ = M∗

Fig. 2. ICC terms and Extraction

2.3 Typing Rules

For any relation R in ICC or in ICC∗, we will use the symbols �R, →R, →∗R, →+
R

and ∼=R to denote the relation itself, its congruence closure, the reflexive and transitive
closure of →R, the transitive closure of →R and the reflexive, symmetric and transitive
closure of →R. →h

R will denote the head reduction of �R - reduction occurs in the left
subterm of applications (implicit or explicit applications in the case of decorated terms).

As in the traditional presentation of Pure Type Systems [1], we define two sets Ax-
iom ⊂ S2 and Rule ⊂ S3 by

Axiom = {(Prop, Type0); (Typei, Typei+1) | i ∈ N}
Rule = {(Prop, s, s); (s, Prop, Prop) | s ∈ S}

∪{(Typei, Typej, Typemax(i,j)) | i, j, ∈ N}

We will also consider these two judgements:

– the judgement Γ � that means “the context Γ is well-formed”
– the judgement Γ � M : T that means “under the context Γ , the term M has type

T ”. By convention, we will implicitly α-convert M in order that DV(Γ ) and the set
of bound variables of M are disjoint.

Definition 1 (Typing judgements). They are defined in Fig. 3.

They are very similar to the rules of a standard Calculus of Constructions where product,
abstraction and application are duplicated into explicit and implicit ones. There are
though two important differences:

2 For instance, (λ[x :T ]. x)∗ depends on the name of the binder.



The Implicit Calculus of Constructions as a Programming Language 369

[] �
(WF-E)

Γ � T : s x /∈ DV(Γ )

Γ ;x : T �
(WF-S)

Γ � (s1, s2) ∈ Axiom

Γ � s1 : s2
(SORT)

Γ � (x : T ) ∈ Γ

Γ � x : T
(VAR)

Γ � T : s1 Γ ;x : T � U : s2 (s1, s2, s3) ∈ Rule

Γ � Π(x :T ). U : s3
(E-PROD)

Γ � T : s1 Γ ;x : T � U : s2 (s1, s2, s3) ∈ Rule

Γ � Π[x :T ]. U : s3
(I-PROD)

Γ ;x : T � M : U Γ � Π(x :T ). U : s

Γ � λ(x :T ).M : Π(x :T ). U
(E-LAM)

Γ ;x : T � M : U Γ � Π[x :T ]. U : s x /∈ FV(M∗)

Γ � λ[x :T ].M : Π[x :T ]. U
(I-LAM)

Γ � M : Π(x :T ). U Γ � N : T

Γ � M N : U{x/N}
(E-APP)

Γ � M : Π[x :T ]. U Γ � N : T

Γ � M [N ] : U{x/N}
(I-APP)

Γ � M : T Γ � T ′ : s T ∗ ∼=βη T
′∗

Γ � M : T ′
(CONV)

Fig. 3. Typing rules of ICC∗

– in the (I-LAM) rule, we add the condition x /∈ FV(M∗) (variables introduced by
an implicit abstraction cannot appear in the extraction of the body), so x is not used
during the computation. This excludes meaningless terms like λ[x :T ]. x.

– In the (CONV) rule we replace the usual conversion by the conversion of extracted
terms. This makes it clear that the denotation of objects do not depend on implicit
information.

This last modification completely changes the semantics of the formalism. Despite of
being apparently very close to the Calculus of Constructions, it is in fact semantically
much closer to ICC (usual models of CC do not validate the (CONV) rule).

Before developing the metatheory of our system, we shall make the subset of ICC
we are targeting more precise.

Definition 2 (Typing rules of ICC−). See Fig.4.

In comparison to ICC as presented in [10], we made the following restrictions:

– we removed the rules related to subtyping (rules CUM and EXT), to make things
simpler, but we consider extending our system with these rules (or equivalent ones);

– we also removed the context strengthening rule (STR) for quite different reasons.
In our formalism, non-dependent implicit products are intended to encode precon-
ditions of a program: a proof of Π [_ : P ]. Q yields a program with specification



370 B. Barras and B. Bernardo

[] �ICC-

(WF-E)
Γ �ICC- T : s x /∈ DV(Γ )

Γ ;x :T �ICC-

(WF-S)

Γ �ICC- (s1, s2) ∈ Axiom

Γ �ICC- s1 : s2
(SORT)

Γ �ICC- (x : T ) ∈ Γ

Γ �ICC- x : T
(VAR)

Γ �ICC- T : s1 Γ ;x :T �ICC- U : s2 (s1, s2, s3) ∈ Rule

Γ �ICC- Π(x :T ). U : s3 Γ �ICC- ∀(x :T ).U : s3
(EXPPROD)&(IMPPROD)

Γ ;x :T �ICC- M : U Γ �ICC- Π(x :T ). U : s

Γ �ICC- λx.M : Π(x :T ). U
(LAM)

Γ �ICC- M : Π(x :T ). U Γ �ICC- N : T

Γ �ICC- M N : U{x/N}
(APP)

Γ ;x :T �ICC- M : U Γ �ICC- ∀(x :T ).U : s x /∈ FV(M)

Γ �ICC- M : ∀(x :T ).U
(GEN)

Γ �ICC- M : ∀(x :T ).U Γ �ICC- N : T

Γ �ICC- M : U{x/N}
(INST)

Γ �ICC- M : T Γ �ICC- T ′ : s T ∼=βη T
′

Γ �ICC- M : T ′ (CONV)

Fig. 4. Typing rules of ICC−

Q provided you can produce a proof of P ; but the strengthening rule makes this
type equivalent to Q. So this rule would not require a proof of P prior to using a
program with specification Q.

3 Metatheory

Unlike ICC, the basic metatheory can be proven just like for PTSs (see for instance [1]).
This is due to the fact that it relies heavily on the form of the typing rules, but very
little on the nature of conversion. We first prove inversion lemmas. They allow us to
characterize the type R of judgment Γ � M : R according to the nature of the term
M . Other important properties are substitutivity and context conversion (if Γ � M : T ,
Δ � and Γ ∗ ∼=βη Δ∗ hold, then we have Δ � M : T ).

3.1 Preservation of the Theory and Consistency

In this section, we prove that ICC∗ is consistent and that it is equivalent to ICC− (any
derivation in ICC∗ has a counterpart in ICC− and vice versa). First, we prove by mutual
structural induction that any derivation of ICC∗ can be mapped into a derivation in
ICC−:



The Implicit Calculus of Constructions as a Programming Language 371

Proposition 1 (Soundness of extraction)

(i) Γ � ⇒ Γ ∗ �ICC-

(ii) Γ � M : T ⇒ Γ ∗ �ICC- M∗ : T ∗

Consistency of ICC∗ is an easy consequence of consistency of ICC− [11] and of
Proposition 1.

Proposition 2 (Consistency). There is no proof of the absurd proposition. There exists
no term M such that the following judgment is derivable:

[] � M : Π(A :Prop). A.

If we cannot prove the completeness results for the full ICC (subtyping and strengthen-
ing are not derivable), we can still prove it for the restricted system ICC− using mutual
structural induction and context conversion.

Proposition 3 (Completeness of extraction)

1. For any judgement Γ �ICC- there exists a context Δ in ICC∗ such that
Δ∗ = Γ ∧ Δ �.

2. For any judgement Γ �ICC- M : T there exists Δ, N and U such that
Δ � N : U ∧ Δ∗ = Γ ∧ N∗ = M ∧ U∗ = T

Note that since we have completeness for a subset of ICC rules and not for ICC itself,
we cannot deduce properties of ICC∗ from properties of ICC.

3.2 Decidability of Type Inference

As usual, decidability of type-checking requires the decidability of type inference. In
our case, we can consider two kinds of type inference: inferring a decorated term or a
term of ICC−. The latter is enough for decidability of type-checking, but for implemen-
tation purposes, it is desirable to have the former. We want then to prove the following:

Proposition 4 (Decidability of type inference). There exists a sound and complete
algorithm that receives as an input a well-founded context Γ and a term M and returns
a decorated term T such that Γ � M : T if there exists one and false otherwise.

Proof. The cases of variable and sort are trivial. For products and abstractions we can
conclude easily because ICC is strongly normalizing (see [11]) and because we can
infer a sort s from s∗(= s).

For applications it is much trickier because we need precise information to infer the
type. If we consider e.g. an implicit application M [N ], infering the type of M and N
is not enough. If we know that M has type T ′, we have to reach, if it exists, to the
annotated term U such that T ′∗ ∼=βη ∀(x : T ).U∗. The problem is that we only have
access to the extracted term U∗.

In order to solve this we need to introduce some reduction rules to ICC∗ terms. The
key point is that we only need to do head reduction : if T ′ is reduced to a product,
this product can let us infer the type of the application. Since for well-typed terms, we



372 B. Barras and B. Bernardo

cannot have (λ(x : T ). Mx) �η M with M being a product, η-reduction rules are not
useful and thus we only introduce β-reduction rules.

These rules and two basic properties are presented in Fig.5. Note that these rules are
not necessary for the definition of our calculus. We only need them to infer types.

We also have a completeness result saying that, given M a well-typed term of ICC∗

and N ′ a term of ICC such that M∗ →β N ′, there exists a term N of ICC∗ such that
N∗ = N ′ and M →+

βie
N . It is proved as in Lemma 3.4 of [9] except that we use the

fact that every well-typed term has a βi-weak head normal form (WHNF) - instead of a
βi-normal form in [9].

The last result that we need is the existence of a βie-WHNF for every well-typed
term of ICC∗. This is a consequence of the soundness and completeness of
βie-reduction and of the existence of a βi-WHNF for every well-typed term of ICC∗.

We can now infer the type of an application MN or M [N ]. We compute the βie-
WHNF of the type of M . If it is a product then M is typed by this product (soundness
and subject reduction of βie) and we can infer the type of the application. If not, com-
pleteness informs us that the application is not well-typed.

Definitions (λ(x :T ).M) N �βe M{x/N} (explicit β-reduction)
(λ[x :T ].M) [N ] �βi M{x/N} (implicit β-reduction)

�βie = �βe ∪ �βi (βie-reduction)

Properties (Γ � M : T ) ∧ (M →βie N) ⇒ M∗ →∗
β N∗ (Soundness)

(Γ � M : T ) ∧ (M →∗
βie

M ′) ⇒ Γ � M ′ : T (Subject Reduction)

Fig. 5. βie-reduction in ICC∗

4 Implementation and Inductive Types

Our long term goal is to design a formalism dedicated to software verification. To exper-
iment on examples, we have developped a clone of Coq that implements ICC∗.3 Despite
the fact that the formalism is quite different from the one implemented by Coq (the un-
derlying models are completely different), the cost of its implementation was amazingly
low: the type of terms has been slightly changed (to duplicate product, abstraction and
application into implicit/explicit pairs). But then the code is adapted straightforwardly
since the type-checking algorithm is modular w.r.t. conversion.

Our prototype inherits inductive types from Coq, but this is considered an experi-
mental feature. We proceeded by analogy with their impredicative encoding. Of course,
inductive types are more expressive: strong and dependent elimination schemes cannot
be derived with the impredicative encodings. The most challenging task part of justi-
fying our implementation of inductive types is probably to introduce an implicit sigma
type Σ[x : A]. Bx that should be interpreted as a union of the Bx family of types. It is
not clear how to define union of types in Miquel’s model.

3 This implementation is available as a Darcs repository at
http://www.lix.polytechnique.fr/Labo/Bruno.Barras/coq-implicit

http://www.lix.polytechnique.fr/Labo/Bruno.Barras/coq-implicit


The Implicit Calculus of Constructions as a Programming Language 373

In the following examples, we will rather use impredicative encodings and axioms
that correspond to derivable properties of inductive types. Among those are:

– the strong elimination of absurdity False_elim : Π [P :Type]. [False] → P , 4

which is used to mark parts of a program as dead code,
– the strong elimination of equality proofs
eq_elim : Π [A] [x] [y] [P :A → Type]. [x = y] → P x → P y, which is used to
“cast” an expression of type P x with type P y whenever we can prove x = y,

– and a strong elimination of accessibility proofs that would allow building recur-
sive functions whose termination is justified by a logical (implicit) proof of well-
foundedness, but this is not used in this work.

The former is easy to validate since the denotation of False is empty, [False] →
P is the full interpretation domain. eq_elim can be interpreted by the denotation of
λx. x: if x and y are equal (in A), then a predicate (of domain A) cannot distinguish
them, so P x and P y are the same type, and finally the identity is actually a mapping
from P x to P y.5

In the implementation, the above properties result from two principles: (dependent)
pattern-matching on the proof object (which would require this proof to be present at
runtime), and the following axiom:

impl_PI : Π [P :Prop]. [P ] → P.

Informally it says that there exists an object that belongs to any provable proposition,
which holds in the model. This is weaker than the usual axiom of proof irrelevence
which says that there exists only one proof object. Thanks to that axiom, logical argu-
ments of programs can always be made implicit (as for False_elim and eq_elim)
and thus never compared. Note that this was an important motivation for considering a
proof irrelevant Calculus of Constructions [18].

One might want not just axiom eq_elim, but also a reduction associated to it (wit-
nessing the fact that it can be interpreted by the identity). Unfortunately we see no way
to do this since this axiom should decide if reduction is possible without any informa-
tion about x, y or the proof of x = y (they are all implicit objects). Nonetheless, it is
possible to add a variant of Streicher’s K axiom (justified by the model):

Π [A] [x] [P ] [e :x = x][a :P x].eq_elim [A] [x] [x] [P ] [e] a = a.

5 Examples

In this section, we develop several examples that illustrate the features of our formalism.
We first show how preconditions and postconditions can be encoded in ICC∗ by defining
a simple division algorithm. Then, we define concatenation and head of vectors, the
latter illustrate how to deal with absurd cases. Such examples are direct translations

4 We do not to write type of variables when it can be easily inferred from the context, and
notation [A] → B stands for Π [_ :A]. B.

5 Thanks to Alexandre Miquel for pointing out this fact.



374 B. Barras and B. Bernardo

of what could already be done in the Calculus of Constructions, but our claim is that
ICC provides a better framework. Next examples show features that depart from CC:
PVS’ predicate subtyping can be encoded faithfully, and under some circumstances,
datastructures carrying dependencies do not have to be copied.

5.1 Euclidean Division

This example illustrates how to encode programs with preconditions and postcondi-
tions. Euclidean division can be expressed as a primitive recursive function, following
this informal algorithm:

div a b := if a = 0 then (0, 0) else
let (q, r) := div (a − 1) bin
if r = b − 1 then (q + 1, 0) else (q, r + 1)

nat_elim : Π(n :nat) [P :nat → Prop]. P 0 → (Πk.P k → P (S k)) → P n
eq_nat_elim : Πmn [P :Prop]. (Π[H :m = n]. P ) → (Π[H :m 
= n]. P ) → P

diveucl : nat → nat → Prop
div_intro : Π[a] [b] q r [H :a = bq + r ∧ r < b].diveucl a b
div_elim : Π[a] [b] [P :Prop].diveucl a b → (Πq r [H :a = bq + r ∧ r < b]. P ) → P

div := λ(a b :nat) [H :b <> 0].
nat_elim a [λa.diveucl a b]
(div_intro [0] [b] 0 0 [π1H])
(λk (divk :diveucl k b).
div_elim [k] [b] divk [diveucl (S k) b]
(λq r [H0].
eq_nat_elim r (b− 1) [diveucl (S k) b]
(λ[H1].div_intro [S k] [b] (S q) 0 [π2H0H1])
(λ[H1].div_intro [S k] [b] q (S r) [π3H0H1])))

where:
π1 : b 
= 0 → 0 = b.0 + 0 ∧ 0 < b
π2 : k = bq + r ∧ r < b → r = b− 1 → Sk = b(q + 1) + 0 ∧ 0 < b
π3 : k = bq + r ∧ r < b → r 
= b− 1 → Sk = bq + (Sr) ∧ Sr < b

Fig. 6. Euclidean division

One would like to specifiy that if b is not 0 (precondition), then div a b returns a
pair (q, r) such that a = bq + r ∧ r < b (α) (postcondition). To express the result,
we define a type diveucl, parameterized by a and b that encodes pairs (q, r) that
satisfy (α). More precisely, it is a triple made of 2 explicit components of type nat
and an implicit proof of (α) (this is an instance of the predicate subtyping scheme,
section 5.3). See Fig.6 for the types of the introduction and elimination rules. We can
see that the introduction rule has only 2 explicit arguments, so it will behave (w.r.t.
conversion) as a pair of numbers. Then, the division program can be specified by type

Πa b [H :b �= 0].diveucla b.



The Implicit Calculus of Constructions as a Programming Language 375

The program can then be written without difficulty (Fig.6) by adapting the proof made
in the Calculus of Constructions, assuming nat_elim to define programs by recursion
on a natural number and eq_nat_elim to decide if two numbers are equal.

The point of using ICC∗ is that div actually behaves as the informal algorithm.
Within CC, div is a function of arity 3 returning a triple. So if we have two distinct
proofs P1 and P2 of b �= 0, (div a b P1) and (div a b P2) reduce to triples (q, r, f(P1))
and (q, r, f(P2)) respectively, for some f . The two proofs f(P1) and f(P2) of the
postcondition (α) have no particular reason to be equal.

Not only this is solved by ICC∗, but furthermore, (div 17 5 [P3]) is convertible to
(div 11 3 [P4]) since the quotient and remainder of both divisions are equal. This is
not the case in CC (even assuming proof-irrelevance) since div_intro also depends
on the inputs a and b.

5.2 Vectors

Miquel showed how lists and vectors can be encoded in ICC [10]. We adapt his example
to ICC∗ (see Fig.7). It consists in merging definitions of vectors in ICC and CC: the
definitions of CC have to be decorated with implicit/explicit flags as in ICC. Note that
vect and P are explicit functions since we want to distinguish vectors of different
lengths. But P itself is implicit since it is only used to type the other two arguments,
which correspond to constructors.

vect := λm.Π[P :nat → Prop]. P 0 → (Π[n]. A → P n → P (S n)) → P m
nil := λ[P ] f g. f

cons [n] x v := λ[P ] f g. g [n] x (v [P ] f g)

append : Π[n1] [n2].vectn1 → vectn2 → vect (n1 + n2)
:= λ[n1] [n2] v1 v2. v1 [λn′.vect (n′ + n2)] v2 (λ[n′]x v′.cons [n′ + n2]x v

′)
head : Π[n].vect (Sn) → A

:= λ[n] v. v [λk. [k = Sn] → A]
(λ[H :0 = Sn].False_elim [A] [discrnH])
(λ[k]x y [_ :S k = Sn]. x)
[refl [Sn]]

Fig. 7. Vectors

The reader can check that by extraction towards ICC, these definitions becomes
strictly those for the untyped λ-calculus:

nil∗ = λf g. f cons∗ = λx v f g. g x (v f g)

Here, cons∗ has arity 2 (if we consider it returns vectors), and there is no extra
argument P .

Concatenation of two vectors can be expressed easily if we assume that addition
satisfies 0 + n ∼=β n and (S n) + m ∼=β S (n + m), which is the case for the usual
impredicative encoding of natural numbers.

In the Calculus of Constructions, computing the length of a vector is useless since
a vector always comes along with its length (either as an extra argument or because it



376 B. Barras and B. Bernardo

is fixed). In ICC∗, when we decide to make the length argument implicit, it cannot be
used in the explicit part of the program. For instance, it is illegal to define the length of
a vector as λ[n] (v :vectn). n. It has to be defined as recursive function that examines
the full vector.

We hope we made clear that in many situations, the Implicit Calculus of Construc-
tions allows to have the safety of a dependently typed λ-calculus, but all the typing
information (here P and the vector size) does not get in the way, since objects are com-
pared modulo extraction.

5.3 Predicate Subtyping a la PVS

One key feature of PVS [14] is predicate subtyping, which corresponds to the compre-
hension axiom in set theory. For instance, one can define the type of even number as a
subtype of the natural numbers satisfying the appropriate predicate. When a number is
claimed to have this type, it has to be proven it is actually even, and a type-checking
condition (TCC) is generated.

In the Calculus of Constructions, this can be encoded as a dependent pair formed
by a natural number and a proof object that it is actually even. The coercion from even
numbers to numbers is simply the first projection. This encoding is not faithfull since it
might happen that there exists two distinct proofs6 (let us call them π1 and π2) of the
fact that, say, 4 is even. Then (4, π1) and (4, π2) are distinct inhabitants of the type of
even numbers while they represent the same number. In ICC∗, this issue can be avoided
by making the second component of the pair implicit.7 Let us define Even as:

Π [P :Prop]. (Π(n :nat) [H :evenn]. P ) → P

Coercion can then be defined as the first projection:

λ(x :Even). x [nat] (λn [H ]. n) : Even → nat

and equalities such as (4, π1) = (4, π2) are proven by reflexivity.
These facts generalize to any predicate over any type since no particular property of

natural numbers has been used here.
In [16], Sozeau introduces a feature of Coq similar to the predicate subtyping of PVS,

including the possibility to prove claimed invariants by generating proof obligations.
Subset types are coded by a pair of an object and a proof of the claimed invariants (e.g.
being even). Proof obligations are metavariables that the user must instantiate. This
method relies on the fact that programs shall never try to access the proof object, to
avoid the issue above mentioned. Combining ICC and his method seems to solve the
problem.

5.4 Subtyping Coercions

In ICC, vectors are subtypes of lists. Here, we have no subtyping but we can easily write
a coercion from vectors to lists (defined as Π [P :Prop]. P →(A→P →P )→P ):

6 Proof-irrelevance is not provable in CC, nor in Coq.
7 Note that this does not work in ICC because of the strengthening rule.



The Implicit Calculus of Constructions as a Programming Language 377

λ(v :vect n) [P ] f g. v [λ_. P ] f λ[n] x v. g x v : vect n → list

Remark that the extraction of this coercion is λv f g.v f (λx v.g x v), which η-reduces
to the identity.

Another illustration of the expressiveness of ICC is the example of terms indexed by
the set of free variables (var denotes the type used to represent variables):

term := λ(s :var → Prop). Π [P :Prop].
(Π(x :var). [s x] → P ) →
(P → P → P ) → P

It corresponds to a type with two constructors:

Var : Π [s :var → Prop] (x :var). [s x] → term s
App : Π [s :var → Prop].term s → term s → term s.

If set s is included in set s′ (i.e. there is a proof h of Πx. s x → s′ x), then any term of
term s can be seen as a term of term s′. This can be done by the following function
that recursively goes through the term to update the proofs:

lift : term s → term s′

:= λt [P ] f g. t [P ] (λx [H ]. f x [h xH ]) (λt1 t2. g t1 t2)

We can notice that, as previously, the extraction of this term η-reduces to the identity.
It seems natural to introduce a notion of coercion: terms which extraction reduces to

the identity. In cases where we manipulate extracted terms (for instance in the conver-
sion test), then coercions can be dropped. On the other hand, for reduction of decorated
terms, coercions can be used to update the implicit subterms of its argument. This dual-
ity between annotated and extracted terms forms the most striking feature of ICC∗. The
current implementation does not optimize coercions yet.

6 Related Works

Epigram. In comparison with our system, Epigram focuses on implementing inductive
types in a more powerful way, and also provides more natural properties for equality.
On the other hand, the theory behind is not so different from usual Type Theories (in
the tradition of Martin Löf theories). A number of techniques are developed in order to
optimize the evaluation:

– in the case of vectors, the length argument can be removed from the constructor [3].
Unfortunately, only information that is uniquely recoverable can be erased. For
instance, in the example of terms with their set of variables, the proof that variables
belong to the set cannot be made implicit.

– A notion of compilation stages is introduced and an erasure function removes parts
that belong to the most “static” stages [2]. However, this process faces the same
problems that the extraction of Coq: the conversion rule applies on the fully deco-
rated term, so the erased parts are still compared.

We emphasize on the fact that ICC (and ICC∗) have a very powerful conversion rule
where logical information is actually irrelevant.



378 B. Barras and B. Bernardo

Proof-irrelevant Calculus of Constructions. Werner [18] introduces a variant of the
Calculus of Constructions where objects of the Prop kind can be erased. His idea is
very similar to ours since he modifies conversion so that proofs of a given proposition
are always convertible. On the one hand, this does not require a complicated model
since proof-irrelevance is a valid property in the classical model of the Calculus of
Constructions [12]. On the other hand, this approach does not address the problem of
other extra arguments (types, domains of abstractions, dependencies belonging to Set).

7 Future Work

We have shown that the Implicit Calculus of Constructions provides a simple yet power-
ful way to write dependently typed programs and proof-carrying programs where spec-
ifications and proofs do not interfere with the computational content. However there are
still aspects that are not completely satisfactory.

Inductive Types. The key one is to extend the model of ICC to inductive types. As
already mentionned, the difficult part is understanding how to support union types in
the setting of coherent spaces.

Once the theory is set up, it is very desirable to have a powerful case-analysis opera-
tor as in Epigram or Agda. This can save awkward manipulations of equality proofs as
in the vector head example.

Other programming paradigms. ATS can deal with a large variety of aspects: side-
effects, non-termination, memory allocation, and more. This is definitely a must have if
we expect dependent types to reach a larger audience.

8 Conclusion

We have shown how a restriction of the Implicit Calculus of Constructions can be turned
into an implementable system, and we developed several typical examples. We shall
stress on the fact that some problems seem less difficult to deal with than in most type
systems implemented so far. Moreover, from the Coq user point of view, there are only
a few changes, and the new features can be learnt quickly.

References

1. Barendregt, H.: Lambda Calculi with Types. Technical Report 91-19, Catholic University
Nijmegen. In: Handbook of Logic in Computer Science, vol. II (1991)

2. Brady, E.: Practical Implementation of a Dependently Typed Functional Programming Lan-
guage. PhD thesis, Durham University (2005)

3. Brady, E., McBride, C., McKinna, J.: Inductive families need not store their indices. In:
Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES 2003. LNCS, vol. 3085, pp. 115–129.
Springer, Heidelberg (2004)

4. Chen, C., Xi, H.: Combining Programming with Theorem Proving. In: Proceedings of the
tenth ACM SIGPLAN ICFP, Tallinn, Estonia, pp. 66–77 (September 2005)



The Implicit Calculus of Constructions as a Programming Language 379

5. Constable, R.L., Allen, S.F., Bromley, H.M., Cleaveland, W.R., Cremer, J.F., Harper, R.W.,
Howe, D.J., Knoblock, T.B., Mendler, N.P., Panangaden, P., Sasaki, J.T., Smith, S.F.: Imple-
menting Mathematics with the Nuprl Development System. Prentice-Hall, NJ (1986)

6. Letouzey, P.: Programmation fonctionnelle certifiée – L’extraction de programmes dans
l’assistant Coq. PhD thesis, Université Paris-Sud (July 2004)

7. Luo, Z.: An Extended Calculus of Constructions. PhD thesis, University of Edinburgh (1990)
8. McBride, C., McKinna, J.: The view from the left. Journal of Functional Programming 14(1),

69–111 (2004)
9. Miquel, A.: Arguments implicites dans le calcul des constructions: étude d’un formalisme à

la curry. Master’s thesis, University Paris 7 (1998)
10. Miquel, A.: The implicit calculus of constructions. Extending pure type systems with an

intersection type binder and subtyping. In: Abramsky, S. (ed.) TLCA 2001. LNCS, vol. 2044,
Springer, Heidelberg (2001)

11. Miquel, A.: Le Calcul des Constructions implicite: syntaxe et sémantique. PhD thesis, Uni-
versité Paris 7 (December 2001)

12. Miquel, A., Werner, B.: The not so simple proof-irrelevent model of CC. In: Geuvers, H.,
Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, Springer, Heidelberg (2003)

13. Norell, U.: Towards a practical programming language based on dependent type theory. PhD
thesis, Department of Computer Science and Engineering, Chalmers University of Technol-
ogy, SE-412 96 Göteborg, Sweden (September 2007)

14. Owre, S., Shankar, N.: The formal semantics of PVS. Technical Report SRI-CSL-97-2,
Menlo Park, CA (1997)

15. Prost, F.: Interprétation de l’analyse statique en théorie des types. PhD thesis, École Normale
Supérieure de Lyon (December 1999)

16. Sozeau, M.: Subset coercions in Coq. In: Altenkirch, T., McBride, C. (eds.) TYPES 2006.
LNCS, vol. 4502, Springer, Heidelberg (2007)

17. The Coq development team. The coq proof assistant reference manual v8.0. Technical report,
INRIA, France, mars (2004), http://coq.inria.fr/doc/main.html

18. Werner, B.: On the strength of proof-irrelevant type theories. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 604–618. Springer, Heidelberg (2006)

19. Xi, H., Pfenning, F.: Dependent types in practical programming. In: Proceedings of the 26th
ACM SIGPLAN Symposium on Principles of Programming Languages, San Antonio, pp.
214–227 (January 1999)

http://coq.inria.fr/doc/main.html


Strong Normalisation of Cut-Elimination
That Simulates β-Reduction

Kentaro Kikuchi1 and Stéphane Lengrand2

1 RIEC, Tohoku University, Japan
2 CNRS, Laboratoire d’Informatique de l’Ecole Polytechnique, France

Abstract. This paper is concerned with strong normalisation of cut-
elimination for a standard intuitionistic sequent calculus. The cut-
elimination procedure is based on a rewrite system for proof-terms with
cut-permutation rules allowing the simulation of β-reduction. Strong nor-
malisation of the typed terms is inferred from that of the simply-typed
λ-calculus, using the notions of safe and minimal reductions as well as
a simulation in Nederpelt-Klop’s λI-calculus. It is also shown that the
type-free terms enjoy the preservation of strong normalisation (PSN) pro-
perty with respect to β-reduction in an isomorphic image of the type-free
λ-calculus.

1 Introduction

It is now established that cut-elimination procedures in sequent calculus have a
computational meaning (see e.g. [12,7,32,26]), in the same sense as that of proof
transformations in natural deduction. The paradigm of the Curry-Howard cor-
respondence is then illustrated not only by (intuitionistic implicational) natural
deduction and the simply-typed λ-calculus [13], but also by a typed higher-order
calculus corresponding to the (intuitionistic implicational) sequent calculus.

In [16], the first author identified through a Prawitz-style translation a subset
of proofs in a standard sequent calculus that correspond to simply-typed λ-terms,
and defined a reduction relation on those proofs that precisely corresponds to
β-reduction of the simply-typed λ-calculus. The reduction relation was shown
to be simulated by a cut-elimination procedure, so the system of proof-terms
for the sequent calculus is a conservative extension of the λ-calculus in both
term-structure and reduction. Since the correspondence holds also for the type-
free case, the rewrite system in [16] can simulate β-reduction of the type-free
λ-calculus, which means that it is strong enough to represent all computable
functions. It was also shown in [17] that a restriction of the rewrite system in
[16], which is still strong enough to simulate β-reduction, is confluent.

The present paper presents the first proof of strong normalisation of the cut-
elimination procedure in [17]. Since the cut-elimination procedure can simulate
β-reduction of the simply-typed λ-calculus, its strong normalisation is at least
as hard as that of the latter. In fact, the proof we develop in this paper re-
lies on strong normalisation of the simply-typed λ-calculus. However, a naive
simulation of the cut-elimination procedure by β-reduction fails, so we refine

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 380–394, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Strong Normalisation of Cut-Elimination That Simulates β-Reduction 381

the approach by using two techniques formalised in [21,22] as the Safeness &
Minimality technique and the simulation in the λI-calculus of [19] through a
non-deterministic encoding. A by-product of our method is a proof of strong
normalisation of the type-free terms that encode strongly normalising type-free
λ-terms through the Prawitz-style translation. This is known as the property of
Preservation of Strong Normalisation (PSN) in the field of calculi with explicit
substitutions.

Strong normalisation of cut-elimination has been studied by a number of aut-
hors. Here we mention some of them that treat cut-elimination procedures con-
sisting of (Gentzen-style) local proof transformations in a standard sequent cal-
culus. The first is Dragalin’s cut-elimination procedure and simple proof of its
strong normalisation, which can be found in Chapter 7 of [28]. However, the
cut-elimination procedure does not allow any permutation of cuts, so cannot
simulate β-reduction. A cut-elimination procedure that simulates β-reduction
can be found in [31] (for the classical sequent calculus), with a proof of strong
normalisation. However, the cut-permutation rules involve extra kinds of cuts
that are allowed to pass over usual cuts; therefore it is not clear how the proof of
strong normalisation could be adapted to our case, which leaves the simple syn-
tax of the calculus untouched. Recently, [23] introduced another cut-elimination
procedure and proved its strong normalisation. The cut-elimination procedure
is a modification of the one in [16], but differs from the one in the present pa-
per. The proof technique for strong normalisation in [23] does not work for our
system, and our proof in this paper solves a related problem that was explicitly
given in Section 6 of [23]. Finally, [29] presents a proof of strong normalisation
for a cut-elimination system that is not intended (and is unlikely) to simulate
β-reduction. However, their technique is also inspired by Nederpelt and Klop’s
works on λI and how it compares to ours, different though the cut-elimination
systems are, remains to be investigated.

The structure of the paper is as follows. In Section 2 we introduce a term
assignment system for a standard sequent calculus and a rewrite system for a
cut-elimination procedure in the sequent calculus. In Section 3 we explain our
proof techniques and apply them to showing strong normalisation for the typed
terms and the PSN property for the type-free terms. In Section 4 we discuss
related work and conclude in Section 5.

To save space we omit some of the details in proofs, but a longer paper [18]
is available at http://www.lix.polytechnique.fr/~lengrand/Work/.

2 A Rewrite System for Cut-Elimination

2.1 Term Assignment for Sequent Calculus

We start by giving a proof-term assignment system for a standard intuitionistic
sequent calculus, following [16]. The syntax of proof-terms can be found in va-
rious textbooks (e.g. [30,28]) and papers (e.g. [10]) with notational variants. Here
we call the proof-terms λG3-terms. Our cut-elimination procedure is represented
as reduction rules for typed λG3-terms.



382 K. Kikuchi and S. Lengrand

First, the set of raw λG3-terms is defined by the grammar:

M ::= x | λx.M | 〈xM/x〉M | [M/x]M

where x ranges over a denumerable set of variables. 〈 / 〉 and [ / ] are
term constructors similar to explicit substitutions ([ / ] is called the cut-
constructor). We use letters x, y, z, w for variables and M, N, P, Q for λG3-terms.
To denote that M is a strict subterm of N , we write M � N or N � M . The
notions of free and bound variables are defined as usual, with an additional
clause that the variable x in 〈yM/x〉N or [M/x]N binds the free occurrences of
x in N . The set of free variables of a λG3-term M is denoted by FV(M). We
often use the notation 〈xM/y〉N to denote 〈xM/y〉N if x /∈ FV(M) ∪ FV(N).
The symbol ≡ denotes syntactical equality modulo α-conversion; so for example
〈zP/x〉〈xM/y〉N ≡ 〈zP/w〉〈wM/y〉N .

The proof-term assignment system for a standard intuitionistic sequent cal-
culus is given in Figure 1. We define a typing context, ranged over by Γ , as a
finite set of pairs {x1 : A1, . . . , xn : An} where the variables are pairwise distinct.
Γ, x : A denotes the union Γ ∪{x : A}, and x /∈ Γ means that x does not appear
in Γ . For precise representation of proofs by terms, we should specify formulas
on binders, but we will omit them for brevity. If x /∈ FV(M) ∪ FV(N) in the
λG3-term 〈xM/y〉N , we assume x /∈ Γ in the rule L ⊃, which means the formula
A ⊃ B is introduced without implicit contraction.

Ax
Γ, x : A � x : A

L ⊃ Γ � M : A Γ, y : B � N : C

Γ, x : A ⊃ B � 〈xM/y〉N : C
y /∈ Γ

R ⊃ Γ, x : A � M : B

Γ � λx.M : A ⊃ B
x /∈ Γ Cut

Γ � M : A Γ, x : A � N : B

Γ � [M/x]N : B
x /∈ Γ

Fig. 1. Proof-term assignment for sequent calculus

We write Γ �λG3 M : A if the sequent is derivable with the inference rules of
Figure 1. We also write Γ �λ t :A if it is derivable with the standard inference
rules of the simply-typed λ-calculus.

In order to understand the semantics of λG3, we can re-express Gentzen’s
translation of proofs in sequent calculus to those in natural deduction using
λG3-terms and λ-terms (

{
�

}
means usual implicit substitution).

G1(x) := x
G1(λx.M) := λx.G1(M)
G1(〈xM/y〉N) :=

{
x G1(M)�y

}
G1(N)

G1([M/x]N) :=
{
G1(M)�x

}
G1(N)



Strong Normalisation of Cut-Elimination That Simulates β-Reduction 383

Notice that terms of λG3cf (i.e. λG3-terms without the cut-constructor) are al-
ways mapped to λ-terms in normal form.

We can also give a backward translation from natural deduction to sequent
calculus:

G2(x) := x
G2(λx.t) := λx.G2(t)
G2(t s) := [G2(t)/x]〈x G2(s)/y〉y

In the above translation, normal forms of λ-calculus are not necessarily mapped
to λG3cf-terms. This is fixed by a Prawitz-style encoding:

Pr(x) := x
Pr(λx.t) := λx.Pr(t)
Pr(t s) := Prx.x(t s)

Prx.M (y s) := 〈yPr(s)/x〉M
Prx.M ((λy.t) s) := [λy.Pr(t)/z]〈zPr(s)/x〉M
Prx.M (t1 t2 s) := Prz.〈zPr(s)/x〉M (t1 t2)

Theorem 1 (Preservation of typing)

– If Γ �λG3 M :A then Γ �λ G1(M) :A.
– If Γ �λ t :A then Γ �λG3 G2(t) :A.
– If Γ �λ t s :A and Γ, x :A �λG3 M :B then Γ �λG3 Prx.M (t s) :B.
– If Γ �λ t :A then Γ �λG3 Pr(t) :A.

The following theorems can be found in the literature, some of them in [10].

Theorem 2 (Properties of the encodings)

– G1 is surjective, its restriction G1
|λG3cf to cut-free terms is surjective on

normal λ-terms, and neither is injective.
– G2 and Pr are both injective but not surjective on λG3.
– G1 ◦ G2 = Idλ and G1 ◦ Pr = Idλ.
– Neither G2 ◦ G1 
= IdλG3 nor Pr ◦ G1 
= IdλG3.
– G2 ◦ G1 does not leave λG3cf stable1 but Pr ◦ G1 does.

2.2 The Cut-Elimination Procedure

Our cut-elimination procedure is based on a rewrite system for λG3-terms. The
system is the same as the one in [17], which is a confluent restriction of the
system in [16]. (Although confluence is not used in this paper, the system in [16]
so far seems to resist the present technique.)
1 (i.e. if M is cut-free, G2(G1(M)) might not be).



384 K. Kikuchi and S. Lengrand

Figure 2 shows the reduction rules of the rewrite system. Each of these reduc-
tion rules corresponds to a local cut-elimination step (cf. [18]). The reduction
rules (1) through (5) correspond to cut-elimination steps that permute a cut
upwards through its right subproof. The rules (6) and (7′) correspond to steps
permuting a cut upwards through its left subproof. The rule (B) corresponds to
the key-case which breaks a cut on an implication into two cuts on its subfor-
mulas. The rules (Perm1) and (Perm2) permute two cuts with some restrictions.
In (Perm1), the left rule over the lower cut is another cut, and the right rules
over both cuts must be L ⊃ that introduces the cut-formula without implicit
contraction. In (Perm2), the right rule over the lower cut is another cut, which
must construct a proof corresponding to a redex of the rule (B).

(1) [M/x]y → y (y �≡ x)

(2) [M/x]x → M

(3) [N/x](λy.M) → λy.[N/x]M

(4) [P/z]〈xM/y〉N → 〈x([P/z]M)/y〉[P/z]N (x �≡ z)

(5) [P/x]〈xM/y〉N → [P/x]〈x([P/x]M)/y〉[P/x]N if x ∈ FV(M) ∪ FV(N)

(6) [z/x]〈xM/y〉N → 〈zM/y〉N
(7′) [〈xM/y〉N/z]〈zM ′/w〉N ′ → 〈xM/y〉[N/z]〈zM ′/w〉N ′

(B) [λz.P/x]〈xM/y〉N → [[M/z]P/y]N

(Perm1) [[P/x]〈xM/y〉N/z]〈zM ′/w〉N ′ → [P/x][〈xM/y〉N/z]〈zM ′/w〉N ′

(Perm2) [Q/w][λz.P/x]〈xM/y〉N → [[Q/w](λz.P )/x][Q/w]〈xM/y〉N

Fig. 2. Rewrite system for cut-elimination

The reduction relation −→cut is defined by the contextual closures of the
reduction rules in Figure 2. We use −→+

cut for its transitive closure, and −→∗cut
for its reflexive transitive closure. The set of λG3-terms that are strongly nor-
malising with respect to −→cut is denoted by SNcut. These kinds of notations
are also used for the notions of other reductions in this paper.

The rewrite system without the rule (B) is called x. It was shown in [17] that
the system x is strongly normalising and confluent.

The original rewrite system in [16] has instead of (7′) the rule (7) which is
obtained by replacing 〈zM ′/w〉N ′ in (7′) by a general term P . However then
the system becomes non-confluent (e.g. the critical pair w ← [〈xM/y〉N/z]w →
〈xM/y〉[N/z]w is not joinable). We study in this paper the system with (7′),
which was shown to be confluent in [17] and which is still strong enough to
simulate β-reduction.

Theorem 3 (Simulation of β-reduction)
−→cut strongly simulates −→β through the translation Pr, i.e. if M −→β M ′

then Pr(M)−→+
cut Pr(M ′).



Strong Normalisation of Cut-Elimination That Simulates β-Reduction 385

Proof. This is a minor variant of the proof in [16]. The proof is by induction on
the derivation of the reduction step, using various lemmas. �

3 Strong Normalisation

In this section we prove strong normalisation of −→cut on (typed) λG3-terms.
Since this reduction relation can simulate β-reduction in λ-calculus, its strong
normalisation is at least as hard as that of the simply-typed λ-calculus. In fact,
our proof relies on the latter.

A by-product of our method is a proof of strong normalisation of those λG3-
terms that encode strongly normalising type-free λ-terms through the Prawitz-
style translation. This is known as the property of Preservation of Strong Nor-
malisation (PSN) [3]. In other words, the reduction relation of λG3 is big enough
to simulate β-reduction through the Prawitz-style translation, but small enough
to be strongly normalising.

The basic idea in proving that a term M of λG3 is SN is to simulate the
reduction steps from M by β-reduction steps from a strongly normalising λ-
term G1(M). Indeed, this would be relevant for PSN since G1(Pr(t)) = t, as
well as for the strong normalisation of a typed λG3-term M , since G1(M) is a
simply-typed λ-term. The idea of simulating cut-elimination by β-reductions has
been investigated in [35,25].

Unfortunately, Gentzen’s encoding into λ-calculus, which allows the simula-
tion, needs to interpret cut-constructors (and constructors for L ⊃) as implicit
substitutions such as {u�x}t. Should x not be free in t, all reduction steps ta-
king place within the term of which u is the encoding would not induce any
β-reduction in {u�x}t. Therefore, the reduction relation that is only weakly si-
mulated, i.e. the one consisting of all the reductions that are not necessarily
simulated by at least one β-reduction, is too big to be proved terminating (in
fact, it is not).

In order to overcome the aforementioned problem, we combine two techniques
formalised in [21,22] as the Safeness & Minimality technique and the simulation
in the λI-calculus of [19] through a non-deterministic encoding.

3.1 Safeness and Minimality

We first define safe and minimal reductions for the rewrite system of −→cut on
(some class of) λG3-terms.

The intuitive idea is that a reduction step is minimal if all the (strict) subterms
of the redex are in SNcut. Theorem 4(1) says that in order to prove that −→cut
is terminating, we can restrict our attention to minimal reductions only, without
loss of generality.2 Similarly, a reduction step is safe if the redex itself is in
SNcut, which is a stronger requirement than minimality. Theorem 4(2) says that
2 Note that a perpetual strategy, in the sense of [33], can be defined so that only mini-

mal reductions are performed. Also, the technique seems close to that of dependency
pairs (see e.g. [1]) and formal connections should be studied.



386 K. Kikuchi and S. Lengrand

safe reductions always terminate. Those ideas are made precise in the following
definition:

Definition 1 (Safe and minimal reduction). Given a subsystem h of our
cut-elimination system, we define the following rules:

minh M −→ N if M −→h N and for all P � M , P ∈ SNcut

safeh M −→ N if M −→h N and M ∈ SNcut

and denote their contextual closures by −→minh and −→safeh respectively.

We say that a reduction step M −→h N is safe (resp. minimal) if
M −→safeh N (resp. M −→minh N) and that it is unsafe if not.3

Remark 1. We shall constantly use the following facts:

1. −→min(safeh) =−→safe(minh) =−→safeh
2. −→safe(h,h′) =−→safeh,safeh′

3. −→min(h,h′) =−→minh,minh′

We have the following theorems (proofs can be found in [21,22]):

Theorem 4. 1. SNmincut = SNcut.
2. For every λG3-term M , M ∈ SNsafecut.

In other words, safe reductions terminate, and in order to prove that a term
is strongly normalising, it suffices to prove that it is strongly normalising for
minimal reductions only.

This leads directly to the following corollary:

Theorem 5 (Safeness & minimality theorem). Given a rewrite system h
satisfying −→safecut ⊆−→h ⊆−→mincut , suppose that we have:

– the strong simulation of −→mincut \ −→h in a strongly normalising calculus,
through a total relation H

– the weak simulation of −→h through H
– the strong normalisation of −→h .

Then −→cut is strongly normalising.

A naive attempt would be to take h = safecut, which terminates by Theo-
rem 4(2). Unfortunately, this situation is too coarse, that is to say, the relation
−→h is too small so that −→mincut \ −→h is too big to be strongly simulated.
Hence, in order to define h, we use the safeness criterion in a more subtle way,
that is, we define h = safeB, minx.

Among the conditions to apply Theorem 5, we first prove the third one, i.e.
the strong normalisation of safeB, minx. For this we give a technical definition.
The idea is to distinguish a class of terms with cut-constructors, reflecting the
restrictions on permutations of two cuts in the rules (Perm1) and (Perm2).
3 In both rules we could require M −→h N to be a root reduction so that M is the

redex, but −→safeh and −→minh would be the same as they are.



Strong Normalisation of Cut-Elimination That Simulates β-Reduction 387

Definition 2 (Application term). A λG3-term of the form [M/x]N is called
an application term if N is one of the forms: [P/w]〈xM ′/y〉N ′, 〈xM ′/y〉N ′ and
[〈xM ′/y〉N ′/z]〈zM ′′/w〉N ′′ where x occurs only once in N .

Lemma 1. If [M/x]N is an application term and N −→cut N ′, then [M/x]N ′

is also an application term.

Proof. It suffices to check each case. �
Next we briefly recall the lexicographic path ordering. For a more detailed des-
cription and proofs, the reader is referred to, e.g. [14,2].

Definition 3 (Lexicographic path ordering). Let � be a transitive and ir-
reflexive ordering on the set of function symbols in a first-order signature, and
let s ≡ f(s1, . . . , sm) and t ≡ g(t1, . . . , tn) be terms over the signature. Then
s >lpo t, if one of the following holds:

1. si ≡ t or si >lpo t for some i = 1, . . . , m,
2. f � g and s >lpo tj for all j = 1, . . . , n,
3. f ≡ g, s >lpo tj for all j = 1, . . . , n, and s1 ≡ t1, . . . , si−1 ≡ ti−1, si >lpo ti

for some i = 1, . . . , m.

Theorem 6. >lpo is well-founded if and only if � is well-founded.

Now we encode λG3-terms into a first-order syntax given by the following ordered
infinite signature:

sub(_, _) � app(_, _) � ii(_, _) � i(_) � cM

where for every M ∈ SNcut there is a constant cM . Those constants are all below
i(_), and the precedence between them is given by cM � cN if M−→+

cut N or
M � N . Then the precedence relation is well-founded, and so >lpo induced on
the first-order terms is also well-founded. The encoding aforementioned is given
in Figure 3.

M := cM if M ∈ SNcut

otherwise
λx.M := i(M)

〈xM/y〉N := ii(M, N)

[M/x]N := app(M, N) if [M/x]N is an application term
[M/x]N := sub(M, N) otherwise

Fig. 3. Encoding of λG3 into a first-order syntax

Lemma 2. If M −→safeB,minx M ′ then M >lpo M ′. Hence, −→safeB,minx is
strongly normalising.

Proof. By induction on the derivation of the reduction step. If M ≡ [P/x]N is
an application term and N −→safeB,minx N ′, then we use Lemma 1. (A detailed
proof can be found in [18].) �



388 K. Kikuchi and S. Lengrand

3.2 Simulation in λI

Now we have to find a strongly normalising calculus and a total relation H
to strongly simulate −→mincut \ −→h therein. Since a simple simulation in
λ-calculus fails we use instead the λI-calculus of [19], based on earlier work
by [6,24]. For instance, the technique works for proving PSN of the explicit
substitution calculus λlxr of [15]. We refer the reader to [27,34] for a survey on
different techniques based on the λI-calculus to infer normalisation properties.

On the one hand, λI extends the syntax of λ-calculus with a “memory ope-
rator” so that, instead of being thrown away, a term U can be retained and
carried along in a construct [ − , U ]. With this operator, those bodies of substi-
tutions are encoded that would otherwise disappear, as explained above. On the
other hand, λI restricts λ-abstractions to variables that have at least one free
occurrence, so that β-reduction never erases its argument.

Definition 4 (Grammar of λI). The set ΛI of terms of the λI-calculus of [19]
is defined by the following grammar:

T, U ::= x | λx.T | T U | [T, U ]

with the additional restriction that every abstraction λx.T satisfies x ∈ FV(T ).

The following property is straightforward by induction on terms.

Lemma 3 (Stability under substitution [19]).
If T, U ∈ ΛI, then

{
U�x

}
T ∈ ΛI.

Definition 5 (Reduction system of λI). The reduction rules are:

(β) (λx.T ) U →
{

U�x

}
T

(π) [T, U ] T ′ → [T T ′, U ]

The following remark is straightforward [19]:

Remark 2. If T −→β,π T ′ then FV(T ) = FV(T ′) and
{

T�x

}
U−→+

β,π

{
T ′
�x

}
U

provided that x ∈ FV(U).

Performing a simulation in λI requires the encoding to be non-deterministic,
i.e. we define a relation H between λG3 and λI, and the reason for this is
that, since the reductions in λI are non-erasing reductions, we need to add this
memory operator at random places in the encoding, using such a rule:

M H T
U ∈ ΛI

M H [T, U ]

The reduction relation of λG3 must then satisfy the hypotheses of Theorem 5.
Namely, −→mincut \ −→h should be strongly simulated by −→β,π through H ,
and safeB, minx should be weakly simulated by −→β,π through H .

The relation H between λG3-terms and λI-terms is inductively defined in
Figure 4.



Strong Normalisation of Cut-Elimination That Simulates β-Reduction 389

x H x

M H T
x ∈ FV(T )

λx.M H λx.T

M H U N H T
y ∈ FV(T )

〈xM/y〉N H
{

x U
�y

}
T

M H T
U ∈ ΛI

M H [T, U ]

M H U N H T
x ∈ FV(T ) ∨ M ∈ SNcut

[M/x]N H
{

U
�x

}
T

Fig. 4. Relation between λG3 & λI

It satisfies the following properties:

Lemma 4. If M H T , then

1. FV(M) ⊆ FV(T )
2. T ∈ ΛI
3. x /∈ FV(M) and U ∈ ΛI implies M H

{
U�x

}
T

4. {y�x}M H {y�x}T .

Theorem 7 (Simulation in λI). Suppose M H T .

1. If M −→minB N is unsafe then there exists U such that N H U and
T−→+

βπ U .
2. If M −→minB N is safe then there exists U such that N H U and T−→∗βπ U .
3. If M −→minx N then there exists U such that N H U and T−→∗π U .

Proof. By induction on the derivation of the reduction step, by case analysis
for root reduction. Indeed, for root-reduction, remember that we only simulate
minimal reductions. Hence, when reducing a redex, all its subterms are in SNcut,
so the side-condition in the encoding of the cut-constructor is thus satisfied.

For the contextual closure, we have to ensure that, in the first of the above
three points, the one reduction step that must take place is preserved through
the inductive argument. This comes from the assumption that the reduction is
unsafe, which ensures that, in the side-condition x ∈ FV(T )∨M ∈ SNcut, it must
be true that x ∈ FV(T ).

A more detailed proof can be found in [18]. �

3.3 Concluding the Proof

Finally, we need the fact that every term M of λG3 that we wish to prove strongly
normalising can be encoded into a strongly normalising term of λI, to start off
the simulations. The following method works:

1. Encode the term M as a strongly normalising λ-term t, such that no subterm
is lost, i.e. not using implicit substitutions.

2. Using a translation i from λ-calculus to λI, introduced in this section, prove
that i(t) reduces to one of the non-deterministic encodings of M in λI, that
is, that there is a term T such that M H T and i(t)−→∗β,π T .

The technique is summarised in Figure 5.



390 K. Kikuchi and S. Lengrand

λG3 λ λI

t ∈ SNβ
i() �� i(t)

β,π∗
��

M

mincut

��

H ��

��

T

β,π∗
��

N1

mincut

��

H �� U1

β,π∗
��

Ni

safeB,minx

��

H �� Ui

Ni+j

safeB,minx

��

H

��������������������

������������������ H

�������������������������

�����������������������

Fig. 5. The general technique to prove that M ∈ SN

Definition 6 (Encoding of λG3 into λ-calculus). We encode the λG3 into
λ-calculus by slightly refining Gentzen’s encoding as follows:

G1↑(x) := x

G1↑(λx.M) := λx.G1↑(M)
G1↑(〈xM/y〉N) :=

{
x G1↑

(M)�y

}
G1↑(N) if y ∈ FV(N)

G1↑(〈xM/y〉N) := (λy.G1↑(N)) (x G1↑(M)) if y /∈ FV(N)
G1↑([M/x]N) :=

{
G1↑

(M)�x

}
G1↑(N) if x ∈ FV(N)

G1↑([M/x]N) := (λx.G1↑(N)) G1↑(M) if x /∈ FV(N)

The reason why the above encoding is interesting for strong normalisation of
some λG3-terms lies in two facts:

Lemma 5

1. For the strong normalisation of typed terms:
If Γ �λG3 M :A then Γ �λ G1↑(M) :A

2. For proving PSN:
G1↑(Pr(t)) = t.

Proof. Straightforward inductions on M and t. �



Strong Normalisation of Cut-Elimination That Simulates β-Reduction 391

Now we recall from [21,22] an encoding of λ-calculus into λI4:

Definition 7 (Encoding of λ-calculus into λI). We encode the λ-calculus
into λI as follows:

i(x) := x
i(λx.t) := λx.i(t) if x ∈ FV(t)
i(λx.t) := λx.[i(t), x] if x /∈ FV(t)
i(t u) := i(t) i(u)

The above encodings satisfy the following properties:

Lemma 6. For any λG3-term M , there is a λI-term T such that M H T and
i(G1↑(M))−→∗β,π T .

Proof. By induction on M . �

Theorem 8 ([21,22]). For any λ-term t, if t ∈ SNβ, then i(t) ∈ SNβ,π.

Hence we get

Corollary 1. If G1↑(M) ∈ SNβ, then M ∈ SNcut.

Proof. Suppose G1↑(M) ∈ SNβ . Then by Theorem 8, i(G1↑(M)) ∈ SNβ,π, and so
by Lemma 6, there is a λI-term T such that M H T and T ∈ SNβ,π. Now apply
Theorem 5 with Theorem 7 and Lemma 2. �

Finally this gives the two strong normalisation results:

Theorem 9 (Strong normalisation and PSN)
If Γ �λG3 M :A, or if M = Pr(t) with t ∈ SNβ, then M ∈ SNcut.

Proof. It suffices to combine Lemma 5 and Corollary 1. �

4 Related Work

In this section we discuss related work on strong normalisation of cut-elimination
procedures. We focus on those cut-elimination procedures that have the ability
to simulate β-reduction of the simply-typed λ-calculus.

Danos et al. [8,9] introduced strongly normalising cut-elimination procedu-
res in sequent calculi for classical logic. The cut-elimination procedures include
global proof transformations analogous to proof transformations in natural de-
duction. In rewrite systems for proof-terms, such cut-elimination procedures
are implemented by reduction rules that use meta-operations like implicit
4 Note that a similar encoding (without the case distinction for abstractions) can be

found in [19]; unfortunately we have found it necessary to twist it to prove Theorem 8,
which we have not found in the literature.



392 K. Kikuchi and S. Lengrand

substitution in the λ-calculus. Urban [31] described a cut-elimination proce-
dure for the classical sequent calculus in such a rewrite system. Many strong
normalisation results of cut-elimination procedures with global proof transfor-
mations in the literature can be derived from Urban’s result, in both classical
and intuitionistic cases, including those for systems in the style of λμμ̃ [7] (cf.
e.g. [20]).

On the other hand, strong normalisation of cut-elimination procedures con-
sisting of Gentzen-style local proof transformations requires us to use techniques
from the field of calculi with explicit substitutions. Urban [31] proved strong
normalisation of such a cut-elimination procedure using the technique of [5] and
the strong normalisation result of his procedure with global proof transformati-
ons mentioned above. The cut-elimination procedure involves labelled cut, which
are allowed to pass over usual cuts. In the present paper, cut-elimination uses
only one kind of cut, and does not seem to be directly simulated by Urban’s
cut-elimination procedure. For example, the rule (Perm1) corresponds to a per-
mutation of labelled cuts, which is not included in Urban’s reduction rules.

Another example of a cut-elimination procedure that consists of local proof
transformations is the one by Dyckhoff and Urban [11] for Herbelin’s sequent
calculus [12]. Our method of proving strong normalisation works also for their
system without using a simulation in λI. For the details, see [21,22].

Recently, Nakazawa [23] introduced a cut-elimination procedure for a standard
intuitionistic sequent calculus, which is close to ours. The main difference bet-
ween the two cut-elimination procedures is as follows. In his cut-elimination pro-
cedure, the redex [λz.P/x]〈xM/y〉N of the rule (B) is reduced to [M/z][P/y]N ,
while it is reduced to [[M/z]P/y]N in our cut-elimination procedure. This dif-
ference corresponds to the order of applications of cuts in the resulting proofs.
Strong normalisation of his cut-elimination procedure was proved by an induc-
tive method as in [4], but it does not work for our rule (B) as explained in
Section 6 of [23]. Another difference is that his cut-elimination procedure does
not entirely follow Gentzen-style local steps; the cut-permutation rules of his
cut-elimination procedure can be decomposed into two steps of ours (cf. Notes 3
and 4 of [23]).

5 Conclusion

We have proved strong normalisation of a cut-elimination procedure for a stan-
dard intuitionistic sequent calculus, by using the safeness and minimality techni-
que and a simulation in λI, both of which are formalised in [21,22]. We have also
established the PSN property of the type-free terms with respect to β-reduction
through a Prawitz-style translation from the type-free λ-terms.

We consider our cut-elimination procedure for the intuitionistic sequent cal-
culus as a canonical one, since it is strong normalising and confluent, consists
of completely local steps (without an extra kind of cut), and can simulate β-
reduction. For future work, it will be interesting to show strong normalisation
of more liberal cut-elimination procedures such as the one in [16].



Strong Normalisation of Cut-Elimination That Simulates β-Reduction 393

References

1. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoret.
Comput. Sci. 236(1–2), 133–178 (2000)

2. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
Cambridge (1998)

3. Benaissa, Z., Briaud, D., Lescanne, P., Rouyer-Degli, J.: λυ, a calculus of explicit
substitutions which preserves strong normalisation. J. Funct. Programming 6(5),
699–722 (1996)

4. Bloo, R.: Preservation of Termination for Explicit Substitution. PhD thesis, Tech-
nische Universiteit Eindhoven, IPA Dissertation Series 1997-05 (1997)

5. Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization.
Theoret. Comput. Sci. 211(1–2), 375–395 (1999)

6. Church, A.: The Calculi of Lambda Conversion. Princeton University Press, Prin-
ceton (1941)

7. Curien, P.-L., Herbelin, H.: The duality of computation. In: Proc. of the 5th ACM
SIGPLAN Int. Conf. on Functional Programming (ICFP 2000), pp. 233–243. ACM
Press, New York (2000)

8. Danos, V., Joinet, J.-B., Schellinx, H.: LKQ and LKT: Sequent calculi for second
order logic based upon dual linear decompositions of classical implication. In: Gi-
rard, J.-Y., Lafont, Y., Regnier, L. (eds.) Proc. of the Work. on Advances in Linear
Logic. London Math. Soc. Lecture Note Ser., vol. 222, pp. 211–224. Cambridge
University Press, Cambridge (1995)

9. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: Linear logic. J.
of Symbolic Logic 62(3), 755–807 (1997)

10. Dyckhoff, R., Pinto, L.: Permutability of proofs in intuitionistic sequent calculi.
Theoret. Comput. Sci. 212(1–2), 141–155 (1999)

11. Dyckhoff, R., Urban, C.: Strong normalization of Herbelin’s explicit substitution
calculus with substitution propagation. J. Logic Comput. 13(5), 689–706 (2003)

12. Herbelin, H.: A lambda-calculus structure isomorphic to Gentzen-style sequent
calculus structure. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933,
pp. 61–75. Springer, Heidelberg (1995)

13. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hin-
dley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalism, pp. 479–490. Academic Press, London (1980) (reprint of a manus-
cript written 1969)

14. Kamin, S., Lévy, J.-J.: Attempts for generalizing the recursive path orderings.
Handwritten paper. University of Illinois (1980)

15. Kesner, D., Lengrand, S.: Resource operators for λ-calculus. Inform. and Com-
put. 205(4), 419–473 (2007)

16. Kikuchi, K.: On a local-step cut-elimination procedure for the intuitionistic se-
quent calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 120–134. Springer, Heidelberg (2006)

17. Kikuchi, K.: Confluence of cut-elimination procedures for the intuitionistic sequent
calculus. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497,
pp. 398–407. Springer, Heidelberg (2007)

18. Kikuchi, K., Lengrand, S.: Strong normalisation of cut-elimination that simulates
β-reduction - long version,
http://www.lix.polytechnique.fr/~lengrand/Work/

http://www.lix.polytechnique.fr/~lengrand/Work/


394 K. Kikuchi and S. Lengrand

19. Klop, J.-W.: Combinatory Reduction Systems, Mathematical Centre Tracts, PhD
Thesis, vol. 127, CWI, Amsterdam (1980)

20. Lengrand, S.: Call-by-value, call-by-name, and strong normalization for the clas-
sical sequent calculus. In: Gramlich, B., Lucas, S. (eds.) Post-proc. of the 3rd
Int. Work. on Reduction Strategies in Rewriting and Programming (WRS 2003).
ENTCS, vol. 86, Elsevier, Amsterdam (2003)

21. Lengrand, S.: Induction principles as the foundation of the theory of normalisa-
tion: concepts and techniques. Technical report, Université Paris 7 (March 2005),
http://hal.ccsd.cnrs.fr/ccsd-00004358

22. Lengrand, S.: Normalisation & Equivalence in Proof Theory & Type Theory. PhD
thesis, Université Paris 7 & University of St. Andrews (2006)

23. Nakazawa, K.: An isomorphism between cut-elimination procedure and proof re-
duction. In: Della Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 336–350.
Springer, Heidelberg (2007)

24. Nederpelt, R.: Strong Normalization in a Typed Lambda Calculus with Lambda
Structured Types. PhD thesis, Eindhoven University of Technology (1973)

25. Pottinger, G.: Normalization as a homomorphic image of cut-elimination. Ann. of
Math. Logic 12, 323–357 (1977)

26. Santo, J.E.: Revisiting the correspondence between cut elimination and norma-
lisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 600–611. Springer, Heidelberg (2000)

27. Sørensen, M.H.B.: Strong normalization from weak normalization in typed lambda-
calculi. Inform. and Comput. 37, 35–71 (1997)

28. Sørensen, M.H.B., Urzyczyn, P.: Lectures on the Curry-Howard Isomorphism. Stu-
dies in Logic and the Foundations of Mathematics, vol. 149. Elsevier, Amsterdam
(2006)

29. Sørensen, M.H.B., Urzyczyn, P.: Strong cut-elimination in sequent calculus using
Klop’s ι-translation and perpetual reduction (available from the authors) (submit-
ted for publication, 2007)

30. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge
Tracts in Theoret. Comput. Sci., vol. 43. Cambridge University Press, Cambridge
(2000)

31. Urban, C.: Classical Logic and Computation. PhD thesis, University of Cambridge
(2000)

32. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical
logic. In: Girard, J.-Y. (ed.) TLCA 1999. LNCS, vol. 1581, pp. 365–380. Springer,
Heidelberg (1999)

33. van Raamsdonk, F., Severi, P., Sørensen, M.H.B., Xi, H.: Perpetual reductions in
λ-calculus. Inform. and Comput. 149(2), 173–225 (1999)

34. Xi, H.: Weak and strong beta normalisations in typed lambda-calculi. In: de Groote,
P., Hindley, J.R. (eds.) TLCA 1997. LNCS, vol. 1210, pp. 390–404. Springer, Hei-
delberg (1997)

35. Zucker, J.: The correspondence between cut-elimination and normalization. Ann.
of Math. Logic 7, 1–156 (1974)

http://hal.ccsd.cnrs.fr/ccsd-00004358


Symbolic Semantics Revisited�

Filippo Bonchi and Ugo Montanari

Dipartimento di Informatica, Università di Pisa

Abstract. Symbolic bisimulations were introduced as a mean to de-
fine value-passing process calculi using smaller, possibly finite labelled
transition systems, equipped with symbolic actions. Similar ideas have
been used for modeling with fewer transitions the input behavior of open
and asynchronous π-calculus. In this paper we generalize the symbolic
technique and apply the resulting theory to these two cases, re-deriving
existing results. We also apply our approach to a new setting, i.e. open
Petri nets, with the usual result of reducing input transitions. Our theory
generalizes Leifer and Milner reactive systems by adding observations.

1 Introduction

A compositional interactive system is usually defined as a labelled transition
system (lts) where states are equipped with an algebraic structure. Behavioural
equivalence is often defined as bisimilarity, namely the largest bisimulation. Then
a key property is that bisimilarity be a congruence, i.e. that abstract semantics
respects the algebraic operations.

When this is not the case for some operations, the obvious fix is to define
the abstract semantics as the largest bisimulation which is closed for those op-
erations. An equivalent approach is to introduce additional moves of the form
p
c,a−→ q, for every context c built with the faulty operations, whenever c(p) a−→ q

is a transition in the original lts. If we call saturated the resulting lts, we have
that ordinary bisimilarity on the saturated lts coincides with the largest bisimu-
lation (on the original lts) which is closed for the faulty operations. By analogy
we call the latter saturated bisimilarity.

This idea was originally introduced by the second author and Sassone in [18].
They define dynamic bisimilarity in order to make weak bisimilarity of CCS [14]
a congruence w.r.t. non-deterministic choices: before any transition, the observer
inserts the processes into all possible choice contexts. Analogously, since late and
early bisimilarity of π-calculus [16] are not preserved under substitution (and
thus under input prefixes), in [21] Sangiorgi introduces open bisimilarity (∼o) as
the largest bisimulation on π-calculus agents which is closed under substitutions.

Another example of saturated bisimilarity is ∼1 [1] for the asynchronous π-
calculus [1,9]. Here the basic bisimilarity, namely oτ -bisimilarity, is not a congru-
ence under parallel outputs, and thus at any step of definition of ∼1 the observer
� Research partially supported by the IST 2004-16004 SEnSOria, and the MIUR

PRIN 2005015824 ART.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 395–412, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



396 F. Bonchi and U. Montanari

inserts the process in parallel with all possible outputs. In the same way, ∼N
has been defined in [3] amongst open Petri nets [10,2,12] that are an interactive
version of P/T Petri nets.

Here we introduce a general model encompassing the three examples above.
The definition of saturated bisimilarity as ordinary bisimulation on the satu-

rated lts, while in principle operational, often makes infinite state the portion
of lts reachable by any nontrivial agent, and in any case is very inefficient,
since it introduces a large number of additional transitions.

Inspired by Hennessy and Lin [8], who introduced a symbolic semantics of
value passing calculi, Sangiorgi defines in [21] a symbolic transition system and
a new notion of bisimilarity that coincides with ∼O. Analogously in [1], Amadio
et al. defined asynchronous bisimilarity that coincides with ∼1.

We define symbolic transition system and symbolic bisimilarity and we show
that the latter coincides with saturated bisimilarity. We also show that the re-
sults by Sangiorgi and Amadio et al. are special cases. Concerning Petri nets,
no symbolic semantics exists. Here our framework produces a new symbolic se-
mantics (equivalent to the standard ∼N) by reducing input transitions.

Our construction employs some general knowledge about the modeled formal-
ism. For instance, we know that in π-calculus (without mismatch):

“∀ process p and substitution σ, if p
μ−→ q then σ(p)

σ(μ)−→ σ(q) ” [16].

Thus, if in the saturated lts, p
φ,μ−→ p′ (meaning that φ(p)

μ−→ p′), then surely

also p
ψ(φ),ψ(μ)−−−−−→ ψ(p′). The second transition is to some extent redundant, i.e., we

can ignore it without changing the saturated bisimilarity. For any formalism, we
identify a set of rules (given in a fixed format) expressing how contexts modify
transitions and we prune the saturated lts by employing these rules.

Our results have been inspired also by the theory of reactive systems by Leifer
and Milner [11]. Their aim is to take a transition system (expressed through
reaction rules) without any observations and to (automatically) derive a labeled
transition system in such a way that bisimilarity is a congruence. The idea is to
take as labels the minimal contexts that enable a reaction.

Reactive system theory has been applied to several interesting formalisms,
but only rarely the canonical abstract semantics have been retrieved (amongst
these, CCS in [4] and Petri nets [15,22]). In our opinion, labels cannot represent
both interactions and observations, because these two concepts are different,
like for example, in the asynchronous calculi where the input interaction is not
observable. Thus we believe that some notion of observation, either on transitions
or on states (e.g. barbs [17,20]), is necessary. In this sense we can say that our
theory generalizes reactive systems by adding observations. The special case
of reactive systems can be retrieved from our approach by starting from an
unlabeled transition system with the rule:

“∀ process p and reactive context d, if p −→ q then d(p) −→ d(q)”.

In Sec. 2, we recall open and asynchronous bisimilarities of π-calculus. In Sec. 3,
we introduce our theory and, in Sec. 4, we apply it to π-calculus. In Sec. 5, we



Symbolic Semantics Revisited 397

introduce open Petri nets and, applying our approach, we get a new symbolic
semantics. In Sec. 6 we show how our theory generalizes reactive systems and,
in Sec. 7, we outline conclusions and future works.

2 Background on π-Calculus

Let N be a set of names (ranged over by a, b, c . . . ) with τ /∈ N . The set of
π-processes is defined by the following grammar:

p ::= 0, α.p, [a = b]p, p1 | p2, p1 + p2, νa.p, !p, α ::= a(b), ab, τ

Considering a(b).p and νb.p, the occurrences of b in p are bound. An occurrence
of a name in a process is free, if it is not bound. The set of free names of p
(denoted by fn(p)) is the set of names that have a free occurrence in the process
p. The process p is α-equivalent to q (written p ≡α q), if they are equivalent
up to α-renaming of bound occurrences of names. The operational semantics
of π-calculus is a transition system labeled on actions Act = {a(b), ab, a(b), τ |
a, b ∈ N} (ranged over by μ) where b is a bound name (written b ∈ bn(μ)) in
a(b) and a(b). In all the other cases a and b are free in μ (a, b ∈ fn(μ)). By nm(μ)
we denote the set of both free and bound names of μ. The same notation will
be used later for match sequences, distinctions and substitutions.

Table 1. Late operational semantics of π-calculus

(pre) α.p
α−→ p (com)

p
ab−→ p′ q

a(x)−→ q′

p | q τ−→ p′ | q′{b/x}
(par)

p
μ−→ p′

p | q μ−→ p′ | q
bn(μ) ∩ fn(q) = ∅

(sum)
p

μ−→ p′

p+ q
μ−→ p′

(opn)
p

ab−→ p′

νb.p
a(b)−→ p′

b �= a (res)
p

μ−→ p′

νb.p
μ−→ νb.p′

b /∈ nm(μ)

(rep)
p | p! μ−→ q

p!
μ−→ q

(mat)
p

μ−→ p′

[a = a]p
μ−→ p′

(cls)
p

a(x)−→ p′ q
a(x)−→ q′

p | q τ−→ νx.p′ | q′

The (late) labeled transition system is inductively defined by the rules in
Table 1, where we have omitted the symmetric version of the rules sum, par,
com and cls and where we consider processes up to α-equivalence.

Open Bisimilarity. In [16], the authors introduce late and early bisimilarities.
These are congruences w.r.t. parallel composition, but they are not preserved
by the input prefixes. Consider the processes p = ab | c(x) and q = ab.c(x) +
c(y).ab (here and in the following we abbreviate α.0 with α). These are (late and
early) bisimilar, but whenever we put them into the context d(a).−, they are
not anymore. Indeed if this prefix receives c, then a = c, and thus p can perform
a τ action (synchronizing the two parallel components), while q cannot.

Sangiorgi in [21] introduces open bisimilarity (∼O) that is a congruence with
respect to all the operators. In ∼O, name instantiation is part of the coinductive



398 F. Bonchi and U. Montanari

definition of bisimilarity. At any step of the bisimulation game, names can be
identified by a substitution σ. Thus, [a = b]τ and 0 are not considered bisimilar
anymore, because, σ([a = b]τ) perform a τ transition if σ identifies a and b. Now
consider νa.[a = b]τ . It will never perform a τ transition, because a is restricted
and then it cannot be identified with b. Thus in the bisimulation game, we have
to avoid those substitutions that identify a and b. In order to properly handle the
restriction operator, we have to introduce distinctions, i.e. relations that express
permanent inequalities on names.

Definition 1 (Distinction). A distinction D is a finite symmetric and irreflex-
ive relation on names. A substitution σ respects D iff aDb implies σ(a) �= σ(b).

In the following we will use D to mean the set of all distinctions and σ(D) to
mean the distinction {(σ(a), σ(b)) | (a, b) ∈ D}. Sometimes, in the expressions
defining distinctions we shall avoid to give all the symmetric pairs; for instance,
we might define D = {(a, b)} without recalling that also (b, a) ∈ D. In the
following definitions, a name declared fresh is supposed to be different from all
the others appearing in the definition.

Definition 2. Let R = {RD | D ∈ D} be a D sorted family of symmetric
relations. R is an open bisimulation iff ∀D ∈ D and ∀σ respecting D, whenever
pRDq:

– if σ(p) α−→ p′ with bn(α) fresh, then σ(q) α−→ q′ and p′Rσ(D)q
′,

– if σ(p)
a(b)−→ p′ with b fresh, then σ(q)

a(b)−→ and p′RD∗q′

where D∗ = σ(D) ∪ {(b, i), ∀i ∈ fn(σ(p) ∪ σ(q))}.
We write p ∼OD q, if there is an open bisimulation R such that pRDq.

The intuitive meaning of the last clause, is that b is different from all the other
free names appearing in σ(p) and σ(q) since it has been generated by some
restriction νb. Thus we have to check that the arriving states p′ and q′ are
bisimilar when considering b distinct form all the other names.

The definition of ∼O involves at each step a quantification over all substitu-
tions. In [21], the author introduces a more efficient characterization of ∼O, by
defining a symbolic transition system. Labels on this lts are pairs (M,μ) where
M is a match sequence and μ is an action. A match sequence (ranged over by
M , N) is a sequence of equalities of names of the form [a = b]. We will write
MN to denote the concatenation of M and N and M � N if M implies N ,
i.e., whenever M holds, also N holds. Every matching sequence M defines an
equivalence relation EM . We denote by σM a special substitution that chooses
a representative for each equivalence class of EM , and maps every name in the
representative of its class. Note that there may exists more than one σM , we
just choose one of them.

The symbolic transition system is presented in Table 2. In the transition
p
M,μ−→e p

′, M represents the minimal substitution σM that allows p to perform



Symbolic Semantics Revisited 399

Table 2. Symbolic transition system for open π-calculus

(pre) α.p
∅,α−→e p (cls)

p
M,a(x)−−−→e p

′ q
N,b(x)−−−→e q

′

p | q MN [a=b],τ−−−−−−→e νx.p
′ | q′

(sum)
p

M,μ−→e p
′

p+ q
M,μ−→e p

′

(par)
p

M,μ−→e p
′

p | q M,μ−→e p
′ | q

bn(μ) ∩ fn(q) = ∅ (com)
p

M,ab−−→e p
′ q

N,c(d)−−−→e q
′

p | q MN [a=c],τ−−−−−−→e p
′ | q′{b/d}

(rep)
p | p! M,μ−→e q

p!
M,μ−→e q

(mat)
p

M,μ−→e p
′

[a = b]p
M[a=b],μ−−−−−→e p

′

(res)
p

M,μ−→e p
′

νb.p
M,μ−→e νb.p

′ b /∈ nm(M ∪ μ) (opn)
p

M,ab−−→e p
′

νb.p
M,a(b)−−−→e p

′
b /∈ nm(m) ∪ {a}

μ. As an example consider the processes p = [a = b]τ and q = p+[c = d][a = b]τ .

The process q can perform the transitions q
[a=b],τ−−−→e 0 and q

[a=b][c=d],τ−−−−−−→e 0, while
p performs only the former transition. However p ∼O q.

Definition 3. Let R = {RD | D ∈ D} be a D sorted family of symmetric
relations. R is an efficient open bisimulation iff ∀D ∈ D, whenever pRDq:

– if p
M,α−→e p

′ with bn(α) fresh and M respects D, then q
N,α′
−−→e q

′ such that
M �N , σM (α) ≡α σM (α′) and σM (p′)RσM (D)σ

M (q′),

– if p
M,a(b)−−−→e p

′ with b fresh and M respects D, then q
N,c(b)−−−→e q

′ such that
M �N , σM (a(b)) ≡α σM (c(b)) and σM (p′)RD∗

M
σM (q′)

where D∗M = σM (D) ∪ {(b, i), ∀i ∈ fn(σM (p) ∪ σM (q))}.
We write p 	D q, if there is an efficient open bisimulation R such that pRDq.

Intuitively the above clauses ensure that in the ordinary transition system, the

move σM (p)
σM (α)−−−→ σM (p′) is matched by σM (q)

σM (α′)−−−→ σM (q′). In [21], it is
proved that 	 and ∼O coincide, but the former is more efficient than the latter,
since 	 forces only those fusions of names which are strictly necessary to ensure
the equivalence, while ∼O forces all the fusions.

The asynchronous fragment. The asynchronous π-calculus [9,1] is defined as
a subset of π, without output prefixes and outputs in choice points. Formally:

p ::= ab, p1 | p2, νa.p, !g, g g ::= 0, α.p, g1 + g2 α ::= a(b), τ

The operational semantics is obtained by replacing the rules (sum) and (rep)
of Table 1 with the three rules of Table 3. The main difference with standard
π is in the notion of observation. Indeed in the asynchronous case, input are
not observable. Intuitively an observer that sends a message to a system, cannot
know if the system has received it. Thus bisimulation ignores input transitions.



400 F. Bonchi and U. Montanari

Table 3. Operational semantics of the asynchronous π-calculus

(out) ab
ab−→ 0 (sum)

g
μ−→ p

g + g′
μ−→ p′

(rep)
g

μ−→ p′

!g
μ−→ p′|!g

Definition 4 (oτ-bisimilarity). A symmetric relation R is an oτ-bisimulation
iff, whenever pRq, if p

μ−→ p′ where μ is not an input action and bn(α) is fresh,
then q

μ−→ q′ and p′Rq′. Let ∼oτ be the largest oτ-bisimulation.

Note that a(x).cx ∼oτ a(x).dx, even if the two processes are really different
when they are put in parallel with a process ab. In order to obtain an abstract
semantics preserved under parallel composition, we proceed analogously to open
bisimilarity, i.e. at any step of the bisimulation we put the process in parallel
with all possible outputs (in the open we apply all possible substitutions).

Definition 5 (1-bisimilarity). An 1-bisimulation is an oτ-bisimulation Rsuch
that pRq implies ∀ab, (ab | p)R (ab | q). Let ∼1 be the largest 1-bisimulation.

Definition 6 (asynchronous bisimilarity). A symmetric relation R is an

asynchronous bisimulation iff it is an oτ-bisimulation and whenever pRq, if p
a(b)−→

p′, then either q
a(b)−→ q′ and p′Rq′, or q τ−→ q′ and p′R(q′ | ab). Let ∼a be the

largest asynchronous bisimulation1.

In [1], it is proved that ∼1=∼a. Our theory will formally show that ∼1=∼a and
∼O=	 are two instances of the same general concept. The abstract semantics
∼1 and ∼O are saturated, i.e., obtained by closing w.r.t. all contexts, while ∼a
and 	 are symbolic, i.e., efficient characterizations of the saturated ones.

3 Saturated and Symbolic Semantics

A closed many-sorted unary signature (S,Σ) consists of a set of sorts S, and an
S × S sorted family Σ = {Σs,t | s, t ∈ S} of sets of operation symbols which are
closed under composition, that is if f ∈ Σs,t and g ∈ Σt,u, then g ◦ f ∈ Σs,u.
Given f ∈ Σu,v, g ∈ Σt,u, h ∈ Σs,t, f ◦ (g ◦ h) = (f ◦ g) ◦ h and moreover ∀s ∈ S,
∃ids ∈ Σs,s such that ∀f ∈ Σs,t, idt ◦ f = f and f ◦ ids = f . A (S,Σ)-algebra
A consists of an S sorted family |A| = {As | s ∈ S} of sets and a function
fA : As → At for all f ∈ Σs,t such that (g ◦ f)A = gA(fA(−)) and idsA is the
identity function on As

2. When A is clear from the context, we will write f to
mean fA, and we will write As to mean the set of sort s of the family |A|. Given
f ∈ Σs,t, we call s the source of f , and t the target.

1 In [1], ∼a was originally defined in the early lts. The above definition, however
coincides with the original ∼a because ∼a=∼g (Corollary 1, [1]).

2 A closed many-sorted unary signature (S,Σ) is a category C and a (S,Σ)-algebra is
a presheaf on C. We adopt the above notation to be accessible to a wider audience.



Symbolic Semantics Revisited 401

In order to develop a general theory of bisimulation, we introduce context
interactive systems. In our theory, an interactive system is a state-machine that
can interact with the environment (contexts) through an evolving interface.

Definition 7 (Context Interactive System). A context interactive system
I is a quadruple 〈(S,Σ),A, O, tr〉 where:

– (S,Σ) is a closed many-sorted unary signature,
– A is a (S,Σ)-algebra,
– O is a set of observations,
– tr ⊆ |A|×O×|A| is a labeled transition relation (p o−→ p′ means (p, o, p′) ∈ tr).

Roughly speaking sorts are interfaces of the system, while operators of Σ are
contexts. Every state p with interface s (i.e. p ∈ As) can be inserted into the
context c ∈ Σs,t, obtaining cA(p) that has interface t. Every state can evolve into
a new state (possibly with different interface) producing an observation o ∈ O.

The abstract semantics of interactive systems is usually defined through be-
havioural equivalences. In this paper we propose a general notion of bisimilarity.
The idea is that two states of a system are equivalent if they are indistinguish-
able from an external observer that, in any moment of their execution, can insert
them into some environment and then observe some transition.

Definition 8 (Saturated Bisimilarity). Let I = 〈(S,Σ),A, O, tr〉 be a con-
text interactive system. Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family
of symmetric relations. R is a saturated bisimulation iff, ∀s, t ∈ S, ∀c ∈ Σs,t,
whenever pRsq, if cA(p) o−→ p′, then cA(q) o−→ q′ and p′Rq′.

We write p ∼Ss q iff there is a saturated bisimulation R such that pRsq.

An alternative but equivalent definition can be given by defining the saturated
transition system (satts) as follows: p

c,o−→S q if and only if c(p) o−→ q. Trivially
the standard bisimilarity over satts coincides with ∼S .

Proposition 1. ∼S is the coarsest bisimulation congruence.

Saturated bisimulation is a good notion of equivalence but it is hard to check,
since it involves a quantification over all contexts. A solution out of the impasse
is suggested by 	. We can define a symbolic transition system where transitions
are labeled both with the usual observation and also with the minimal context
(substitutions, in the case of open π) that allows the transition.

Definition 9 (Symbolic Context Transition System). A symbolic context
transition system (scts for short) for a system I = 〈(S,Σ),A, O, tr〉 is a tran-
sition system β ⊆ |A| ×Σ ×O × |A|.
In scts, we have two labels with different tastes. The first label is a context that
tells us when the transition can be performed. We call this label the interaction,
while the second is the observation produced by the transition. It is worth to
note that in some formalisms interactions and observations coincide and thus



402 F. Bonchi and U. Montanari

only one label is necessary. However, in the general case, the two concepts are
distinct as it is the case of asynchronous formalisms, where the input interaction

cannot be observed. In the asynchronous π, the transition a(x)
a(x)−→ 0, can be

seen as a(x)
−|ab,τ−−−→β 0, where − | ab is the interaction (i.e., the minimal context

that allows the transition) and τ is the observation.
The intuitive meaning of such a transition is that for all larger contexts − |

ab | Q, we have that a(x) | ab | Q τ−→ 0 | Q. The same happens in the symbolic

lts of ∼O, where the transition [a = b]cd
[a=b],cd−−−−→e 0 roughly means that for all

substitution σ that equate a and b, σ([a = b]cd)
σ(cd)−−→ σ(0).

It is worth to note that there is a difference between the asynchronous and
the open case. In the former, the insertion inside the context does not modify
the observation, while in the open, the substitution is applied also to the obser-
vation. In general, contexts can modify in many different ways the execution of
a transition. For example in the π-calculus, the prefix contexts α.− inhibits all
the transitions (i.e. if p

μ−→ p′, then α.p � μ−→), while the context νa.− inhibits only
the transitions with subject a. For this reason we need a set of rules that for-
mally describes how contexts modify transitions. Hereafter we fix the following
format.

ps
o−→ qt

c(ps)
o′−→ d(qt)

This rule states that all processes with sort s that perform a transition with
observation o going into qt, when inserted into the context c ∈ Σs,s′ can perform
a transition with the observation o′ going into d(qt) for some context d ∈ Σt,t′ .

In the following, we write c o

o′
d to mean a rule like the above. The rules

c
o

o′
c′ and d o′

o′′
d′ derive the rule d ◦ c o

o′′
d′ ◦ c′ if d ◦ c and d′ ◦ c′

are defined. Given a set of rules R, Φ(R) is the set of all the rules derivable from
R together with the identities rules (∀o ∈ O and ∀s, t ∈ S, ids

o

o
idt).

Definition 10 (Saturation). Let I = 〈(S,Σ),A, O, tr〉 be a context interactive
system, β an scts and R a set of rules of the format described above. The
saturation of β w.r.t. R (denoted by R(β)) is the transition system described as:

p
c,o−→β p

′ d
o

o′
e ∈ Φ(R)

p
d◦c,o′−−→R(β) e(p′)

.

We say that β and R are sound and complete w.r.t. I if the saturation of β
w.r.t. R coincides with satts, i.e., p

c,o−→R(β) p
′ iff p

c,o−→S p
′ (i.e., iff c(p) o−→ p′).

A transition p
c,o−→ q dominates p

c′,o′−→ q′ if there exists d o

o′
e ∈ Φ(R) such

that c′ = d ◦ c and q′ = q(e).



Symbolic Semantics Revisited 403

A sound and complete scts could be considerably smaller than the saturated
transition system, but still containing all the information needed to recover ∼S .
Note that the standard bisimilarity over scts is usually stricter than ∼S. Con-

sider a process p that performs only the transitions p
c,o−→β p1 and p

c′,o′−→β p2 such
that c′ = d ◦ c, d o

o′
e, e(p1) ∼S p2. Now take a process q that performs

only q
c,o−→β q1 such that p1 ∼S q1. Clearly p and q are not bisimilar on scts,

because p
c′,o′−→β p

′ while q cannot. However p ∼S q, because q
c′,o′−→R(β) e(q1) (i.e.,

c′(q) o′−→ e(q1)) and, since q1 ∼S p1, then e(q1) ∼S e(p1) ∼S p2.

Definition 11 (Symbolic and Semi-Saturated Bisimilarity). Let I =
〈(S,Σ),A, O, tr〉 be an interactive system, R be a set of rules and β be a symbolic
transition system. Let R = {Rs ⊆ As × As | s ∈ S} be an S sorted family of
symmetric relations. R is a symbolic bisimulation iff ∀s ∈ S, whenever pRsq:

– if p
c′,o′−→β p

′
1, then ∃d o

o′
d′ ∈ Φ(R), d ◦ c = c′, q

c,o−→β q1 and p′1Rd
′(q1).

We write p ∼SYMs q iff there exists a symbolic bisimulation R such that pRsq.
Semi-saturated bisimilarity (∼SS) is obtained replacing the above condition with:

– if p
c′,o′−→β p

′
1, then c′(q) o′−→ q′1 and p′1Rq

′
1.

Theorem 1. Let I be a context interactive system, β an scts and R a set of
rules. If β and R are sound and complete w.r.t. I, then ∼SYM=∼SS=∼S.

4 Context Interactive Systems for π-Calculus

In this section we present context interactive systems for asynchronous (4.1)
and open (4.2) π-calculus. In the former, contexts are parallel output processes,
saturated bisimilarity coincides with ∼1, while symbolic bisimilarity coincides
with ∼a. In the latter, contexts are fusions of names that respect distinctions,
saturated bisimilarity coincides with ∼O and symbolic bisimilarity with 	.

4.1 Asynchronous

We assume the set of names N to be totally ordered . With n we mean both the
nth names and the set of names smaller or equal than n. The context interactive
system for asynchronous π-calculus is A = 〈(SA, ΣA),A, OA, trA〉.

The many-sorted signature (SA, ΣA) is formally defined as

– SA = ω (the set of natural numbers);
– ΣAn,m with m ≥ n is the set of contexts c generated by c ::= −, − | ab, where
a ∈ n and b ∈ m.3

3 ∀n ∈ ω, idn is − ∈ ΣA
n,n, while ◦ is the syntactic composition of contexts.



404 F. Bonchi and U. Montanari

Let us define the (SA, ΣA)-algebra A. For every sort n, An is the set of asyn-
chronous π-processes p such that n ≥ max fn(p). Then ∀p ∈ An and ∀c ∈ ΣAn,m,
cA(p) is the process of sort m obtained by syntactically inserting p into c. In
this system, interfaces are sets of names. A process with interface n uses only
names in n (not all, just a part) and can be put in parallel with outputs sending
messages over n. Given a process p and a natural number n ≥ max fn(p), we
denote with pn the process p with interface n.

The set of observations is OA = {ab, a(), τ | a, b ∈ N}. Note that the input
action is not an observation, since in the asynchronous case it is not observable.
Moreover note that in the bound output, the sent name does not appear. This
is because, any process with sort n will send as bound output the name n+ 1.

The following rules define the transition structure trA (denoted by −→A).

p
ab−→ p′

pn
ab−→A p′n

p
τ−→ p′

pn
τ−→A p′n

p
a(n+1)−−−→ p′

pn
a()−→A p′n+1

Proposition 2. Let p, q be asynchronous π-processes, and let n ≥ max fn(p∪q).
Then p ∼1 q iff pn ∼Sn qn.
The above result states that ∼1 is an instance of the more general concept of
saturated bisimilarity. In the rest of this subsection, we will show that ∼a is an
instance of symbolic bisimilarity. The scts for the asynchronous π is defined by
the following rule, where − ∈ ΣAn,n and − | am ∈ ΣAn,x.

p
ab−→ p′

pn
−,ab−→α p

′
n

p
a(n+1)−−−→ p′

pn
−,a()−−→α p

′
n+1

p
τ−→ p′

pn
−,τ−→α p

′
n

p
a(m)−−→ p′ x = max{m,n}

pn
−|am,τ−−−→α p

′
x

Note that the only non standard rule is the fourth. If, in the standard tran-
sition system a process can perform an input, in the scts the same process can
perform a τ , provided that there is an output processes in parallel. Note that
the sort of the arriving state depends on the name received m: if it is smaller
than n, then the arriving sort is n, otherwise it is m.

Now we have to define a set of rulesRA that describes how contexts transforms
transitions. Since our contexts are just parallel outputs, all the contexts preserve
transitions. This is expressed by the following (parametric) rules

Pn
τ−→A P ′n

c(Pn) τ−→A c(P ′n)
Pn

ab−→A P ′n
c(Pn) ab−→A c(P ′n)

Pn
a(b)−→A P ′n+1

c(Pn)
a(b)−→A c+1(P ′n+1)

where c ∈ ΣAn,m is a generic context, and c+1 ∈ ΣAn+1,m+1 is the same syntac-
tic context as c, but with different sorts. Instantiating the general definition of
symbolic bisimulation to α and RA, we retrieve the definition of asynchronous
bisimulation. Indeed transitions of the form p

−,μ−→α p′ (in the original lts τ
and output), can be matched only by transitions with the same label, while



Symbolic Semantics Revisited 405

transitions p
−|am,τ−−−→α p

′ (the input) can be matched either by q
−|am,τ−−−→α q

′ using

the rule id τ

τ
id or by q

−|,τ−→α q
′ using the rule − | am τ

τ
− | am.

Proposition 3. Let p, q be asynchronous π-processes, and let n ≥ max fn(p∪q).
Then p ∼a q iff pn ∼SYMn qn.

Proposition 4. α and RA are sound and complete w.r.t. A.

Corollary 1 (by Thm. 1). ∼1=∼a as shown in [1].

4.2 Open

In this section we will present O = 〈(SO, ΣO),O, OO, trO〉 for open π-calculus.
As in the asynchronous case, we assume the set of names N to be totally or-
dered4, and we write n to mean the set of names smaller or equal to n. A fusion
σ : n→ m is a surjective function where

σ(i) < σ(j)⇒ ∃k ∈ σ−1(σ(i)) such that k < j.
1 1

2 2

3

�����

1 �� 1

2
��

2

3
��

The above condition guarantees that fusions are in one to one correspondence
with the equivalence classes on names and thus with matching sequences. For
example consider the two functions depicted above on the right. Both represents
the matching [1 = 3], but only the leftmost is a fusion.

The multi-sorted signature (SO, ΣO) is formally defined as

– ΣO = {(n,D) for n ∈ ω and D ∈ D such that nm(D) ⊆ n};
– ΣO(n,D),(n′,D′) is the set of fusions σ : n→ n′ such that:

1. Respect distinction, i.e., iDj ⇒ σ(i) �= σ(j),
2. Preserve distinction, i.e., iDj ⇒ σ(i)D′σ(j).5

Let us define the (SO, ΣO)-algebra O. For every sort (n,D), On,D is the set of
processes p such that n ≥ max{fn(p)}. Then ∀p ∈ On,D and ∀σ ∈ ΣO(n,D),(n′,D′),
σO(p) is the process of sort (n′, D′) obtained by replacing in p all the occurrences
of a ∈ fn(p) with σ(a). In this system, interfaces are pairs (n,D) where n is a set
of names (as in the asynchronous case) and D is a distinction. A process with
interface (n,D), can be inserted only in those fusions that respect D. Given a
process p, a natural number n ≥ max fn(p) and D such that nm(D) ⊆ n, we
denote with pn,D the process p with interface (n,D).

The set of observations is OO = {a(), ab, a(), τ | a, b ∈ N}. Differently from
the asynchronous case, here input is observable. However note that the received
name does not appear. This is because any process with sort (n,D) will receive
the name n+ 1 (that could be later fused with other names).

The following rules define the transition structure trO (denoted by −→O).

4 We can work with not ordered N by taking as signature the category D of [13].
5 ∀(n,D) ∈ ΣO, idn,D is the identity fusion, while ◦ is composition of substitutions.



406 F. Bonchi and U. Montanari

p
ab−→ p′

pn,D
ab−→O p′n,D

p
τ−→ p′

pn,D
τ−→O p′n,D

p
a(n+1)−−−→ p′

pn,D
a()−→O p′n+1,D

p
a(n+1)−−−→ p′

pn,D
a()−→O p′n+1,D̄

where D̄ = D ∪ {(n + 1, i), ∀i < n + 1}. The only non-standard transition is
the bound output, where in the arriving state the distinction D is forced.

Proposition 5. Let p, q ∈ O be π-processes, and let n ≥ max fn(p ∪ q) and
nm(D) ⊆ n. Then p ∼OD q iff pn,D ∼Sn,D qn,D.

In order to define the symbolic transition system we have to fix some nota-
tions. For any σ ∈ ΣO(n,D),(m,D′), we denote by σ+1 ∈ ΣO(n+1,D),(m+1,D′) the
fusion that maps n + 1 into m + 1 and all the i ≤ n into σ(i), while we use
σ+1 ∈ ΣO

(n+1,D),(m+1D′)
to mean σ+1 with the enforced distinction D′. For any

matching sequence M that respects D, we denote by σM ∈ ΣO(n,D),(m,σM(D)) the
unique fusion corresponding to M .

The following rules define the scts by relying on the symbolic transition
system presented in Sec. 2. In all the rules, we implicitly assume as premise that
σM respects D.

p
M,ab−−→e p

′

pn,D
σM ,σM (a)σM (b)−−−−−−−−−→o σ

M (p′n,D)

p
M,τ−→e p

′

pn,D
σM ,τ−−→o σ

M (p′n,D)

p
M,a(n+1)−−−−−→e p

′

pn,D
σM ,σM (a)()−−−−−−→o σ

M+1
(p′n+1,D)

p
M,a(n+1)−−−−−→e p

′

pn,D
σM ,σM (a)()−−−−−−→o σM

+1(p′
n+1,D

)

Our scts differs form the canonical symbolic transition system, because the sub-
stitution here is applied both to observations and arriving states. Now we have
to fix a set of rules RO that describes how fusions transform transitions. It is
well known from [16] that substitutions preserve all the transitions by apply-
ing the substitution also to the observation. This is expressed by the following
parametric rules for every σ ∈ ΣO(n,D),(n′,D′).

Pn,D
τ−→ P ′n,D

σ(Pn,D) τ−→ σ(P ′n,D)
Pn,D

ab−→ P ′n,D

σ(Pn,D)
σ(a)σ(b)−−−−→ σ(P ′n,D)

Pn,D
a()−→ P ′n+1,D

σ(Pn,D)
σ(a)()−−→ σ+1(P ′n+1,D)

Pn,D
a()−→ P ′

n+1,D

σ(Pn,D)
σ(a)()−−→ σ+1(P ′

n+1,D
)

Proposition 6. Let p, q ∈ O be π-processes, and let n ≥ max fn(p ∪ q) and
nm(D) ⊆ n. Then p 	D q iff pn,D ∼SYMn,D qn,D.

Proposition 7. o and RO are sound and complete w.r.t. O.

Corollary 2 (by Thm. 1). ∼O=	 as shown in [21].



Symbolic Semantics Revisited 407

5 Open Petri Nets

Differently from process calculi, Petri nets have not a widely known interactive
behaviour. Indeed they model concurrent systems that are closed, in the sense
that they do not interact with the environment. Open nets [10,2] are P/T Petri
nets that can interact by exchanging tokens on input and output places.

Given a set X , we write X⊕ for the free commutative monoid over X . A
multiset m ∈ X⊕ is a function from X to ω (the set of natural number) that
associates a multiplicity to every element of X . Given two multisets m1 and m2,
m1⊕m2 is defined as ∀x ∈ X , m1⊕m2(x) = m1(x)+m2(x). We write m1 ⊆ m2

if ∀x ∈ X , m1(x) ≤ m2(x). If m1 ⊆ m2, the multiset m2 � m1 is defined as
∀x ∈ X m2 �m1(x) = m2(x) −m1(x). Given a set Y ⊆ X , and m ∈ X⊕, the
multiset m � Y is defined as m � Y (x) = m(x) if x ∈ Y , 0 otherwise. We write
∅ to denote both the empty set and the empty multiset.

Definition 12 (open net). An open net is a tuple N = (S, T, pre, post, λ, I, O)
where S is the set of places, T is the set of transitions (with S ∩ T = ∅),
pre, post : T → S⊕ are functions mapping each transition to its pre- and post-
set, λ : T → Λ is a labeling function (Λ is a set of labels) and I,O ⊆ S are the
sets of input and output places (with I ∩ O = ∅). A marked open net is pair
〈N,m〉 where N is an open net and m ∈ S⊕ is a marking.

Fig. 1 shows two open nets where, as usual, circles represents places and rectan-
gles transitions (labeled with α, β, χ). Arrows from places to transitions represent
pre, while arrows from transitions to places represent post. Input places are de-
noted by ingoing edges, while output places are denoted by outgoing edges. Thus
in N1, x and y are output places, while z is the only input place. In N2, it is the
converse. The parallel composition of the two nets is defined by attaching them
on their input and output places. As an example, we can compose N1 and N2

by attaching them through x, y and z.
The operational semantics of marked open nets is expressed by the rules on

Table 4 where, in order to make lighter the notation, we use •t and t• to denote
pre(t) and post(t) and we avoid to put brackets around the marked net 〈N,m〉.
The rule (tr) is the standard rule of P/T nets (seen as multisets rewriting),
while the other two are specific of open nets. The rule (in) states that in any
moment a token can be inserted inside an input place and, for this reason, the
lts has always an infinite number of states. The rule (out) states that when a
token is in an output place, it can be removed. Fig.1[A] shows part of the infinite
transition system of 〈N2, a〉.

The abstract semantics is defined in [3] as the standard bisimilarity (denoted
by ∼N ) and it is a congruence under the parallel composition outlined above.
This is due to the rules (in) and (out), since they put a marked net in all the
possible contexts. If we consider just the rule (tr), then bisimilarity fails to be
a congruence. Thus also for open nets, the canonical definition of bisimulation
consists of inserting the system in all the possible contexts and observing what



408 F. Bonchi and U. Montanari

N1 N2

[A] a
+x ��

+y

��

ax
+x ��

+y

��

α
�����

axx
+x ��

+y ��

α
�����

. . .

c
+x ��

+y

��

. . .

. . . . . . . . .

. . .

[B] b
〈x,∅〉,α �� c

〈y,∅〉,β �� z

a
〈xy,∅〉,α��

〈x,∅〉,α����

������

d

〈∅,∅〉,β����

������

cy

〈∅,∅〉,β
��

Fig. 1. N1 and N2 are two open Petri nets. [A] Part of the infinite transition system
of 〈N2, a〉. [B] The symbolic transition system of 〈N2, a〉, 〈N2, b〉 and 〈N2, cy〉.

happens, but differently from open and asynchronous bisimilarity, a symbolic
lts and an efficient characterization of ∼N has never been given.

5.1 Context Interactive System for Open Nets

In this section we introduce the context interactive system for open nets N =
〈(SN , ΣN ),N, Λ, trN 〉. Contexts are insertions and the deletions of tokens.

The many-sorted signature (SN , ΣN ) is formally defined as:

– SN = {(I,O,m) | m ∈ O⊕},
– ΣN(I,O,m),〈I,O,m′〉 = {〈i, o〉 | i ∈ I⊕, o ∈ O⊕, o ⊆ m, m′ = m� o}.6

The sorts of the signature are triples (I,O,m) where I and O are sets of input
places and output places and m ∈ O⊕ is a marking on the output places.

Operators of ΣN are pairs 〈i, o〉 ∈ ΣN(I,O,m),〈I,O,m′〉 where i ∈ I⊕, o ∈ O⊕ are,
respectively, multisets of tokens added in the input places and removed from the
output places. Note that in the target sort, the set of input and output places
are the same of the source (meaning that context cannot modify I and O), while
the marking m′ ∈ O⊕ is equal to m� o.

We say that an open net N has interface (I,O) if I and O are respectively its
sets of input and output places. While a marked open net 〈N,m〉 has interface
(I,O,m′) if (I,O) is the interface of N and moreover if m′ = m � O. This
means that tokens in the output places are visible from the environment, while
tokens in the input places are not. We can better understand this difference, by
observing that the environment can remove tokens in the output places only if
they are present, while it can always add tokens in the input places.

Let us define the (SN , ΣN )-algebra N. For any sort (I,O,m), the carrier set
NI,O,m contains all the marked open nets with interface (I,O,m). Any opera-
tor 〈i, o〉 ∈ Σ(I,O,m),(I,O,m′) is defined as the function that maps 〈N,m1〉 into
〈N,m1 ⊕ i� o〉. The transition structure trN (denoted by −→N ) associates to a
state 〈N,m〉 the transitions obtained by using the rule (tr) of Table 4.

6 ∀(I,O,m) ∈ SN , idI,O,m is 〈∅,∅〉, while 〈i1, o1〉 ◦ 〈i2, o2〉 = 〈i1 ⊕ i2, o1 ⊕ o2〉.



Symbolic Semantics Revisited 409

Table 4. Operational Semantics of marked open nets

(tr)
t ∈ T λ(t) = l m = •t⊕ c

N,m
l−→ N, t• ⊕ c

(in) i ∈ IN

N,m
+i−→ N,m⊕ i

(out) o ∈ ON o ∈ m

N,m
−o−→ N,m
 o

Proposition 8. Let 〈N1,m1〉 and 〈N2,m2〉 be two marked nets both with inter-
face (I,O,m). Thus 〈N1,m1〉 ∼N 〈N2,m2〉 iff 〈N1,m1〉 ∼SI,O,m 〈N2,m2〉.

5.2 A Symbolic Semantics for Open Nets

In the case of open and asynchronous π-calculus, we already knew the symbolic
transition system by classical results in literature. In the case of open nets, no
symbolic semantics does exists, and thus we have to define it. We use exactly the
same intuition underlying the symbolic lts of open and asynchronous, i.e., we
consider the minimal contexts that allow a given system to perform a transition.

The scts for open nets, η is defined by the following rule.

t ∈ T λ(t) = l m = (m ∩ •t)⊕ c i ⊆ I⊕ •t = (m ∩ •t)⊕ i o ⊆ c � O

N,m
〈i,o〉,l−−→η N, t

• ⊕ c� o
The marking m ∩ •t contains all the tokens of m that are needed to perform t.
The marking c contains all the tokens of m that are not useful for performing
t, while the marking i contains all the tokens that m needs to reach •t. Note
that i is exactly the smallest multiset that is needed to perform the transition
t. Indeed if we take i1 strictly included into i, m⊕ i1 cannot match •t.

As an example consider the net N1 in Fig. 1 with marking gxy and let t be the
only transition labeled with χ. We have that gxy∩ •t = gy, c = x and i = z. Thus

N1, gxy
〈z,x〉,χ−−−→η N1, e and also N1, gxy

〈z,∅〉,χ−−−→η N1, ex. In the former transition
we have taken o equal to x = c � O, while in the latter o = ∅. The multiset c � O
is the largest that can be safely removed by m without inhibiting the transition
t. Differently than input, in the output we have to consider both the transitions
(expressed by the premise o ⊆ c � O) because one cannot dominate (in the sense
of Def. 10) the other. Indeed the former cannot dominate the latter because there
are no contexts that add tokens in the output places, while the latter cannot
dominate the former because in general, we cannot know if removing tokens from
output places preserves a transition.

This is expressed by the set of rules RN that is defined by the following
parametric rule.

N,m
l−→N N,m′

〈i,∅〉(N,m) l−→N 〈i,∅〉(N,m′)
This rule states that the addition of tokens in the input places preserves transi-
tions. While it does not state anything about the deletion of tokens. Indeed an
output place could be in the precondition of some transition (e.g., y in the net



410 F. Bonchi and U. Montanari

N1 in Fig. 1) and thus, the deletion of some tokens can inhibit the transition.
Fig. 1[B] shows the scts of 〈N2, a〉 and 〈N2, b〉. The former perform a transition
with 〈xy,∅〉, while the latter cannot. However they are saturated bisimilar.

Proposition 9. η and RN are sound and complete w.r.t. N .

The above proposition together with Thm. 1 state that symbolic and semi-
saturated bisimilarity coincide with ∼S . In the following we instantiate their
general definition to N and RN .

Definition 13 (Symbolic and semi-saturated bisimulation for nets). Let
R = {RI,O,m ⊆ NI,O,m × NI,O,m | (I,O,m) ∈ SN } be a SN sorted family of
symmetric relations. R is a symbolic bisimulation iff ∀(I,O,m) ∈ SN , whenever
〈N1,m1〉RI,O,m〈N2,m2〉

– if 〈N1,m1〉 〈i,o〉,l−−→η 〈N1,m
′
1〉 then ∃i1, x ∈ I⊕ such that:

i = i1 ⊕ x, 〈N2,m2〉 <i1,o>,l−−−−→η 〈N2,m
′
2〉 and 〈N1,m

′
1〉R〈N2,m2 ⊕ x〉.

R is a semi-saturated bisimulation iff whenever 〈N1,m1〉RI,O,m〈N2,m2〉

– if 〈N1,m1〉 〈i,o〉,l−−→η 〈N1,m
′
1〉 then 〈N2,m2 ⊕ i� o〉 l−→ 〈N2,m

′
2〉 and

〈N1,m
′
1〉R〈N2,m

′
2〉.

6 Leifer and Milner Reactive Systems

As stated in the introduction, our approach generalizes the theory of reactive sys-
tem by Leifer and Milner [11]. They define the syntax of the formalism through
a (Lawvere-like) category C whose arrows are contexts and terms are arrows
having as source a special object 0. In our theory, C is the closed many-sorted
unary signature (S,Σ): objects are sorts and arrows are operators. Every term
p : 0 → s is an element of the carrier-set As. Given a context c : s → t, the
composition p; c is defined as cA(p). They also define a subcategory D of reactive
arrows. This is modeled in our formalism by adding for every arrow d ∈ D a rule
as the following: p −→ q

d(p) −→ d(q) .

They define the reaction relation by closing some reaction rules under all
reactive contexts. In the same way, we start with some labeled transitions (that
generalize rewriting rules) and we generalizes w.r.t. all the rules as the above.
Idem-PushOut (IPO) represents the minimal context that allows a reaction. The
transition system labeled with IPOs (its) is an instance of our scts. Indeed the
saturation of it, trough the above rules exactly coincides with satts as formally
shown in [5]. However, IPO-bisimilarity (that is a congruence under restrictive
condition) is stricter than ∼S. In [5], we have provided a symbolic bisimilarity
for its (Thm. 3) and proved that it coincides with ∼S . This result is thus a
special case of Thm. 1 presented here.



Symbolic Semantics Revisited 411

7 Conclusions

In this paper we have introduced saturated bisimilarity for context interactive
systems and an efficient way to characterize it through symbolic bisimilarity.
We have shown that our theory works for real formalism re-deriving well-known
semantics, namely, the saturated and symbolic versions of asynchronous and
open bisimilarities. Moreover we have applied our approach to open Petri nets
with the result of a new (at our knowledge, the first) symbolic semantics that
efficiently characterizes canonical bisimilarity. Leifer and Milner reactive systems
have been applied to open Petri nets (without observations on transitions) in
[15,22], but the derived lts is infinite.

Our theory generalizes Leifer and Milner reactive systems by allowing obser-
vations. We think that observations are usually necessary, since one label cannot
represent at the same time both interaction and observation.

As next step, we would like to give a coalgebraic semantics for symbolic bisim-
ilarity by extending normalized coalgebras [6] and by exploiting the connections
with coalgebras on presheafs [7]. The coalgebraic approach might yield a general
minimization algorithm working directly on the symbolic transition systems in
the style of [19].

References

1. Amadio, R.M., Castellani, I., Sangiorgi, D.: On bisimulations for the asynchronous
π-calculus. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119,
pp. 147–162. Springer, Heidelberg (1996)

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. M.S.C.S 15(1), 1–35 (2005)

3. Baldan, P., Corradini, A., Ehrig, H., Heckel, R., König, B.: Bisimilarity and
behaviour-preserving reconfiguration of open petri nets. In: Mossakowski, T., Mon-
tanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 126–142.
Springer, Heidelberg (2007)

4. Bonchi, F., Gadducci, F., König, B.: Process bisimulation via a graphical encoding.
In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 168–183. Springer, Heidelberg (2006)

5. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In:
LICS, pp. 69–80. IEEE, Los Alamitos (2006)

6. Bonchi, F., Montanari, U.: Coalgebraic models for reactive systems. In: ECML
2007. LNCS, vol. 4701, pp. 364–380. Springer, Heidelberg (2007)

7. Fiore, M.P., Turi, D.: Semantics of name and value passing. In: LICS, pp. 93–104.
IEEE, Los Alamitos (2001)

8. Hennessy, M., Lin, H.: Symbolic bisimulations. T.C.S. 138(2), 353–389 (1995)
9. Honda, K., Tokoro, M.: An object calculus for asynchronous communication. In:

America, P. (ed.) ECOOP 1991. LNCS, vol. 512, pp. 133–147. Springer, Heidelberg
(1991)

10. Kindler, E.: A compositional partial order semantics for Petri net components. In:
Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 235–252. Springer,
Heidelberg (1997)



412 F. Bonchi and U. Montanari

11. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

12. Massuthe, P., Reisig, W., Schmidt, K.: An operating guideline approach to the
SOA. Annals of Mathematics, Computing & Teleinformatics 1(3), 35–43 (2005)

13. Miculan, M., Yemane, K.: A unifying model of variables and names. In: Sassone, V.
(ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 170–186. Springer, Heidelberg (2005)

14. Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge Uni-
versity Press, Cambridge (1999)

15. Milner, R.: Bigraphs for petri nets. In: Desel, J., Reisig, W., Rozenberg, G. (eds.)
ACPN 2003. LNCS, vol. 3098, pp. 686–701. Springer, Heidelberg (2004)

16. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, i and ii. Infor-
mation and Computation 100(1), 1–77 (1992)

17. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)

18. Montanari, U., Sassone, V.: Dynamic congruence vs. progressing bisimulation for
ccs. Fundamenta Informaticae 16(1), 171–199 (1992)

19. Pistore, M., Sangiorgi, D.: A partition refinement algorithm for the π-calculus.
Information and Computation 164(2), 264–321 (2001)

20. Rathke, J., Sassone, V., Sobocinski, P.: Semantic barbs and biorthogonality. In:
Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg
(2007)

21. Sangiorgi, D.: A theory of bisimulation for the π-calculus. Acta Informatica 33(1),
69–97 (1996)

22. Sassone, V., Sobociński, P.: A congruence for Petri nets. In: Petri Nets and Graph
Transformation. E.N.T.C.S, vol. 127, pp. 107–120. Elsevier, Amsterdam (2005)



Deriving Bisimulation Congruences in the

Presence of Negative Application Conditions�

Guilherme Rangel1, Barbara König2, and Hartmut Ehrig1

1 Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany

{rangel,ehrig}@cs.tu-berlin.de
2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,

Universität Duisburg-Essen, Germany
barbara koenig@uni-due.de

Abstract. In recent years there have been several approaches for the
automatic derivation of labels from an unlabeled reactive system. This
can be done in such a way that the resulting bisimilarity is automatically
a congruence. One important aspect that has not been studied so far is
the treatment of reduction rules with negative application conditions.
That is, a rule may only be applied if certain patterns are absent in the
vicinity of a left-hand side. Our goal in this paper is to extend the bor-
rowed context framework to label derivation with negative application
conditions and to show that bisimilarity remains a congruence. An im-
portant application area is graph transformation and we will present a
small example in order to illustrate the theory.

1 Introduction

Bisimilarity is an equivalence relation on states of transition systems, associating
states that can match each other’s moves. In this sense, bisimilar states can not
be distinguished by an external observer. Bisimilarity provides a powerful proof
technique to analyze the properties of systems and has been extensively studied
in the field of process calculi since the early 80’s. Especially for CCS [1] and the
π-calculus [2,3] an extensive theory of bisimulation is now available.

Congruence is a very desirable property that a bisimilarity may have, since it
allows the exchange of bisimilar systems in larger systems without effect on the
observable behavior. Unfortunately, a bisimulation defined on unlabeled reaction
rules is in general not a congruence. Hence, Leifer and Milner [4,5] proposed a
method that uses so-called idem pushouts (IPOs) to derive a labeled transition
system from unlabeled reaction rules such that the resulting bisimilarity is a
congruence. Motivated by this work, two of the authors proposed in [6,7] an
extension to the double pushout approach (DPO, for short) called DPO with
borrowed contexts (DPO-BC), which provides the means to derive labeled tran-
sitions from rewriting rules in such a way that the bisimilarity is automatically
� Research partially supported by the DFG project SANDS and DAAD (German

Academic Exchange Service).

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 413–427, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



414 G. Rangel, B. König, and H. Ehrig

a congruence. This has turned out to be equivalent to a technique by Sassone
and Sobociński [8,9] which derives labels via groupoidal idem pushouts. In all
approaches the basic idea is the one suggested by Leifer and Milner: the labels
should be the minimal contexts that an observer has to provide in order to
trigger a reduction.

The DPO with borrowed contexts works with productions consisting of two
arrows L ← I → R where the arrows are either graph morphisms, or—more
generally—arrows in an adhesive category. Even though the generative power of
the DPO approach is sufficient to generate any recursively enumerable set of graphs,
very often extra application conditions are a required feature of nontrivial speci-
fications. Negative application conditions (NACs) [10] for a graph production are
conditions such as the non-existence of nodes, edges, or certain subgraphs in the
graph G being rewritten, as well as embedding restrictions concerning the match
L → G. Similar restrictions can also be achieved in Petri nets with inhibitor arcs,
where these arcs impose an extra requirement to transition firing, i.e., a transition
can only be fired if some specific places are currently unmarked.

Graph transformation systems, which are our main focus, are often used for
specification purposes, where—in contrast to programming—it is quite conve-
nient and often necessary to constrain the applicability of rules by negative
application conditions. We believe that this is a general feature of specification
languages, which means that the problem of deriving behavioural equivalences
in the presence of NACs may occur in many different settings.

In this work we extend the borrowed context framework to handle productions
with negative application conditions. The extension, which is carried out for
adhesive categories, requires an enrichment of the labels which now do not only
indicate the context that is provided by the observer, but also constrain further
additional contexts that may satisfy the negative application condition. That
is, we do not only specify what must be borrowed, but also what must not be
borrowed. We prove that the main result of [7] (bisimilarity is a congruence) still
holds for our extension. Moreover, we further develop an up-to context technique
in order to cope with NACs and apply it to an example.

The current paper is structured as follows. Section 2 briefly reviews the DPO
approach with borrowed contexts. In Section 3 we discuss the problems which
arise due to productions with NACs and how they can be overcome in order to
guarantee that the derived bisimilarities are congruences. Section 4 presents the
up-to proof method for our extension and finally an example in terms of graph
transformation is shown in Section 5.

An extended example and the full proof with all lemmas can be found in a
technical report [11].

2 Double-Pushout with Borrowed Contexts

In this section we recall the DPO approach with borrowed contexts [6,7]. In
standard DPO [12], productions rewrite graphs with no interaction with any
other entity than the graph itself and the production. In the DPO with borrowed
contexts [7] graphs have interfaces and may borrow missing parts of left-hand



Deriving Bisimulation Congruences in the Presence of NACs 415

sides from the environment via the interface. This leads to open systems which
take into account interaction with the outside world.

The DPO-BC framework was originally defined for the category of graph
structures, but, as already stated in [6,7], its results can be automatically lifted to
adhesive categories since the corresponding proofs only use pushout and pullback
constructions which are compliant with adhesive categories. In the following we
present the DPO-BC setting for adhesive categories [13] to which we first give a
short introduction.

Definition 1 (Adhesive Category). A category C is called adhesive if

1. C has pushouts along monos;
2. C has pullbacks;
3. Given a cube diagram as shown on the right

with: (i) A → C mono, (ii) the bottom square a
pushout and (iii) the left and back squares pull-
backs, we have that the top square is a pushout
iff the front and right squares are pullbacks.

A′ ��

���
��

��

C′

����
�

��

B′ ��

��

D′

��

A ��

����
� C

����
�

B �� D

Pullbacks preserve monos and pushouts preserve epis in any category. Further-
more, for adhesive categories it is known that monos are preserved by pushouts.
For the DPO-BC extension to productions with negative application conditions,
defined in Section 3, we need one further requirement, namely that pullbacks
preserve epis. This means that if the square (A′, B′, A, B) above is a pullback
and A → B is epi, we can conclude that A′ → B′ is epi as well.

Our prototypical instance of an adhesive category, which will be used for the
examples in the paper are the categories of node-labeled and edge-labeled graphs,
where arrows are graph morphisms. In this category pullbacks preserve epis.

We will now define the notion of objects with interfaces and contexts, followed
by the definition of a rewriting step with borrowed contexts as defined in [7] and
extended in [9].

Definition 2 (Objects with Interfaces and Contexts). An object G with
interface J is an arrow J → G and a context consists of two arrows J → E ← J .
The embedding1 of J → G into a context J → E ← J is an object with interface
J → G which is obtained by constructing G as the pushout of J → G and J → E.

J ��

��
PO

E

��

J��

��

G �� G

Definition 3 (Rewriting with Borrowed Contexts). Given an object with
interface J → G and a production p : L ← I → R, we say that J → G reduces
to K → H with transition label2 J → F ← K if there are objects D, G+, C
and additional arrows such that the diagram below commutes and the squares are
1 The embedding is defined up to iso since the pushout object is unique up to iso.

Embedding/insertion into a context and contextualization are used as synonyms.
2 Transition labels, derived labels and labels are synonyms in this work.



416 G. Rangel, B. König, and H. Ehrig

either pushouts (PO) or pullbacks (PB) with monos. In this case a rewriting step
with borrowed context (BC step) is called feasible: (J → G) J→F←K−−−−−−→ (K → H).

D �� ��

��

��
PO

L
��

�� PO

I�� ��

��

��
PO

R
��

��

G �� ��

PO

G+

PB

C�� �� H

J

��

�� �� F

��

K��

�� 		

In the diagram above the upper left-hand square merges L and the object G to
be rewritten according to a partial match G ← D → L. The resulting object
G+ contains a total match of L and can be rewritten as in the standard DPO
approach, producing the two remaining squares in the upper row. The pushout
in the lower row gives us the borrowed (or minimal) context F , along with an
arrow J → F indicating how F should be pasted to G. Finally, we need an
interface for the resulting object H , which can be obtained by “intersecting” the
borrowed context F and the object C via a pullback. Note that the two pushout
complements that are needed in Definition 3, namely C and F , may not exist.
In this case, the rewriting step is not feasible. The arrows depicted as → in the
diagram above can also be non-mono (see [8]).

Note that with the procedure described above we may derive infinitely many
labels of the form J → F ← K. However, note that there are only finitely many
up to iso and hence they can be represented in a finite way.

A bisimulation is an equivalence relation between states of transition systems,
associating states which can simulate each other.

Definition 4 (Bisimulation and Bisimilarity). Let P be a set of produc-
tions and R a symmetric relation containing pairs of objects with interfaces
(J → G, J → G′). The relation R is called a bisimulation if, whenever we have
(J → G)R (J → G′) and a transition (J → G) J→F←K−−−−−−→ (K → H), then there
exists an object with interface K → H ′ and a transition (J → G′) J→F←K−−−−−−→
(K → H ′) such that (K → H)R (K → H ′).

We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that
relates the two objects with interface. The relation ∼ is called bisimilarity.

Theorem 1 (Bisimilarity is a Congruence [7]). The bisimilarity relation
∼ is a congruence, i.e., it is preserved by contextualization as described in
Definition 2.

3 Borrowed Contexts with NACs

Here we will extend the DPO-BC framework of [7] to productions with negative
application conditions. In order to simplify the theory and the presentation we
will from now on require that productions and objects with interfaces consist of
monos, which implies that all arrows in the diagram in Definition 3 are monos.



Deriving Bisimulation Congruences in the Presence of NACs 417

Prior to the extension we will investigate in Section 3.1 why such an extension
is not trivial. It is worth emphasizing that the extension will be carried out for
adhesive categories with an additional requirement that pullbacks preserve epis,
but the examples will be given in the category of labeled directed graphs. First
we define negative application conditions for productions.

Definition 5 (Negative Application Condition). A negative application
condition NAC (x) on L is a mono x : L → NAC . A mono m : L → G satisfies
NAC (x) on L if and only if there is no mono p : NAC → G with p ◦ x = m.

NAC

p 

���
���

L
m

��

x��

=

G

A rule L ← I → R with NACs is equipped with a finite set of negative application
conditions {L → NAC y}y∈Y and is applicable to a match m : L → G only if all
NACs are satisfied. If we add NACs to the rules in Definition 3, we have two
ways to check their satisfiability: before (on G) or after the borrowing (on G+),
but the latter is more suitable since the first one does not take into account any
borrowed structure.

3.1 Bisimulation and NACs – Is Bisimilarity Still a Congruence?

Let us assume that borrowed context rewriting works as in Definition 3 (with
monos) if the total match L → G+ satisfies all NACs of a production, i.e., G+

does not contain any prohibited structure (specified by a NAC) at the match of
L. With the following example in terms of labeled directed graphs we will show
that such a definition is unsuitable.

Below on the right we depict two servers as graphs with interfaces: J → G and
J → G′. An s-node represents a server. Each server has two queues Q1 and Q2

where it receives tasks to be processed. Tasks are modelled as loops and may
either be standard (T) or urgent (U). In real world applications, standard tasks
may come from regular users while urgent ones come from administrators. On
the left we depict how the servers work. Rule1 says that an urgent task in Q2

must be immediately executed, whereas Rule2 specifies how a standard task T
in Q2 is executed. The negative application condition NAC1 allows rule2 to be
fired only when there is no other T-task waiting in the high priority queue Q1.
We consider that a processed task is consumed by the server (see R1 and R2).



418 G. Rangel, B. König, and H. Ehrig

From the servers J → G and J → G′ above we derive the labeled transition
system (LTS) on the right w.r.t. rule1 and rule2. No further label can be derived
from K → H and K → H′ and the labels leading to these graphs are equal. By
Definition 4 we can conclude that (J → G) ∼ (J → G′). Since bisimilarity is a
congruence (at least for rules without NACs), the insertion of J → G and J → G′

into a context C, as in Definition 2, produces graphs J → G and J → G
′
respec-

tively, which should be bisimilar. Below we show a context C with a standard
task, the resulting graphs J → G and J → G

′
which received the T-task in queue

Q1 via the interface J, and their LTS. The server J → G
′

cannot perform any
transition since NAC1 of rule2 forbids the BC step, i.e., the T-task in Q2 cannot
be executed because there is another standard task in the high priority queue
Q1. However, J → G is still able to perform a transition and evolve to K → H.
Thus, bisimilarity is no longer a congruence when productions have NACs.

The LTS for J → G and J → G′ shows that label1, which is derived from rule1

(without NAC) is matched by label2, which is generated by rule2 (with NAC).
These matches between labels obtained from rules with and without NACs are
the reason why the congruence property does no longer hold. In fact, the actual
definitions of bisimulation and borrowed context step are too coarse to handle
NACs.

Our idea is to enrich the transition labels J → F ← K with some infor-
mation provided by the NACs in order to define a finer bisimulation based on
these labels. A label must not only know which structures (borrowed context) are
needed to perform it, but also which forbidden structures (defined by the NACs)
cannot be additionally present in order to guarantee its execution. These for-
bidden structures will be called negative borrowed contexts and are represented
by objects Ni attached to the label via monomorphisms from the borrowed con-
text F (see example below). In our server example, label1 would remain without
any negative borrowed context since rule1 has no NAC. However, label2 would
be the label below on the left, where the negative borrowed context F → N1

specifies that if a T-task was in Q1, then NAC1 would have forbidden the BC
step of J → G′ via rule2. That is, with the new form of labels the two graphs
are no longer bisimilar and hence we no longer have a counterexample to the
congruence property.



Deriving Bisimulation Congruences in the Presence of NACs 419

The intuition of negative borrowed contexts is the following: given J → G,
whenever it is possible to derive a label J → F ← K with negative borrowed
context F → Ni via a production p with NACs, then if J → G is inserted into
a context3 J → Ni ← J no further label can be derived from J → G via p
since some of its NACs will forbid the rule application (see example above on
the right). Put differently the label says that a transition can be executed if
the environment “lends” F as minimal context. Furthermore the environment
can observe that a production is only executable under certain constraints on
the context. Finally, it is not executable at all if the object G+ with borrowed
context already contains the NAC.

3.2 DPO with Borrowed Contexts – Extension to Rules with NACs

Now we are ready to extend the DPO-BC framework to deal with productions
with NACs. First we define when a BC step is executable.

Definition 6 (Executable Borrowed Context Step). Assume that all ar-
rows are mono. Given J → G, a production L ← I → R; {xy : L → NAC y}y∈Y

and a partial match G ← D → L, we say that the BC step is executable on
J → G if for the pushout G+ in the diagram below there is no py : NAC y → G+

with m = py ◦ xy for every y ∈ Y .

D ��

��
PO

L
m

��

xy
��

=
NAC y

py�����
��

J �� G �� G+

In the following we need the concept of a pair of jointly epi arrows in order to
“cover” an object with two other objects. That is needed to find possible overlaps
between the NACs and the object G+ which includes the borrowed context.

Definition 7 (Jointly Epi Arrows). Two arrows f : A → B and g : C → B
are jointly epi whenever for every pair of arrows a, b : B → D such that a ◦ f =
b ◦ f and a ◦ g = b ◦ g it holds that a = b.

In a pushout square the generated arrows are always jointly epi. This is a
straightforward consequence of the uniqueness of the mediating arrow.

Definition 8 (Borrowed Context Rewriting for Rules with NACs).
Given J → G, a production L ← I → R; {L → NAC y}y∈Y and a partial
match G ← D → L, we say that J → G reduces to K → H with transition label
J → F ← K; {F → Nz}z∈Z if the following holds:

(i) the BC step is executable (as in Definition 6);
(ii) there is an object C and additional arrows such that Diagram (1) below

commutes and the squares are either pushouts (PO) or pullbacks (PB) with
monos;

3 J → Ni is the composition of J → F → Ni.



420 G. Rangel, B. König, and H. Ehrig

(iii) the set {F → Nz}z∈Z contains exactly the arrows constructed via Dia-
gram (2) (where all arrows are mono). (That is, there exists an object Mz

such that all squares commute and are pushouts or arrows are jointly epi
as indicated.)

NAC y

D ��

�� PO

L
m��

xy

��

PO

I�� ��

�� PO

R
��

G ��

PO

G+

PB

C�� �� H

J

��

�� F

��

��

K��

�� ��

Nz

(1)

NAC y ��

=

Mz

PO

Nz
��

L

xy

��

m
��

j.epi

G+

��

F��

��
(2)

In this case a borrowed context step is feasible and we write: (J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−−−→ (K → H).

Observe that Definition 8 coincides with Definition 3 when no NACs are present
(cf. Condition (ii)). By taking NACs into account, a BC step can only be exe-
cuted when G+ contains no forbidden structure of any NAC y at the match of L
(Condition (i)). Additionally, enriched labels are generated (Condition (iii)).

In Condition (iii) the arrows F → Nz are also called negative borrowed contexts
and each Nz represents the structures that should not be in G+ in order to enable
the BC step. This extra information in the label is of fundamental importance
for the bisimulation game with NACs (Definition 9), where two objects with
interfaces must not only agree on the borrowed context which enables a transition
but also on what should not be present in order to perform the transition. The
negative borrowed contexts F → Nz are obtained from NAC y

xy← L
m→ G+ ← F

of Diagram (1) via Diagram (2), where we create all possible overlaps Mz of
G+ and NAC y in order to check which structures the environment should not
provide in order to guarantee the execution of a BC step. To consider all possible
overlaps is necessary in order to take into account that parts of the NAC might
already be present in the object which is being rewritten.

Whenever the pushout complement in Diagram (2) exists, the object G+ with
borrowed context can be extended to Mz by attaching the negative borrowed
context Nz via F . When the pushout complement does not exist, some parts of
G+ which are needed to perform the extension are not visible from the environ-
ment and no negative borrowed context is generated.

Due to the non-uniqueness of the jointly-epi square one single negative appli-
cation condition NAC y may produce more than one negative borrowed context.
Furthermore, the set {F → Nz}z∈Z is in general infinite, but if we consider
finite objects L, NAC y and G+ (i.e., objects which have only finitely many sub-
objects) there exist only finitely many overlaps Mz up to iso. Hence the set
{F → Nz}z∈Z can be finitely represented by forming appropriate isomorphism
classes of arrows.



Deriving Bisimulation Congruences in the Presence of NACs 421

A concrete instance of Diagram (2) is discussed in Section 5 in relation with
our running example.

Definition 9 (Bisimulation and Bisimilarity with NACs). Let P be a set
of productions with NACs and R a symmetric relation containing pairs of objects
with interfaces (J → G, J → G′). The relation R is called a bisimulation if, for

every (J → G)R (J → G′) and a transition (J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−−−→

(K → H), there exists an object with interface K → H ′ and a transition (J →
G′)

J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−−−→ (K → H ′) such that (K → H)R (K → H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that

relates the two objects with interface. The relation ∼ is called bisimilarity.

The difference between the bisimilarity of Definition 4 and the one above is
the transition label, which in the latter case is enriched with negative borrowed
contexts. Thus, Definition 9 yields in general a finer bisimulation.

We are now ready to show the congruence result. Recall that we are working
in the framework of adhesive categories. Our main result below needs one extra
requirement, namely that pullbacks preserve epis. The full proof of the following
theorem with all lemmas is contained in the technical report [11].

Theorem 2 (Bisimilarity based on Productions with NACs is a Con-
gruence). The bisimilarity ∼ of Definition 9 is a congruence, i.e., it is preserved
by contextualization as in Definition 2.

Proof (Sketch). In [7] it was shown for the category of graph structures that
bisimilarity derived from graph productions of the form L ← I → R with monos
is a congruence. The pushout and pullback properties employed in [7] also hold
for any adhesive category. Here we will extend the proof of [7] to handle produc-
tions with NACs in adhesive categories. All constructions used in this current
proof are compliant with adhesive categories, except for some steps which require
that pullbacks preserve epis.

We will show that whenever R is a bisimulation, then R̂, which is the con-
textualization of R as in Definition 2, is also a bisimulation.

Let R be a bisimulation and let (J → G) R̂ (J → G
′
). That is, there is a pair

(J → G) R (J → G′) and a context J → E ← J such that J → G and J → G
′

are obtained by inserting J → G and J → G′ into this context.

Let us also assume that (J → G)
J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−−−→ (K → H). Our goal

is to show that there exists a transition label (J → G
′
)

J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−−−→
(K → H ′) with (K → H) R̂ (K → H ′), which implies that R̂ is a bisimulation.

In Step A we construct a transition (J → G)
J→F←K;{F→Ny}y∈Y ∪Z−−−−−−−−−−−−−−−−−→ (K → H)

which implies a transition (J → G′)
J→F←K;{F→Ny}y∈Y ∪Z−−−−−−−−−−−−−−−−−→ (K → H ′) with

(K → H) R (K → H ′), since R is a bisimulation. In Step B we extend the
second transition to obtain the transition stated in our goal above. This argument
is basically the same as in [7], except for the fact that here we are dealing



422 G. Rangel, B. König, and H. Ehrig

with a bisimulation definition involving transition labels with negative borrowed
contexts.

Step A: From transition (J → G)
J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−−−→ (K → H) we can derive

Diagram (3), where the decomposition of J → G is shown explicitly, all arrows
are mono and all squares are pushouts, except for the indicated pullback.

NACw

D ��

��

L
��

��

I�� ��

��

R
��

G �� G ��
G

+
C�� �� H

J

��

�� E

��

J

��

�� F

PB

��

��

K��

�� 

Nx

(3)

NACw

D ��

��

D ��

��

����
L

��

�����
�

��

I ��

����

��

�� R

��

��		
G̃ ��

��


 G+

�����
C�� ��

��
�� H

��


G ��

��		
G ��

G
+

C�� �� H

F1
��

��
��

��

F
�����

�

��

��

K��

����

�� ��

J

��

		��
�� E

��

�� E2

��

E1

��

��

��

Ny

J

��

�� F

��

��
K��

��



Nx

(4)

From Diagram (3) we construct Diagram (4) according to [7], i.e., we project
the borrowed context diagram of J → G to a borrowed context diagram of
J → G, first without taking into account NACs. The square (K, H, E1, H) is a
pushout.

Observe that all negative borrowed contexts Nx of the transition are obtained
via Diagram (7). It can be shown that such a diagram can be “decomposed”4

into two Diagrams (5) and (6), where the former shows the derivation of negative
borrowed contexts for G+. That is, every negative borrowed context of the larger
object G

+
is associated with at least one negative borrowed context of the smaller

object G+. Note that the transformation of one negative borrowed context into
the other via Diagram (6) is only dependent on the context J → E ← J , into
which J → G is inserted, but not on G itself, since E2 is the pushout of J → E,
J → F . This independence of G will allow us to use this construction for J → G′

in Step B.
In addition there might be further negative borrowed contexts F → Ny with

indices y ∈ Z, where Y and Z are disjoint index sets. These are exactly the
negative borrowed contexts for which Diagram (6) can not be completed since
the pushout complement does not exist. If we could complete Diagram (6) we
would be able to reconstruct Diagram (7).

Hence we obtain a transition from J → G which satisfies Conditions (ii) and
(iii) of Definition 8. We still have to show that the BC step for G+ is executable

4 We will use this “decomposition” result throughout the proof. Note that from Dia-
gram (7) we can construct Diagrams (5) and (6) and vice versa. The proof of this
result requires that pullbacks preserve epis.



Deriving Bisimulation Congruences in the Presence of NACs 423

(Condition (i)). By assumption, the BC step from J → G of Diagram (4) is
executable. One can show that a transition is executable if and only if none of
the derived negative borrowed contexts is an iso. This means that there does
not exist any iso F → Nx, which in turn implies that no F → Ny, y ∈ Y is an
iso. Furthermore no F → Ny with y ∈ Z can be an iso, since otherwise we could
complete Diagram (6). Finally we conclude with the observation above that the
BC step from J → G is executable.

Since all conditions of Definition 8 are satisfied, we can derive the transition

(J → G)
J→F←K;{F→Ny}y∈Y ∪Z−−−−−−−−−−−−−−−−−→ (K → H) from Diagram (4) using Definition 9.

Since R is a bisimulation, this implies (J → G′)
J→F←K;{F→Ny}y∈Y ∪Z−−−−−−−−−−−−−−−−−→ (K →

H ′) with (K → H) R (K → H ′). Additionally, we can infer from Diagram (4)
that K → H is the insertion of K → H into the context K → E1 ← K.

Step B: In Step A we have shown that J → G′ can mimic J → G due to
the bisimulation R. Here we will show that (J → G

′
) can also mimic (J → G)

since R is a bisimulation and both objects with interface are derived from the
insertion of J → G and J → G′ into the context J → E ← J .

We take the transition from J → G′ to K → H ′ with (K → H) R (K → H ′)
from Step A and construct a transition from (J → G

′
) to (K → H

′
) with (K →

H) R̂ (K → H
′
). Recall that J → G

′
is J → G′ in the context J → E ← J .

NACw
�� My Ny��

L

��

��

=
j.epi

G+

��

F

��

��

PO

(5)

Ny �� M ′
x Nx

��

F

��

��

=
j.epi

E2

��

F

��

��

PO

(6)

NACw
�� Mx Nx

��

L

��

��

=
j.epi

G
+

��

F

��

��

PO

(7)

NACw

D′ ��

��

D
′ ��

��

����
L

��

�����
�

��

I ��

�����

��

�� R

��

����

G̃′ ��

��
�� G′+

�����
C′�� ��

��
�� H ′

��
��

G′ ��

����
G
′ ��

G
′+

C
′�� ��

H
′

F1
��

����

��

F
������

��

��

K��

����

�� 		

J

��

		��
�� E

��

�� E2

��

E1

��

��

		

Ny

J

��

�� F

��

��
K��

��

��

Nx

(8)

According to [7] we obtain Diagram (8), first without considering the NACs.
The square (K, H ′, E1, H

′
) is a pushout. Then we construct {F → Nx}x∈X as

shown in Diagram (6). The arrows F → E2 ← F and {F → Ny}y∈Y are already
present in Diagram (8) and so we build M ′

x and Nx by considering all jointly epi
squares. Each F → Nx constructed in this way can be also derived as a negative
borrowed context with Diagram (7) (where G

+
is replaced by G

′+
) due to the fact

that we can construct Diagram (7) based on (5) and (6). Furthermore we will not
derive additional negative borrowed contexts because the arrows F → Ny with
y ∈ Z can not be extended to negative borrowed contexts of the full object G

′+



424 G. Rangel, B. König, and H. Ehrig

since an appropriate Diagram (6) does not exist. Hence we obtain a transition
label from J → G

′
which satisfies Conditions (ii) and (iii) of Definition 8. We

still have to show that the BC step for G
′+

is executable (Condition (i)).
Observe that F → E2 ← F of Diagram (6) are equal in Step A and Step B

and do not contain any information about G or G′. Hence we can conclude that
Diagram (6) generates the same negative borrowed contexts in both steps. Since
in Diagram (4) there is no negative borrowed context which is an iso, the same
holds for Diagram (8). By the observation concerning isos we conclude that the
BC step from J → G

′
is also executable.

Finally, by Definition 9 we infer that (J → G
′
)

J→F←K;{F→Nx}x∈X−−−−−−−−−−−−−−−→ (K →
H
′
), and since the square (K, H ′, E1, H

′
) is a pushout, K → H

′
is K → H ′

inserted into the context K → E1 ← K. From earlier considerations we know
that K → H is obtained by inserting K → H into K → E1 ← K. Hence, we
can conclude that (K → H) R̂ (K → H

′
) and we have achieved our goal stated

at the beginning of the proof, which implies that R̂ is a bisimulation and ∼ is a
congruence.

4 Up-to Techniques for DPO-BC with NACs

Bisimulation proofs often need infinite relations. Up-to techniques [14] relieve the
onerous task of bisimulation proofs by reducing the size of the relation needed
to define a bisimulation. It is also possible to check bisimilarity with finite up-to
relations in some cases where any bisimulation is infinite. We first need to define
progression (see also [14]).

Definition 10 (Progression with NACs). Let R, S be relations containing
pairs of objects with interfaces of the form (J → G, J → G′), where R is sym-
metric. We say that R progresses to S, abbreviated by R � S, if whenever

(J → G)R (J → G′) and (J → G)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−−−→ (K → H), there ex-

ists an object with interface K → H ′ such that (J → G′)
J→F←K;{F→Nz}z∈Z−−−−−−−−−−−−−−−→

(K → H ′) with (K → H)S (K → H ′).

According to Definition 9, a relation R is a bisimulation if and only if R � R.

Definition 11 (Bisimulation up to Context with NACs). Let R be a sym-
metric relation containing pairs of objects with interfaces of the form
(J → G, J → G′). If R � R̂, where R̂ is the closure of R under contextu-
alization, then R is called bisimulation up to context.

Proposition 1 (Bisimulation up to Context with NACs implies Bisim-
ilarity). Let R be a bisimulation up to context. Then it holds that R ⊆ ∼.

Proof. Follows quite easily from the proof of Theorem 2 (see also [7]).



Deriving Bisimulation Congruences in the Presence of NACs 425

5 Example: Servers as Graphs with Interfaces

Here we apply the DPO-BC extension to NACs in order to check the bisimilarity
of two graphs with interfaces J1 → G1 and J1 → G2 (shown below on the right)
with respect to rule1 and rule2 of Section 3.1. Here G1 contains only one server,
whereas G2 contains two severs which may work in parallel.

Above on the left we show a transition derivation for J1 → G1 (which contains
only one server) via rule2 according to Definition 8. There is no mono NAC1 → G+

1

forbidding the BC rewriting (Condition (i)) and the step is executable. The graph
C1 and additional monos lead to the BC step (Condition (ii)). The construction of
the negative borrowed context F1 → N1 from NAC1 ← L2 → G+

1 ← F1, as spec-
ified in Condition (iii), is shown on the right. Here the graph M1 is the only
possible overlap of NAC1 and G+

1 such that the square with indicated jointly epi
monos commutes. Since the pushout complement F1 → N1 → M1 exists, G+

1 can
be indeed extended to M1 by gluing N1 via F1. All three conditions of Definition 8
are satisfied and so the BC step above with label = J1 → F1 ← J1; {F1 → N1} is
feasible. This transition can be interpreted as follows: the environment provides
G1 with a T-task in Q2 (see borrowed context F1) in order to enable the BC step,
but the rewriting is only possible if no T-task is waiting in queue Q1 (see N1).

Analogously we can derive other transitions from J1 → G1 and J1 → G2, where
the labels generated via rule1 (without NAC) do not have any negative borrowed
context. So J1 → G1, J1 → G2 and all their successors can be matched via a
bisimulation and we conclude that (J1 → G1) ∼ (J1 → G2).

Note that in order to obtain an extended example, we could add a rule mod-
eling the processing of tasks waiting in queue Q1.

6 Conclusions and Future Work

We have shown how rules with NACs should be handled in the DPO with bor-
rowed contexts and proved that the derived bisimilarity relation is a congruence.



426 G. Rangel, B. König, and H. Ehrig

This extension to NACs is relevant for the specification of several kinds of non-
trivial systems, where complex conditions play a very important role. They are
also frequently used when specifying model transformation, such as transforma-
tions of UML models. Behaviour preservation is an important issue for model
transformation.

Here we have obtained a finer congruence than the usual one. Instead, if
one would reduce the number of possible contexts (for instance by forbidding
contexts that contain certain patterns or subobjects), we would obtain coarser
congruences, i.e., more objects would be equivalent. Studying such congruences
will be a direction of future work.

Furthermore, a natural question to ask is whether there are other extensions
to the DPO approach that, when carried over to the DPO-BC framework, would
require the modification of transition labels. One such candidate are generalized
application conditions, so-called graph conditions [15], which are equivalent to
first-order logic and of which NACs are a special case. Such conditions would
lead to fairly complex labels.

Due to the fact that the bisimulation checking procedure is time consuming
and error-prone when done by hand, we plan to extend the on-the-fly bisim-
ulation checking algorithm, defined in [16,17], for productions with NACs. In
order to do this efficiently we need further speed-up techniques such as addi-
tional up-to techniques and methods for downsizing the transition system, such
as the elimination of independent labels. Preliminary investigations have already
determined that the proof technique eliminating independent labels as in [6,7]
(or non-engaged labels as they are called in [18]) does not carry over straight-
forwardly from the case without NACs.

Some open questions remain for the moment. First, in the categorical setting
it would be good to know whether pullbacks always preserve epis in adhesive
categories. This question is currently open, as far as we know. Second, it is
unclear where the congruence is located in the lattice of congruences that respect
rewriting steps with NACs. As for IPO bisimilarity it is probably not the coarsest
such congruence, since saturated bisimilarity is in general coarser [19]. So it
would be desirable to characterize such a congruence in terms of barbs [20].

Also, it is not clear to us at the moment how NACs could be integrated
directly into reactive systems and how the corresponding notion of IPO would
look like. In our opinion this would lead to fairly complex notions, for instance
one would have to establish a concept similar to that of jointly epi arrows.

Acknowledgements. We would like to thank Tobias Heindel for helpful dis-
cussions on this topic.

References

1. Milner, R.: Communication and concurrency. Prentice-Hall, Englewood Cliffs
(1989)

2. Milner, R., Parrow, J.: A calculus for mobile process I. Information and Compu-
tation 100, 1–40 (1992)



Deriving Bisimulation Congruences in the Presence of NACs 427

3. Milner, R., Parrow, J., Walker, D.: A calculus for mobile process II. Information
and Computation 100, 41–77 (1992)

4. Leifer, J.J.: Operational Congruences for Reactive Systems. PhD thesis, University
of Cambridge Computer Laboratory (2001)

5. Leifer, J.J., Milner, R.: Deriving bisimulation congruences for reactive systems.
In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 243–258. Springer,
Heidelberg (2000)

6. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp.
151–166. Springer, Heidelberg (2004)

7. Ehrig, H., König, B.: Deriving bisimulation congruences in the DPO approach to
graph rewriting with borrowed contexts. Mathematical Structures in Computer
Science 16(6), 1133–1163 (2006)

8. Sassone, V., Sobociński, P.: Reactive systems over cospans. In: Proc. of LICS 2005,
pp. 311–320. IEEE, Los Alamitos (2005)

9. Sobociński, P.: Deriving process congruences from reaction rules. PhD thesis, De-
partment of Computer Science, University of Aarhus (2004)

10. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application
conditions. Fundam. Inf. 26(3–4), 287–313 (1996)

11. Rangel, G., König, B., Ehrig, H.: Deriving bisimulation congruences in the pres-
ence of negative application conditions. Technical Report 2008-1, Abteilung für
Informatik und Angewandte Kognitionswissenschaft, Universität Duisburg-Essen
(to appear, 2008)

12. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Loewe, M.: Algebraic
approaches to graph transformation part I: Basic concepts and double pushout ap-
proach. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by
Graph transformation, Foundations, vol. 1, pp. 163–246. World Scientific, Singa-
pore (1997)

13. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. RAIRO - Theo-
retical Informatics and Applications 39(2), 522–546 (2005)

14. Sangiorgi, D.: On the proof method for bisimulation. In: Hájek, P., Wiedermann,
J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 479–488. Springer, Heidelberg (1995)

15. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004)

16. Rangel, G., König, B., Ehrig, H.: Bisimulation verification for the DPO approach
with borrowed contexts. In: Proc. of GT-VMT 2007. Electronic Communications
of the EASST, vol. 6 (2007)

17. Hirschkoff, D.: Bisimulation verification using the up-to techniques. International
Journal on Software Tools for Technology Transfer 3(3), 271–285 (2001)

18. Milner, R.: Pure bigraphs: structure and dynamics. Inf. Comput. 204(1), 60–122
(2006)

19. Bonchi, F., König, B., Montanari, U.: Saturated semantics for reactive systems. In:
Proc. of LICS 2006, pp. 69–80. IEEE, Los Alamitos (2006)

20. Rathke, J., Sassone, V., Sobociński, P.: Semantic barbs and biorthogonality. In:
Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 302–316. Springer, Heidelberg
(2007)



Structural Operational Semantics
for Stochastic Process Calculi

Bartek Klin1 and Vladimiro Sassone2

1 Warsaw University, University of Edinburgh
2 ECS, University of Southampton

Abstract. A syntactic framework called SGSOS, for defining well-behaved Mar-
kovian stochastic transition systems, is introduced by analogy to the GSOS con-
gruence format for nondeterministic processes. Stochastic bisimilarity is guaran-
teed a congruence for systems defined by SGSOS rules. Associativity of parallel
composition in stochastic process algebras is also studied within the framework.

1 Introduction

Process algebras such as CCS [18] or CSP [5] are widely accepted as useful tools
for compositional modeling of nondeterministic, communicating processes. Their se-
mantics is usually described within the framework of Structural Operational Semantics
(SOS) [19], where labelled nondeterministic transition systems (LTSs) are defined by
induction on the syntactic structure of processes. Formalisms for SOS decriptions of
nondeterministic systems have been widely studied and precisely defined (see [1] for
a survey). In particular, several syntactic formats have been developed that guarantee
certain desirable properties of the induced systems, most importantly that bisimulation
is a congruence on them.

Stochastic process algebras have been deployed for applications in performance
evaluation, and more recently in systems biology, where the underpinning of labelled
continuous time Markov chains (CTMCs), and more generally stochastic processes,
is required rather than simple LTSs. Examples of such algebras include TIPP [11],
PEPA [15], EMPA [3], and stochastic π-calculus [20]. Semantics of these calculi have
been given by variants of the SOS approach. However, in contrast with the case of non-
deterministic processes, SOS formalisms used here are not based on any general frame-
work for operational descriptions of stochastic processes, and indeed differ substantially
from one another. This is unfortunate, as such a framework would make languages eas-
ier to understand, compare, and extend. Specifically, a format for SOS descriptions
which guarantees the compositionality of stochastic bisimilarity, would make extend-
ing process algebras with new operators a much simpler task, liberating the designer
from the challenging and time-consuming task of proving congruence results.

In this paper we define such a congruence format, which we call SGSOS. First we
review existing approaches to the operational semantics of process algebras, concentrat-
ing on the examples of PEPA [15] and the stochastic π-calculus [20]. As the operational
techniques used there seem hard to extend to a general format for well-behaved stochas-
tic specifications, we resolve to adapt a general theory of well-behaved SOS, based on

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 428–442, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Structural Operational Semantics for Stochastic Process Calculi 429

category theory and developed by Turi and Plotkin [24]. The inspiration for our ap-
proach comes directly from the work of F. Bartels [2], who used Turi and Plotkin’s
results to design a congruence format for probabilistic transition systems.

Standard operations of stochastic process algebras, as well as plenty of non-standard
but potentially useful ones, fall within our format. Exceptions are recursive definitions
and name-passing features of stochastic π-calculus, which we leave for future work.

Within the SGSOS framework, we also investigate the issue of associativity of par-
allel composition in stochastic process algebras, a design issue that, to our knowledge,
has been overlooked in the literature. We notice in fact that in the original definition of
stochastic π-calculus, parallel composition fails to be associative up to stochastic bisim-
ilarity, and study conditions under which two forms of parallel composition, CSP-style
synchronization and CCS-style communication, are associative.

The structure of the paper is as follows. In §2 we recall previously studied approaches
to operational semantics of nondeterministic and stochastic systems. In §3 the bialge-
braic theory of well-behaved SOS is recalled. In §4 we adapt the theory to obtain the
SGSOS congruence format, with simple examples of GSOS specifications following
in §5. The associativity of parallel composition is studied in §6, and in §7 we men-
tion some directions of future work. Due to lack of space, all proofs are omitted in this
extended abstract.

2 Transition Systems and Process Calculi

We begin our development by comparing two previously studied approaches to defining
SOS for Markovian process algebras with the well-known world of SOS for nondeter-
ministic systems such as CCS.

2.1 Nondeterministic Systems and GSOS

A labelled transition system (LTS) is a triple
(
X, A,−→), with X a set of states, A a set

of labels and −→ ⊆ X × A × X a labelled transition relation, typically written x
a−→ y

for (x, a, y) ∈ −→. An LTS is image-finite if for every x ∈ X and a ∈ A there are

only finitely many y ∈ X such that x
a−→ y. In the context of Structural Operational

Semantics (SOS), LTS states are terms, and transition relations are defined inductively,
by means of inference rules. For example, in a fragment of CCS [18], processes are
terms over the grammar P ::= nil | a.P | P + P | P ‖ P, and the LTS is induced from
the following rules:

a.x a � x

x1
a � y

x1+x2
a � y

x2
a � y

x1+x2
a � y

x1
a � y

x1‖x2
a � y‖x2

x2
a � y

x1‖x2
a � x1‖y

x1
a � y1 x2

ā � y2

x1‖x2
τ � y1‖y2

(1)

Plenty of operators can be defined formally by rules like these. Indeed, the above speci-
fication is an instance of a general framework for SOS definitions of LTSs (see e.g., [1]),
called GSOS and defined formally as follows.



430 B. Klin and V. Sassone

An algebraic signature is a set Σ � f, g, . . . of operation symbols with an arity
function ar : Σ → N, usually left implicit. The set of all terms over Σ with variables
from set X is denoted TΣX. In particular, TΣ0 is the set of closed Σ-terms.

Fix a countably infinite set Ξ � x, y, z, . . . of variables. A GSOS inference rule [4]
over a signature Σ and a set of labels A is an expression of the form

{
xi j

a j
� y j

}

1≤ j≤k

{
xil

bl/�
}

1≤i≤m

f(x1, . . . , xn) c � t
(2)

where f ∈ Σ, n = ar(f), k,m ∈ N, i j, il ∈ {1, . . . , n}, a j, bl, c ∈ A, t ∈ TΣΞ, xi and
y j ∈ Ξ are all distinct and no other variables occur in the term t. Expressions above the
horizontal line in a GSOS rule are called its premises, and the expression below it is the
conclusion. A GSOS specification is a set of GSOS rules; it is image-finite if it contains
only finitely many rules for each f and c.

Every GSOS specification Λ induces an LTS
(
TΣ0, A,−→), with the transition rela-

tion −→ defined by induction of the syntactic structure of the source states. For a term

s = f(s1, . . . , sn) ∈ TΣ0, one adds a transition s
c−→ t for each substitution σ : Ξ → TΣ0

such that for some rule r ∈ Λ as in (2), there is σxi = si, σt = t, and σ satisfies all
premises of r, meaning that for each premise x a � y there is σx

a−→ σy, and for each

premise x a /� there is no t ∈ TΣ0 for which σx
a−→ t.

An important property of the LTS induced by Λ is that bisimilarity on it is guaranteed
to be a congruence with respect to the syntactic structure of states. This means that
GSOS is a congruence format for bisimilarity on LTSs. Moreover, it is easy to prove by
induction that the LTS induced by an image-finite GSOS specification is image-finite.

2.2 Stochastic Systems

Just as nondeterministic process algebras are defined using labelled transition systems,
the semantics of stochastic processes is often provided by labelled continuous time
Markov chains (CTMCs). These are conveniently presented in terms of what we shall
call rated transition systems (RTSs), i.e., triples (X, A, ρ), where X is a set of states, A
a set of labels and ρ : X × A × X → R+0 is a rate function, equivalently presented as
an A-indexed family of R+0 -valued matrices. The number ρ(x, a, y) is the parameter of
an exponential probability distribution governing the duration of the transition of x to
y with label a (for more information and intuition on CTMCs and their presentation by

transition rates see e.g. [12,15,20]). For the sake of readability we will write ρ(x
a−→ y)

instead of ρ(x, a, y), and x
a,r−→ y will indicate that ρ(x

a−→ y) = r. The latter notation
suggests that RTSs can be seen as a special kind of A × R+0 -labelled nondeterministic
transition systems; more specifically, exactly those that are “rate-deterministic,” i.e.,

such that for each x, y ∈ X and a ∈ A there exists exactly one r ∈ R+0 for which x
a,r−→ y.

In the following we will consider image-finite processes, i.e. such that for each x ∈ X
and a ∈ A there are only finitely many y ∈ X such that ρ(x, a, y) > 0. For such processes,
the sum

ρa(x) =
∑

y∈X
ρ(x

a−→ y) (3)



Structural Operational Semantics for Stochastic Process Calculi 431

exists for each x ∈ X and a ∈ A; it will be called the apparent rate of label a in

state x. Further, ρ(x
a−→ y)/ρa(x) is called the conditional probability of the transition

x
a−→ y. It is the probability that x makes the transition provided that it makes some

a-transition.
Various equivalence relations on states in RTSs have been considered. Of those, the

most significant is stochastic bisimilarity (called strong equivalence in [14], and in-
spired by the notion of probabilistic bisimilarity from [17]), defined as follows. Given
an RTS with state space X, a stochastic bisimulation is an equivalence relation R on X
such that whenever x R y then for each a ∈ A, and for each equivalence class C with
respect to R, ∑

z∈C
ρ(x

a−→ z) =
∑

z∈C
ρ(y

a−→ z).

Two states are bisimilar if they are related by some bisimulation. It is easy to check that
bisimilarity is itself an equivalence relation and indeed the largest bisimulation.

Due to the additional rate component present in transitions, the traditional approach
to SOS recalled in §2.1 is inadequate for modeling stochastic process calculi. Instead,
other variants of SOS have been used for this purpose. For a comparison with the fol-
lowing development, we recall two of these variants: the multi-transition system ap-
proach used for the stochastic calculus PEPA [14,15], and the proved SOS approach of
stochastic π-calculus [20,21,22].

In (a fragment of) PEPA, processes are terms over the grammar:

P ::= nil | (a, r).P | P + P | P ��
L

P

where a ranges over a fixed set A of labels, L over subsets of A, and r over R+. Their
semantics is defined by inference rules:

(a, r).x a,r
� x

x1
a,r
� y

x1+x2
a,r
� y

x2
a,r
� y

x1+x2
a,r
� y

x1
a,r
� y

x1 ��
L
x2

a,r � y ��
L
x2

x2
a,r
� y

x1 ��
L
x2

a,r � x1 ��
L
y

(a � L)

x1
a,r1 � y1 x2

a,r2 � y2

x1 ��
L
x2

a,R
� y1 ��

L
y2

(a ∈ L)

(4)

where a ∈ A and r, r1, r2,R ∈ R+ with R depending on r1, r2 according to an application-
specific formula (see below). Note that instead of a single parallel composition operator,
PEPA provides a cooperation operator ��

L
for each set L of labels. These operators are

based on CSP-style synchronisation [5] rather than CCS-style communication [18].
It turns out that the standard interpretation of the above rules as described in §2.1

would (among other things) contradict the intended meaning of the operator + as a
stochastic choice, where a process P + P can perform the same transitions as P, with
twice the rates. In particular, the processes P and P + P should not be stochastic bisim-
ilar. This is why the semantics of PEPA is given as a multi-transition system labeled



432 B. Klin and V. Sassone

with pairs (a, r) ∈ A × R+, which is a transition system whose transition relation is a
multiset of triples (x, (a, r), y). To define such a semantics for PEPA, the rules in (4) are
interpreted similarly as the GSOS rules in §2.1, where the multiplicity of a transition is
determined by counting all its different derivations. To obtain an RTS from the induced
multi-transition system, one then discards multiplicities by summing up all their rates
in single rated transitions. Thus, for example, the process (a, 3).nil + (a, 3).nil in the
induced multi-transition systems has two identical transitions to nil with label (a, 3),
whilst in the final RTS it can make a single transition to nil with label a and rate 6. For
more details of this construction, see [14].

The formula for calculating R based on r1 and r2 in the last rule of (4) depends on the
intended meaning of synchronisation. In applications to performance evaluation [14],
the formula

R = min(ρa(x1), ρa(x2)) · r1

ρa(x1)
· r2

ρa(x2)
(5)

is a natural choice. We shall call it the minimal rate law, since in the resulting RTS, the
apparent rate of a in P ��

L
Q (with a ∈ L) is the least of the apparent rates of P and Q.

For applications to systems biology, where rates model concentrations of molecules, a
more convenient choice is

R = r1 · r2, (6)

which following [6] we call the mass action law. The apparent rate of a in P ��
L

Q
(with a ∈ L) here is the product of the corresponding apparent rates of P and Q. For an
intuitive motivation for these and other similar formulae, see [13].

A different approach was used to define semantics of stochastic π-calculus [20].
Since stochastic features of the calculus are independent from its name-passing as-
pects, for simplicity we discuss it here on a fragment of the calculus that corresponds to
a stochastic version of CCS (see §2.1). Thus we consider, as processes, terms over the
grammar:

P ::= nil | (a, r).P | P + P | P‖P
where a ranges over a fixed set A of labels, and r over R+. For the semantics, the au-
thors of [20] decided to avoid multi-transition systems and rely on the standard process
of LTS induction from inference rules. For this, to model stochastic choice and commu-
nication accurately, they enriched transition labels substantially, equipping them with
encodings of derivations that lead to them. In this proved operational semantics, our
“stochastic CCS” fragment of stochastic π-calculus would be defined by:

(a, r).x (a,r)
� x

x1
θ � y

x1+x2
+1θ � y

x2
θ � y

x1+x2
+2θ � y

(7)

x1
θ � y

x1‖x2
‖1θ � y‖x2

x2
θ � y

x1‖x2
‖2θ � x1‖y

x1
θ1(a,r1)

� y1 x2
θ2(ā,r2)

� y2

x1‖x2
〈‖1θ1(a,r1),‖1θ2(ā,r2)〉,R

� y1‖y2

where θ ranges over derivation proofs, e.g. represented by terms of the grammar:

θ = (a, r) | +1θ | +2θ | ‖1θ | ‖2θ | 〈‖1θ, ‖2θ〉,



Structural Operational Semantics for Stochastic Process Calculi 433

and where R depends on r1 and r2 according to the minimal rate law [20] or the mass
action law [22], as in PEPA.

These rules are then used to induce an LTS, which results in relatively complex
labels. To obtain an RTS, one then extracts more familiar labels a ∈ A from proofs
in the obvious way, by adding up rates of identical transitions. Thus, for example, the
process P = (a, 3).nil+ (a, 3).nil in the induced LTS can make two distinct transitions

P
+1(a,3)−→ nil and P

+2(a,3)−→ nil, and in the final RTS it can make a transition to nil with
label a and rate 6.

Although both the multi- and the proved-transition approaches work fine for the spe-
cific examples described above, it appears difficult to extend any of them to a general
framework for defining operational semantics for stochastic transition systems. Con-
sider for example the proved SOS approach of stochastic π-calculus. As in the case of
GSOS for nondeterministic systems, a well-behaved semantic framework should guar-
antee that stochastic bisimilarity is a congruence for the induced RTS. This is the case
for our CCS example above, but it is easy to write examples where it fails; for example,
extend the CCS language with a unary operator f with semantics defined by a rule:

x
+1θ � y

f(x) f+1θ � y

and see that, although (a, 2).nil+nil and nil+(a, 2).nil are stochastic bisimilar, they
are not so when put in context f(−), since only the former process can make a step in
this context. Clearly, this is because the structure of a proof is inspected in the premise
of the rule. However, it would be wrong to forbid such inspection altogether, as it is
needed, e.g. in the communication rule for stochastic π-calculus.

The source of the problem is the richness of labels in the proved approach to SOS.
In [8], it is claimed that proofs as transition labels carry almost all information about
processes that is ever needed. Indeed, it appears they may sometimes carry excessive
information; in a well-behaved SOS framework they should only carry as much data as
required for the derivation of the intended semantics (here, an RTS), not a bit more.

The same criticism, though perhaps to a lesser extent, can be moved to the multi-
transition systems approach used in the semantics of PEPA, where transition multiplic-
ities are the superfluous data. In the process of multi-transition system induction, two
identical transitions of rate 3 are distinguished from a single transition of rate 6. As a
result, one can write specifications such as

x
a,r
� y

f(x) a,max(r,5)
� y

and see that, although processes (a, 3).nil + (a, 3).nil and (a, 6).nil are stochastic
bisimilar, they are not so in the context f(−). On the other hand, forbidding arbitrary
dependency of transition rates on subprocesses rates is hard to contemplate, since that
forms the very core of PEPA.

It may be possible to determine the exact range of constructs and formulas that must
be forbidden in the proved- or in the multi-transition approach in order to guarantee
that stochastic bisimilarity is compositional. Indeed, this approach has been used with



434 B. Klin and V. Sassone

success in the related framework of probabilistic processes [16], where a well-behaved
version of the proved semantics is developed. In this paper, however, we take a more
principled approach and derive a formalism for stochastic operational semantics from
an abstract theory of congruence formats developed in [24] and applied to the case of
probabilistic transition systems in [2].

3 An Abstract Approach to SOS

Our approach to a stochastic counterpart of the GSOS framework of §2.1 is based on
a categorical generalisation of GSOS, developed by Plotkin and Turi in [24]. In this
section we briefly recall that work; in the rest of the paper we develop a syntactic format
for stochastic SOS as an instance of the general framework.

3.1 Transition Systems as Coalgebras

The abstract study of well-behaved structural operational semantics is based on model-
ing the behaviour of processes via coalgebras, and their syntax via algebras. The orig-
inal motivating example is that of LTSs: for a fixed set A of labels, image-finite LTSs
can be seen as functions h : X → (PωX)A (here, Pω is the finite powerset construction),

along the correspondence y ∈ h(x)(a) if and only if x
a−→ y. More generally, for any

covariant functor B on the category Set of sets and functions, a B-coalgebra is a set X
(the carrier) and a function h : X → BX (the structure). Thus image-finite LTSs are
coalgebras for the functor (Pω−)A.

A B-coalgebra morphism from a h : X → BX to g : Y → BY is a function f : X → Y
such that the equation g ◦ f = B f ◦ h holds. This notion provides a general coalgebraic
treatment of process equivalences: a bisimulation on a coalgebra h : X → BX is a
binary relation Q ⊆ X × X such that for some coalgebra structure q : Q → BQ the
projections π1, π2 : Q → X extend to a span of coalgebra morphisms from q to h.
For example, for B = (Pω−)A, this span bisimulation specializes to the well-known
notion of LTS bisimulation [18]. For more information about the coalgebraic approach
to process theory, see [23].

We now show how to view RTSs as coalgebras for a suitable functor on Set. Call a
function f : X → R+0 finitely supported if the set {x ∈ X | f (x) > 0} is finite. For any set
X, let RωX be the set of all finitely supported functions from X to R+0 . This extends to a
functor Rω on Set, with the action Rω f on function f : X → Y defined by

Rω f (g)(y) =
∑

f (x)=y

g(x),

for g ∈ RωX and y ∈ Y. Since g is finitely supported the sum exists and Rω f (g) is
finitely supported too. Functoriality of Rω is then easy to check.

Fix an arbitrary set A of labels. Coalgebras for the functor

BX = (RωX)A

are exactly image-finite rated transition systems as defined in §2.2. Indeed, a coalgebra
h : X → BX is an image-finite RTS with states X along the correspondence:



Structural Operational Semantics for Stochastic Process Calculi 435

x
a,r−→ y if and only if r = h(x)(a)(y).

This coalgebraic treatment of RTSs is justified by the following statement.

Proposition 1. Span bisimulations on (Rω−)A-coalgebras, when restricted to equiva-
lence relations, are exactly stochastic bisimulations as defined in §2.2.

In the following, a technical property of the functor (Rω−)A will be useful:

Proposition 2. (Rω−)A preserves weak pullbacks.

To prove the above two results, proceed exactly as in [7] for the case of probabilistic
bisimulation and the corresponding behaviour functor.

3.2 Process Syntax Via Algebras

In the context of SOS, processes typically are closed terms over some algebraic signa-
ture, i.e., a set Σ � f, g, . . . of operation symbols with an arity function ar : Σ → N.
Such a signature corresponds to a functor ΣX =

∐
f∈Σ Xar(f) on Set, in the sense that a

model for the signature is exactly an algebra for the functor, i.e., a set X (the carrier)
and a function g : ΣX → X (the structure).

The set of terms over a signature Σ and a set X of variables is denoted by TΣX;
in particular, TΣ0 is the set of closed terms over Σ and it admits an obvious algebra
structure a : ΣTΣ0 → TΣ0 for the functor Σ corresponding to the signature. This is the
initial Σ-algebra. The construction TΣ is also a functor, called the free monad over Σ.

3.3 SOS Rules, Distributive Laws, Bialgebras

In [24], Turi and Plotkin proposed an elegant treatment of well-behaved SOS at the level
of algebras and coalgebras. Their main motivating application was GSOS (see §2.1).
Turi and Plotkin observed (full proof provided later by Bartels [2]), that image finite
GSOS specifications are in an essentially one-to-one correspondence with distributive
laws, i.e., natural transformations of the type

λ : Σ(Id × B) =⇒ BTΣ (8)

where B = (Pω−)A is the behaviour functor used for modeling LTSs, Σ is the functor
corresponding to the given signature, and TΣ is the free monad over Σ. Informally, (8)
says that ‘structural’ combinations (Σ) of behaviours (B) are mapped to the behaviour
of terms (BTΣ), which is the essence of a SOS rule, with Id accounting for subterms that
stay idle in a transition. Moreover, any λ as above gives rise to a B-coalgebra structure
hλ on TΣ0, defined by a “structural recursion theorem” (see [24] for details) as the only
function hλ : TΣ0→ BTΣ0 such that:

hλ ◦ a = Ba ◦ λX ◦ Σ〈id, hλ〉. (9)

The fact that bisimilarity on LTSs induced from GSOS specifications is guaranteed to
be a congruence, can be proved at the level of coalgebras and distributive laws:

Theorem 1 ([24], Cor. 7.5). If a functor B on Set preserves weak pullbacks, then for
any λ as in (8), span bisimilarity on hλ : TΣ0→ BTΣ0 is a congruence on TΣ0.



436 B. Klin and V. Sassone

This result, together with Propositions 1 and 2, is the basis of our search for a congru-
ence format for stochastic systems.

4 Stochastic GSOS

We now proceed to the main technical contribution of this paper: a complete characteri-
sation of distributive laws (8) for stochastic systems in terms of inference rules. To find
the characterisation, we closely follow the technique used by Bartels [2] for the case of
probabilistic transition systems.

Definition 1. An SGSOS rule for a signature Σ and a set A of labels is an expression of
the form: {

xi
a@rai �

}

a∈Di ,1≤i≤n

{
xi j

b j
� y j

}

1≤ j≤k

f(x1, . . . , xn) c@W � t
(10)

where

– f ∈ Σ and ar(f) = n, with n, k ∈ N, and {i1, . . . , ik} ⊆ {1, . . . , n};
– xi and y j are all distinct variables and no other variables appear in t ∈ TΣΞ;

moreover, all variables y j appear in t;
– Di ⊆ A, c ∈ A and b j ∈ Dij ,
– W ∈ R+, rai ∈ R+0 , and moreover rbji j > 0, for j = 1, . . . , k.

A rule is triggered by a tuple of real values (vai)a∈A,1≤i≤n if vai = rai for all 1 ≤ i ≤ n
and all a ∈ Di. A collection of rules is called an SGSOS specification if for every f ∈ Σ,
c ∈ A, every tuple (vai) triggers only finitely many rules with f and c in the conclusion.

In order to complete the definition of SGSOS we need describe how to derive an RTS
from an SGSOS specification. Intuitively, a rule as in (10) contributes to the rate of a c-
labeled transition from f(s1, . . . , sn) if the apparent a-rates (see Eqn. (3)) of the si match
the corresponding rai; its contribution depends on W and on conditional probabilities

of a selection si j

b j
� u j of transitions from the si. Formally:

Definition 2. Every SGSOS specification Λ induces a rated transition system
(TΣ0, A, ρ), with the rate function ρ defined by induction on the first argument as fol-

lows. For a term s = f(s1, . . . , sn) ∈ TΣ0, assume that ρ(si
a−→ u) has been defined for

all i = 1, . . . , n, all a ∈ A and all u ∈ TΣ0; then, for any c ∈ A and t ∈ TΣ0, define

ρ(s
c−→ t) as below.

Let Λc ⊆ Λ be the set of all those rules with f and c in the conclusion that are
triggered by the tuple of apparent rates vai = ρa(si) – cf. (3). Note that Λc is finite. To

calculate the value of ρ(s
c−→ t), look at each rule L ∈ Λc in turn and check whether

there exists a substitution σ : Ξ → TΣ0 such that σt = t and σxi = si for i = 1, . . . , n.
Note that although many such σmay exist, their values on each y j coincide, since all y j

appear in t. If σ exists, calculate the contribution γL ∈ R+0 of L to ρ(s
c−→ t) according

to the formula:

γL = W ·
k∏

j=1

ρ(si j

b j−→ σy j)

ρbj (si j )



Structural Operational Semantics for Stochastic Process Calculi 437

where W, k, i j, b j and y j are determined by the shape of rule L – cf. rule format (10).
Note that the quotient is well defined since ρbj (si j ) = rbji j > 0. If no suitable σ exist,

take γL = 0. Finally, define ρ(s
c−→ t) =

∑
L∈Λc
γL; the sum exists since Λc is finite.

Notation 1. If in a rule as in (10), for some xi and a ∈ Di there is exactly one j for
which i j = i and b j = a, instead of the two premises xi

a@rai � and xi
a � y j we shall

write simply xi
a@rai � y j. Note that, unlike in the frameworks recalled in §2.2, such a

premise does not require that a transition xi
a−→ y j has rate rai; instead, rai refers to the

apparent rate ρa(xi). To avoid this confusion, @ is used in (10) instead of a comma.

It turns out that SGSOS specifications correspond to distributive laws (8) for the be-
haviour functor used for modeling stochastic systems:

Theorem 2. For all signatures Σ and label sets A, every SGSOS specification Λ for
Σ and A determines a distributive law λ : Σ(Id × (Rω)A) =⇒ (RωTΣ)A such that hλ :
TΣ0 → (RωTΣ0)A defined as in (9) coincides with the RTS induced by Λ. Moreover,
every such distributive law Λ is defined by an SGSOS specification.

Corollary 1. Stochastic bisimilarity on RTSs induced by SGSOS specifications is al-
ways a congruence. (Proof: Combine Theorems 2 and 1 with Propositions 1 and 2.)

Although technically more involved, the correspondence between SGSOS and RTSs
is a perfect match for that for GSOS and LTSs, and lifts the benefits of congruence
formats to the equally more involved semantics of stochastic models. In §5 below we
shall illustrate that the format affords expressiveness, conciseness and elegance.

5 Examples of SGSOS

To illustrate the form of SGSOS specifications, we now present a few simple examples,
including operators present in stochastic π-calculus or in PEPA, as well as some other
operators of potential interest.

Example 1 (atomic actions). A basic ingredient of most process calculi is prefixing
composition with atomic actions. To model stochastic systems, these actions are equip-
ped with basic rates. For the simplest nontrivial example of SGSOS, fix a set A of labels
and consider a language with syntax defined by the grammar:

P ::= nil | (a, r).P

where a ranges over A and r over R+. The semantics of nil is defined by the empty set
of rules, and the semantics of a unary operator (a, r). is defined by a single rule:

(a, r).x a@r � x

Thus, according to Definition 2, the process P = (a, 2).(b, 3).nil can make a unique

transition P
a,2−→ (b, 3).nil in the transition system induced by the rules.



438 B. Klin and V. Sassone

Example 2 (stochastic choice). Consider an extension of the language from Exam-
ple 1 with a binary operator P + P with semantics defined by rules:

x1
a@r � y

x1+x2
a@r � y

x2
a@r � y

x1+x2
a@r � y

(note the use of Notation 1), for each a ∈ A and r ∈ R+. Note that this is a well-defined
SGSOS specification. Although it contains uncountably many rules, for every a ∈ A
exactly two rules are triggered by every tuple of apparent rates. The rules define + to
be the stochastic choice operator, as present e.g. in PEPA and stochastic π-calculus.
In particular, according to Definition 2, in the stochastic transition system induced by
the rules, the process P = ((a, 2).nil + (a, 2).(b, 1).nil) + (c, 3).nil can make three

transitions P
a,2−→ nil, P

a,2−→ (b, 1).nil and P
c,3−→ nil. Note, however, that the process

Q = (a, 2).nil + (a, 3).nil can only make one transition Q
a,5−→ nil. In particular,

processes (a, 2).nil+ (a, 3).nil and (a, 5).nil are not only stochastic bisimilar, but can
actually make exactly the same outgoing transitions.

We remark that when compared to the existing literature, in all our examples the ex-
pected semantics of the operators arises naturally from intuitive and elementary speci-
fications, witness of the flexibility of the SGSOS format.

Example 3 (PEPA-style synchronisation). Extend the language from Example 2 with
a binary synchronisation operator��

L
for each L ⊆ A, with semantics defined by a family

of rules:

x1
a@r � y

x1 ��
L
x2

a@r � y ��
L
x2

x2
a@r � y

x1 ��
L
x2

a@r � x1 ��
L
y

(11)

x1
b@r1 � y1 x2

b@r2 � y2

x1 ��
L
x2

b@W � y1 ��
L
y2

(12)

for each a ∈ A \ L, b ∈ L, and r, r1, r2,W ∈ R+ such that W = min(r1, r2). It is not
difficult to see that this, according to Definition 2, is the synchronisation operator of
PEPA where the minimal rate law (5) is used. As an example, consider processes:

P = (a, 1).P1 + (a, 3).P2 Q = (a, 2).Q1 (13)

where P1 � P2. Then the process P ��
{b}

Q, where b � a, can make the transitions:

P ��{b} Q
a,1−→ P1 ��{b} Q P ��{b} Q

a,3−→ P2 ��{b} Q P ��{b} Q
a,2−→ P ��{b} Q1.

On the other hand, the outgoing transitions from P ��
{a}

Q are:

P ��
{a}

Q
a, 12−→ P1 ��{a} Q1 P ��

{a}
Q

a, 32−→ P2 ��{a} Q1.

Example 4 (CCS-style communication). Similarly, one can extend the language from
Example 2 with a CCS-style communication operator. Assume A = A0 ∪ {ā | a ∈



Structural Operational Semantics for Stochastic Process Calculi 439

A0} ∪ {τ} (denote ¯̄a = a) and extend the language with a single binary operator ‖, with
semantics defined by rules:

x1
a@r � y

x1 ‖ x2
a@r � y ‖ x2

x2
a@r � y

x1 ‖ x2
a@r � x1 ‖ y

(14)

x1
a@r1 � y1 x2

ā@r2 � y2

x1 ‖ x2
τ@W � y1 ‖ y2

(15)

for each a ∈ A and for each r, r1, r2,W ∈ R+ such that W = min(r1, r2). This, according
to Definition 2, is the communication operator of the original definition of stochastic
π-calculus [20], with the minimal rate law (5) used. For example, consider processes P,
Q as in (13). The process P ‖ Q can make the following transitions:

P ‖ Q
a,1−→ P1 ‖ Q P ‖ Q

a,3−→ P2 ‖ Q P ‖ Q
ā,2−→ P ‖ Q1

P ‖ Q
τ, 12−→ P1 ‖ Q1 P ‖ Q

τ, 32−→ P2 ‖ Q1.

Alternatively, one could use the same rules with W = r1 · r2. This would correspond
to the semantics of parallel composition in the biological stochastic π-calculus [22],
with the mass action law (6) used. For example, the process P ‖ Q above can then make
the following transitions:

P ‖ Q
a,1−→ P1 ‖ Q P ‖ Q

a,3−→ P2 ‖ Q P ‖ Q
ā,2−→ P ‖ Q1

P ‖ Q
τ,2−→ P1 ‖ Q1 P ‖ Q

τ,6−→ P2 ‖ Q1.

Example 5. Several non-standard, yet meaningful stochastic operators can be defined
within the SGSOS format. For example, consider unary “catalyst” and “inhibitor” op-
erators cata and inha for each a ∈ A, which influence rates of process transitions;
they can be seen as stochastic counterparts of the restriction operator of CCS. Their
semantics is defined by the rules:

x
a@r � y

cata(x) a@2r � cata(y)

x
a@r � y

inha(x) a@r/2
� inha(y)

x
b@r � y

cata(x) b@r � cata(y)

x
b@r � y

inha(x) b@r � inha(y)

for each r ∈ R+ and a, b ∈ A such that b � a. For example, in the derived stochas-

tic transition system we find the transition cata((a, 2).nil)
a,4−→ cata(nil). Since the

above rules conform to the SGSOS format, it is immediate that operators cata and inha

preserve stochastic bisimilarity.
Another example is a binary operator !! of “unfair race parallel composition,” which

only allows transitions from processes with higher apparent rates than their competitors.
Formally, its semantics is defined by rules

x1
a@r1 � y x2

a@r2 �

x1!!x2
a@r1 � y!!x2

x1
a@r2 � x2

a@r1 � y

x1!!x2
a@r1 � x1!!y



440 B. Klin and V. Sassone

for each a ∈ A and r1, r2 ∈ R+0 such that r1 > r2. For example, the process P =

((a, 2).Q) !! ((a, 3).T ) has only one outgoing transition P
a,3−→ ((a, 2).Q) !!T . Again,

stochastic bisimilarity is immediately compositional with respect to !!. This example
illustrates the fact that in the semantics of SGSOS operators, apparent rates (3) of sub-
processes can be tested, compared and used in an arbitrary fashion. This is in contrast
with formats defined for probabilistic systems [2,16], where probabilities of transitions
can be used in a very restricted manner. Note however that in SGSOS rates of single
transitions of subprocesses cannot be used entirely freely. For example, it is not pos-
sible to write SGSOS semantics of a hypothetical unary operator even( ) that would
propagate transitions with even rates and suppress those with odd rates. Indeed, such an
operator would not preserve stochastic bisimilarity. However, one can define an SGSOS
operator that propagates only transitions with labels whose apparent rates are even.

6 Associative Parallel Composition for Stochastic Systems

In this section we address an issue in the original design of the stochastic π-calculus
[20], which to our knowledge has not yet been addressed in the literature. Namely, if
the minimal rate law (5) is used in the definition (7), then the CCS-style communication
operator ‖ is not associative up to stochastic bisimilarity. Indeed, consider processes

P1 = (a, r).nil P2 = (ā, r).nil
Q1 = (P1 ‖ P1) ‖ P2 Q2 = P1 ‖ (P1 ‖ P2).

Note that ra(P1) = r, ra(P1 ‖ P1) = 2r, and rā(P2) = rā(P1 ‖ P2) = r. This means
that, in the derived proved-transitions

Q1
〈‖1(a,r),(ā,r)〉,R1→ (nil ‖ P1) ‖ nil

Q2
〈(a,r),‖2(ā,r)〉,R2→ nil ‖ (P1 ‖ nil),

one has R1 = min(2r, r) · r
2r · r

r =
r
2 and R2 = min(r, r) · r

r · r
r = r, hence in the resulting

RTS, processes Q1 and Q2 do the corresponding τ-transitions respectively with rates r/2
and r. As a result, they are not stochastic bisimilar. On the other hand, the same operator
‖ with the rate calculation formula changed to the law of mass action (6), as in [22], is
associative. Moreover, CSP-style synchronisation as used in PEPA is associative for
both minimal rate and mass action laws.

In the following, we consider parallel composition within the framework of SGSOS
and characterise those rate formulas for which CCS-style communication and CSP-style
synchronisation operators are associative up to stochastic bisimilarity. It turns out that
the CSP-style composition gives much more freedom in the choice of rate formula.

6.1 CCS-Style Communication

Consider the language of Example 4, extending those of Examples 1 and 2. Two ver-
sions of the language were mentioned there, depending on the choice of the family of
rules of type (15) used in the semantics: one where W = min(r1, r2) (the minimal rate
law) and one where W = r1 · r2 (the mass action law). We will now characterise those



Structural Operational Semantics for Stochastic Process Calculi 441

“laws” that give rise to an associative operator ‖. More formally, we assume that for
each pair r1, r2 ∈ R+0 there is exactly one rule of the type (15) in our semantics for each
label a, and that, moreover, the number W in the conclusion of the rules does not depend
on a; we can thus treat the W’s as a function W : R+0 ×R+0 → R+0 . We then look for those
rate functions W for which the operator || is associative up to stochastic bisimilarity.

As the following theorem shows, the choice of W is severely limited: the mass action
law is essentially the only choice that makes ‖ associative.

Theorem 3. In the situation described above, || is associative up to stochastic bisimi-
larity if and only if W(r1, r2) = c · r1 · r2 for some constant c ∈ R+.

6.2 CSP-Style Synchronisation

Consider now the language of Example 3, extending those of Examples 1 and 2. Again,
assume that for each pair r1, r2 ∈ R+0 there is exactly one rule of the type (12) for each
label a, and that the number W in the conclusion of the rules does not depend on a; thus,
as before, we have a function W : R+0 × R+0 → R+0 . It turns out that, compared to §6.1,
one has considerably more freedom in choosing W so that each of the synchronisation
operators��

L
is associative:

Theorem 4. In the situation described above, each ��
L

is associative up to stochastic
bisimilarity if and only if W is associative, i.e., W(r1,W(r2, r3)) = W(W(r1, r2), r3) for
all r1, r2, r3 ∈ R+.

7 Conclusions and Future Work

We have defined SGSOS, a congruence format for structural operational descriptions of
discrete space, continuous time Markov chains. Stochastic bisimilarity is guaranteed to
be compositional on languages defined by SGSOS rules. Standard operators of Marko-
vian process algebras, such as prefixing, choice and various forms of synchronization,
as well as plenty of non-standard, yet potentially useful operators, are definable in SG-
SOS. The format arises naturally from the abstract theory of well-behaved operational
semantics, based on bialgebras and distributive law.

SGSOS is similar to formats for reactive probabilistic systems developed in [2,16].
Apart from syntactic sugar, the most important difference is the treatment of apparent
rates, absent in the probabilistic setting. Rates of single transitions (and their conditional
probabilities) are treated in SGSOS just as probabilities of transitions are in [2,16].
In [16], additional complication is necessary to cater for generative probabilistic sys-
tems. The notions of reactive and generative RTSs coincide, and the additional com-
plexity is not needed in SGSOS.

This is only an initial study of a theory of well-behaved stochastic operational se-
mantics, and several research directions are left open. Look-ahead premises are not
allowed in SGSOS, unlike in the probabilistic formats of [16]. Recursive definitions or
the name-binding features of stochastic π-calculus are not currently supported; to treat
the latter correctly, one should combine SGSOS with techniques from [10]. Also, non-
Markovian processes are not treated here, as a coalgebraic treatment of them is missing.
Process algebra for continuous-space Markov chains [9] is another possible direction.



442 B. Klin and V. Sassone

References

1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In: Bergstra, J.A.,
Ponse, A., Smolka, S. (eds.) Handbook of Process Algebra, pp. 197–292. Elsevier, Amster-
dam (2002)

2. Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats. PhD dis-
sertation, CWI, Amsterdam (2004)

3. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with non-
determinism, priorities, probabilities and time. Theor. Comp. Sci. 202(1–2), 1–54 (1998)

4. Bloom, B., Istrail, S., Meyer, A.: Bisimulation can’t be traced. Journal of the ACM 42, 232–
268 (1995)

5. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A theory of communicating sequential pro-
cesses. Journal of the ACM 31, 560–599 (1995)

6. Calder, M., Gilmore, S., Hillston, J.: Automatically deriving ODEs from process algebra
models of signalling pathways. In: Procs. CMSB 2005, pp. 204–215 (2005)

7. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems: A coalge-
braic approach. Theoretical Computer Science 221(1–2), 271–293 (1999)

8. Degano, P., Priami, C.: Enhanced operational semantics. ACM Comput. Surv. 28(2), 352–
354 (1996)

9. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov processes. In-
formation and Computation 179, 163–193 (2002)

10. Fiore, M., Staton, S.: A congruence rule format for name-passing process calculi from math-
ematical structural operational semantics. In: Proc. LICS 2006, pp. 49–58. IEEE Computer
Society Press, Los Alamitos (2006)

11. Götz, N., Herzog, U., Rettelbach, M.: Multiprocessor and distributed system design: The
integration of functional specification and performance analysis using stochastic process al-
gebras. In: Performance/SIGMETRICS Tutorials, pp. 121–146 (1993)

12. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for performance evaluation. Theo-
retical Computer Science 274(1–2), 43–87 (2002)

13. Hillston, J.: On the nature of synchronisation. In: Procs. PAPM 1994, pp. 51–70 (1994)
14. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University

Press, Cambridge (1996)
15. Hillston, J.: Process algebras for quantitative analysis. In: Procs. LiCS 2005, pp. 239–248.

IEEE Computer Society Press, Los Alamitos (2005)
16. Lanotte, R., Tini, S.: Probabilistic bisimulation as a congruence. ACM Trans. Comp. Logic

(to appear, 2008)
17. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information and Compu-

tation 94, 1–28 (1991)
18. Milner, R.: A calculus of communicating systems. Journal of the ACM (1980)
19. Plotkin, G.D.: A structural approach to operational semantics. DAIMI Report FN-19, Com-

puter Science Department, Aarhus University (1981)
20. Priami, C.: Stochastic π-calculus. Computer Journal 38(7), 578–589 (1995)
21. Priami, C.: Language-based performance prediction for distributed and mobile systems. In-

formation and Computation 175(2), 119–145 (2002)
22. Regev, A., Silverman, W., Shapiro, E.: Representation and simulation of biochemical pro-

cesses using the π-calculus process algebra. In: Proc. Pacific Symp. Biocomp. (2001)
23. Rutten, J.J.M.M.: Universal coalgebra: A theory of systems. Theoretical Computer Sci-

ence 249, 3–80 (2000)
24. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc. LICS 1997,

pp. 280–291. IEEE Computer Society Press, Los Alamitos (1997)



Compositional Methods for Information-Hiding�

Christelle Braun, Konstantinos Chatzikokolakis, and Catuscia Palamidessi

INRIA and LIX, École Polytechnique, Palaiseau, France
{braun,kostas,catuscia}@lix.polytechnique.fr

Abstract. Protocols for information-hiding often use randomized primitives to
obfuscate the link between the observables and the information to be protected.
The degree of protection provided by a protocol can be expressed in terms of the
probability of error associated to the inference of the secret information.

We consider a probabilistic process calculus approach to the specification of
such protocols, and we study how the operators affect the probability of error.
In particular, we characterize constructs that have the property of not decreasing
the degree of protection, and that can therefore be considered safe in the modular
construction of protocols.

As a case study, we apply these techniques to the Dining Cryptographers, and
we are able to derive a generalization of Chaum’s strong anonymity result.

1 Introduction

During the last decade, internet activities have become an important part of many peo-
ple’s lives. As the number of these activities increases, there is a growing amount of
personal information about the users that is stored in electronic form and that is usu-
ally transferred using public electronic means. This makes it feasible and often easy to
collect, transfer and process a huge amount of information about a person. As a conse-
quence, the need for mechanisms to protect the user’s privacy is compelling.

We can categorize privacy properties based on the nature of the hidden information.
Data protection usually refers to confidential data like the credit card number. Ano-
nymity, on the other hand, concerns the identity of the user who performed a certain
action. Unlinkability refers to the link between the information and the user, and unob-
servability regards the actions of a user.

Information-hiding protocols aim at ensuring a privacy property during an electronic
transaction. For example, the voting protocol Foo 92 ([1]) allows a user to cast a vote
without revealing the link between the voter and the vote. The anonymity protocol
Crowds ([2]) allows a user to send a message on a public network without revealing
the identity of the sender. These kinds of protocols often use randomization to intro-
duce noise, thus limiting the inference power of a malicious observer.

1.1 Information Theory

Recently it has been observed that at an abstract level information-hiding protocols can
be viewed as channels in the information-theoretic sense. A channel consists of a set of
� This work has been partially supported by the INRIA DREI Équipe Associée PRINTEMPS

and by the INRIA ARC project ProNoBiS.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 443–457, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



444 C. Braun, K. Chatzikokolakis, and C. Palamidessi

input values S, a set of output valuesO (the observables) and a transition matrix which
gives the conditional probability p(o|s) of producing o as the output when s is the input.
In the case of privacy preserving protocols, S contains the secret information that we
want to protect and O the facts that the attacker can observe. This framework allows
us to apply concepts from information theory to reason about the knowledge that the
attacker can gain about the input by observing the output of the protocol.

In the field of information flow and non-interference there have been various works
[3,4,5,6,7] in which the high information and the low information are seen as the input
and output respectively of a (noisy) channel. Non-interference is formalized in this
setting as the converse of channel capacity.

Channel capacity has been also used in relation to anonymity in [8,9]. These works
propose a method to create covert communication by means of non-perfect anonymity.

A related line of work is [10,11], where the main idea is to express the lack of (prob-
abilistic) information in terms of entropy.

A different information-theoretic approach is taken in [12]. In this paper, the authors
define as information leakage the difference between the a priori accuracy of the guess
of the attacker, and the a posteriori one, after the attacker has made his observation. The
accuracy of the guess is defined as the Kullback-Leibler distance between the belief
(which is a weight attributed by the attacker to each input hypothesis) and the true
distribution on the hypotheses.

1.2 Hypothesis Testing

In information-hiding systems the attacker finds himself in the following scenario: he
cannot directly detect the information of interest, namely the actual value of the random
variable S ∈ S, but he can discover the value of another random variableO ∈ O which
depends on S according to a known conditional distribution. The attempt to infer S
from O is called hypothesis testing (the “hypothesis” to be validated is the actual value
of S), and it has been widely investigated in statistics. One of the most used approaches
to this problem is the Bayesian method, which consists in assuming known the a priori
probability distribution of the hypotheses, and deriving from that (and from the matrix
of the conditional probabilities) the a posteriori distribution after a certain fact has been
observed. It is well known that the best strategy for the adversary is to apply the MAP
(Maximum Aposteriori Probability) criterion, which, as the name says, dictates that one
should choose the hypothesis with the maximum a posteriori probability for the given
observation. “Best” means that this strategy induces the smallest probability of error in
the guess of the hypothesis. The probability of error, in this case, is also called Bayes
risk. In [13], we proposed to define the degree of protection provided by a protocol as
the Bayes risk associated to the matrix.

A major problem with the Bayesian method is that the a priori distribution is not
always known. This is particularly true in security applications. In some cases, it may
be possible to approximate the a priori distribution by statistical inference, but in most
cases, especially when the input information changes over time, it may not. Thus other
methods need to be considered, which do not depend on the a priori distribution. One
such method is the one based on the so-called Maximum Likelihood criterion.



Compositional Methods for Information-Hiding 445

1.3 Contribution

In this paper we consider both the scenario in which the input distribution is known, in
which case we consider the Bayes risk, and the one in which we have no information
on the input distribution, or it changes over time. In this second scenario, we consider
as degree of protection the probability of error associated to the Maximum Likelihood
rule, averaged on all possible input distributions. It turns out that such average is equal
to the value of the probability of error on the point of uniform distribution, which is
much easier to compute.

Next, we consider a probabilistic process algebra for the specification of information-
hiding protocols, and we investigate which constructs in the language can be used safely
in the sense that by applying them to a term, the degree of protection provided by the
term does not decrease. This provides a criterion to build specifications in a composi-
tional way, while preserving the degree of protection.

We apply these compositional methods to the example of the Dining Cryptographers,
and we are able to strengthen the strong anonymity result by Chaum. Namely we show
that we can have strong anonymity even if some coins are unfair, provided that there
is a spanning tree of fair ones. This result is obtained by adding processes representing
coins to the specification and using the fact that this can be done with a safe construct.

The proofs are omitted for lack of space. They can be found in the report ver-
sion of this paper, available on line at http://www.lix.polytechnique.fr/
˜catuscia/papers/Anonymity/Compositional/report.pdf.

1.4 Plan of the Paper

In the next section we recall some basic notions. Section 3 introduces the language
CCSp. Section 4 shows how to model protocols and process terms as channels. Sec-
tion 5 discusses hypothesis testing and presents some properties of the probability of
error. Section 6 characterizes the constructs of CCSp which are safe. Section 7 ap-
plies previous results to find a new property of the Dining Cryptographers. Section 8
concludes.

2 Preliminaries

In this section we recall some basic notions of probability theory and probabilistic au-
tomata ([14,15]).

A discrete probability measure over a set X is a function μ : 2X �→ [0, 1] such
that μ(X) = 1 and μ(∪iXi) =

∑
i μ(Xi) where Xi is a countable family of pairwise

disjoint subsets of X . We denote the set of all discrete probability measures over X
by Disc(X). For x ∈ X , we denote by δ(x) (the Dirac measure on x) the probability
measure that assigns probability 1 to {x}. If {ci}i are convex coefficients, and {μi}i
are probability measures, we will denote by

∑
i ciμi the probability measure defined as

(
∑

i ciμi)(Y ) =
∑
i ciμi(Y ).

A probabilistic automatonM is a tuple (St , Tinit ,Act , T ) where St is a set of states,
Tinit ∈ St is the initial state, Act is a set of actions and T ⊆ St ×Act ×Disc(St) is a
transition relation. Intuitively, if (T, a, μ) ∈ T then there is a transition from the state T

http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/Compositional/report.pdf
http://www.lix.polytechnique.fr/~catuscia/papers/Anonymity/Compositional/report.pdf


446 C. Braun, K. Chatzikokolakis, and C. Palamidessi

performing the action a and leading to a distribution μ over the states of the automaton.
(We use T for states because later in the paper states will be process terms, and S will
be used for certain sequences of actions). We also write T

a−→ μ if (T, a, μ) ∈ T . The
idea is that the choice of transition among the available ones in T is performed non-
deterministically, and the choice of the target state among the ones allowed by μ (i.e.
those states T ′ such that μ(T ′) > 0) is performed probabilistically. A probabilistic au-
tomatonM is fully probabilistic if from each state ofM there is at most one transition
available.

An execution fragment φ of a probabilistic automaton is a (possibly infinite) se-
quence T0a1T1a2T2 . . . of alternating states and actions, such that for each i there is a
transition (Ti, ai+1, μi) ∈ T and μi(Ti+1) > 0. We will use fst(φ), lst(φ) to denote
the first and last state of a finite execution fragment φ respectively. An execution (or
history) is an execution fragment such that fst(φ) = Tinit . An execution φ is maximal
if it is infinite or there is no transition from lst(φ) in T . We denote by exec∗(M) the
set of all the finite non-maximal executions ofM, and by exec(M) the set of all the
executions ofM.

A scheduler of a probabilistic automatonM = (St , Tinit ,Act , T ) is a function

ζ : exec∗(M)→ T

such that ζ(φ) = (T, a, μ) ∈ T implies that T = lst(φ). The idea is that a scheduler
selects a transition among the ones available in T and it can base its decision on the
history of the execution. The execution tree ofM relative to the scheduler ζ, denoted
by etree(M, ζ), is a fully probabilistic automatonM′ = (St ′, Tinit ,Act , T ′) such that
St ′ ⊆ exec(M), and (φ, a, μ′) ∈ T ′ if and only if ζ(φ) = (lst(φ), a, μ) for some μ,
and μ′(φaT ) = μ(T ). Intuitively, etree(M, ζ) is produced by unfolding the executions
of M and resolving all nondeterministic choices using ζ. Note that etree(M, ζ) is a
fully probabilistic automaton.

Given a fully probabilistic automatonM we can define a probability space on the
set exec(M) of executions ofM (see [14] for more details). Similarly, given a prob-
abilistic automatonM and a scheduler ζ forM, we can define a probability space on
the set of traces ofM by using the same construction on etree(M, ζ), which is a fully
probabilistic automaton.

3 CCS with Internal Probabilistic Choice

We consider an extension of standard CCS ([16]) obtained by adding internal proba-
bilistic choice. The resulting calculus CCSp can be seen as a simplified version of the
probabilistic π-calculus presented in [17,18] and it is similar to the one considered in
[19]. Like in those calculi, computations have both a probabilistic and a nondeterminis-
tic nature. The main conceptual novelty is a distinction between observable and secret
actions, introduced for the purpose of specifying information-hiding protocols.

We assume a countable set Act of actions a, and we assume that it is partitioned into
a set Sec of secret actions s, a set Obs of observable actions o, and the silent action τ .
For each s ∈ Sec we assume a complementary action s ∈ Sec such that s = s, and



Compositional Methods for Information-Hiding 447

Table 1. The semantics of CCSp

PROB
◦
�

i pi Ti
τ−→
�

i pi δ(Ti)
ACT

j ∈ I
�

Iai.Ti

aj−→ δ(Tj)

PAR1
T1

a−→ μ

T1 | T2
a−→ μ | T2

PAR2
T2

a−→ μ

T1 | T2
a−→ T1 | μ

REP
T | !T

a−→ μ

!T
a−→ μ | ! T

COM
T1

a−→ δ(T ′
1) T2

a−→ δ(T ′
2)

T1 | T2
τ−→ δ(T ′

1 | T ′
2)

RES
T

b−→ μ φ �= a, a

(νa)T
b−→ (νa)μ

the same for Obs . The silent action τ does not have a complementary action, so the
notation a will imply that a ∈ Sec or a ∈ Obs .

The syntax of CCSp is the following:

T ::= process term

◦∑i pi Ti probabilistic choice

| �
i si.Ti secret choice (si ∈ Sec)

| �
i ri.Ti nondeterministic choice (ri ∈ Obs ∪ {τ})

| T | T parallel composition

| (νa)T restriction

| !T replication

All the summations in the syntax are finite. We will use the notation T1 ⊕p T2 to
represent a binary probabilistic choice ◦∑i pi Ti with p1 = p and p2 = 1− p. Similarly
we will use a1.T1

�
a2.T2 to represent a binary secret or nondeterministic choice.

The semantics of a given CCSp term is a probabilistic automaton whose states are
process terms, whose initial state is the given term, and whose transitions are those
derivable from the rules in Table 1. We will use the notations (T, a, μ) and T

a−→ μ
interchangeably. We denote by μ | T the measure μ′ such that μ′(T ′ | T ) = μ(T ′)
for all processes T ′ and μ′(T ′′) = 0 if T ′′ is not of the form T ′ | T , and similarly for
T | μ. Furthermore we denote by (νa)μ the measure μ′ such that μ′((νa)T ) = μ(T ),
and μ′(T ′) = 0 if T ′ is not of the form (νa)T .

Note that in the produced probabilistic automaton, all transitions to non-Dirac mea-
sures are silent. Note also that a probabilistic term generates exactly one (probabilistic)
transition.

A transition of the form T
a−→ δ(T ′), i.e. a transition having for target a Dirac mea-

sure, corresponds to a transition of a non-probabilistic automaton (a standard labeled



448 C. Braun, K. Chatzikokolakis, and C. Palamidessi

transition system). Thus, all the rules of CCSp specialize to the ones of CCS except
from PROB. The latter models the internal probabilistic choice: a silent τ transition is
available from the sum to a measure containing all of its operands, with the correspond-
ing probabilities.

A secret choice
�
i si.Ti produces the same transitions as the nondeterministic term

�
i ri.Ti, except for the labels.
The distinction between the two kind of labels influences the notion of scheduler

for CCSp: the secret actions are assumed to be inputs of the system, so a secret choice
(with different guards) is determined by the input. The scheduler has to resolve only the
residual nondeterminism.

In the following, we use the notation X ⇀ Y to represent the partial functions from
X to Y , and φ|Sec represents the projection of φ on Sec.

Definition 1. Let T be a process in CCSp andM be the probabilistic automaton gen-
erated by T . A scheduler is a function ζ : Sec∗ → exec∗ ⇀ T such that:

(i) if s = s1s2 . . . sn and φ|Sec = s1s2 . . . sm with m ≤ n, and
(ii) there exists a transition (lst(φ), a, μ) such that, if a ∈ Sec then a = sm+1

then ζ(s)(φ) is defined, and it is one of such transitions. We will write ζs(φ) for ζ(s)(φ).

Note that this definition of scheduler is different from the one used in probabilistic au-
tomaton, where the scheduler can decide to stop, even if a transition is allowed. Here the
scheduler must proceed whenever a transition is allowed (provided that if it is labeled
by a secret, that secret is the next one in the input string s).

We now adapt the definition of execution tree from the notion found in probabilistic
automata. In our case, the execution tree depends not only on the scheduler, but also on
the input.

Definition 2. LetM = (St , T,Act, T ) be the probabilistic automaton generated by a
CCSp process T , where St is the set of processes reachable from T . Given an input s
and a scheduler ζ, the execution tree of T for s and ζ, denoted by etree(T, s, ζ), is a
fully probabilistic automatonM′ = (St ′, T,Act , T ′) such that St ′ ⊆ exec(M), and
(φ, a, μ′) ∈ T ′ if and only if ζs(φ) = (lst(φ), a, μ) for some μ, and μ′(φaT ) = μ(T ).

4 Modeling Protocols for Information-Hiding

We propose here an abstract model for information-hiding protocols, and we show how
to represent this model in CCSp. An extended example is presented in Section 7.

4.1 Protocols as Channels

We view protocols as channels in the information-theoretic sense [20]. The secret in-
formation that the protocol is trying to conceal constitutes the input of the channel, and
the observables constitute the outputs. The set of the possible inputs and that of the
possible outputs will be denoted by S andO respectively. We assume that S andO are



Compositional Methods for Information-Hiding 449

of finite cardinality m and n respectively. We also assume a discrete probability distri-
bution over the inputs, which we will denote by 	π = (πs1 , πs2 , . . . , πsm), where πs is
the probability of the input s.

To fit the model of the channel, we assume that at each run, the protocol is given
exactly one secret si to conceal. This is not a restriction, because the si’s can be complex
information like sequences of keys or tuples of individual data. During the run, the
protocol may use randomized operations to increase the level of uncertainty about the
secrets and obfuscate the link with the observables. It may also have internal interactions
between internal components, or other forms of nondeterministic behavior, but let us
rule out this possibility for the moment, and consider a purely probabilistic protocol.
We also assume there is exactly one output from each run of the protocol, and again,
this is not a restrictive assumption because the elements of O can be structured data.

Given an input s, a run of the protocol will produce each o ∈ O with a certain
probability p(o|s) which depends on s and on the randomized operations performed
by the protocol. Note that p(o|s) depends only on the probability distributions on the
mechanisms of the protocol, and not on the input distribution. The probabilities p(o|s),
for s ∈ S and o ∈ O, constitute a m × n array M which is called the matrix of the
channel, where the rows are indexed by the elements of S and the columns are indexed
by the elements of O. We will use the notation (S,O,M) to represent the channel.

Note that the input distribution 	π and the probabilities p(o|s) determine a distribu-
tion on the output. We will represent by p(o) the probability of o ∈ O. Thus both the
input and the output can be considered random variables. We will denote these random
variables by S and O.

If the protocol contains some forms of nondeterminism, like internal components
giving rise to different interleaving and interactions, then the behavior of the protocol,
and in particular the output, will depend on the scheduling policy. We can reduce this
case to previous (purely probabilistic) scenario by assuming a scheduler ζ which re-
solves the nondeterminism entirely. Of course, the conditional probabilities, and there-
fore the matrix, will depend on ζ, too. We will express this dependency by using the
notation Mζ .

4.2 Process Terms as Channels

A given CCSp term T can be regarded as a protocol in which the input is constituted
by sequences of secret actions, and the output by sequences of observable actions. We
assume that only a finite set of such sequences is relevant. This is certainly true if the
term is terminating, which is usually the case in security protocols where each session
is supposed to terminate in finite time.

Thus the set S could be, for example, the set of all sequences of secret actions up
to a certain length (for example, the maximal length of executions) and analogously O
could be the set of all sequences of observable actions up to a certain length. To be more
general, we will just assume S ⊆fin Sec∗ andO ⊆fin Obs∗.

Definition 3. Given a term T and a scheduler ζ : S → exec∗ → T , the matrix Mζ(T )
associated to T under ζ is defined as the matrix such that, for each s ∈ S and o ∈ O,



450 C. Braun, K. Chatzikokolakis, and C. Palamidessi

p(o|s) is the probability of the set of the maximal executions in etree(T, s, ζ) whose
projection in Obs is o.

5 Inferring the Secrets from the Observables

In this section we discuss possible methods by which an adversary can try to infer the
secrets from the observables, and consider the corresponding probability of error, that is,
the probability that the adversary draws the wrong conclusion. We regard the probability
of error as a representative of the degree of protection provided by the protocol, and we
study its properties with respect to the associated matrix.

We start by defining the notion of decision function, which represents the guess the
adversary makes about the secrets, for each observable. This is a well-known concept,
particularly in the field of hypothesis testing, where the purpose is to try to discover the
valid hypothesis from the observed facts, knowing the probabilistic relation between
the possible hypotheses and their consequences. In our scenario, the hypotheses are the
secrets.

Definition 4. A decision function for a channel (S,O,M) is any function f : O → S.

Given a channel (S,O,M), an input distribution 	π, and a decision function f , the prob-
ability of error P(f,M,	π) is the average probability of guessing the wrong hypothesis
by using f , weighted on the probability of the observable (see for instance [20]). The
probability that, given o, s is the wrong hypothesis is 1− p(s|o) (with a slight abuse of
notation, we use p(·|·) to represent also the probability of the input given the output).
Hence we have:

Definition 5 (Probability of error, [20]). P(f,M,	π) = 1−∑
O p(o)p(f(o)|o).

Given a channel (S,O,M), the best decision function that the adversary can use,
namely the one that minimizes the probability of error, is the one associated to the
so-called MAP rule, which prescribes choosing the hypothesis s which has Maximum
Aposteriori Probability (for a given o ∈ O), namely the s for which p(s|o) is maximum.
The fact that the MAP rule represent the ‘best bet’ of the adversary is rather intuitive,
and well known in the literature. We refer to [20] for a formal proof.

The MAP rule is used in the so-called Bayesian approach to hypothesis testing, and
the corresponding probability of error is also known as Bayes risk. We will denote it
by PMAP(M,	π). The following characterization is an immediate consequence of Defi-
nition 5 and of the Bayes theorem p(s|o) = p(o|s)πs/p(o).

PMAP(M,	π) = 1−
∑

O
max
s

(p(o|s)πs)

It is natural then to define the degree of protection associated to a process term as the
infimum probability of error that we can obtain from this term under every compatible
scheduler (in a given class).

In the following, we assume the class of schedulersA to be the set of all the sched-
ulers compatible with the given input S.

It turns out that the infimum probability of error on A is actually a minimum:



Compositional Methods for Information-Hiding 451

Proposition 1. For every CCSp process T we have

inf
ζ∈A

PMAP(Mζ(T ), 	π) = min
ζ∈A

PMAP(Mζ(T ), 	π)

Thanks to previous proposition, we can define the degree of protection provided by a
protocols in terms of the minimum probability of error.

Definition 6. Given a CCSp process T , the protection PtMAP(T ) provided by T , in the
Bayesian approach, is given by

PtMAP(T, 	π) = min
ζ∈A

PMAP(Mζ(T ), 	π).

The problem with the MAP rule is that it assumes that the input distribution is known
to the adversary. This is often not the case, so it is natural to try to approximate it with
some other rule. One such rule is the so-called ML rule, which prescribes the choice
of the s which has Maximum Likelihood (for a given o ∈ O), namely the s for which
p(o|s) is maximum. The name comes from the fact that p(o|s) is called the likelihood of
s given o. We will denote the corresponding probability of error by PML(M,	π). The fol-
lowing characterization is an immediate consequence of Definition 5 and of the Bayes
Theorem.

PML(M,	π) = 1−
∑

O
max
s

(p(o|s))πs

It has been shown (see for instance [21]) that under certain conditions on the matrix,
the ML rule approximates indeed the MAP rule, in the sense that by repeating the
protocol the adversary can make the probability of error arbitrarily close to 0, with
either rule.

We could now define the degree of protection provided by a term T under the ML
rule as the minimumPML(Mζ(T ), 	π), but it does not seem reasonable to give a definition
that depends on the input distribution, since the main reason to apply a non-Bayesian
approach is that indeed we do not know the input distribution. Instead, we define the
degree of protection associated to a process term as the average probability of error
with respect to all possible distributions 	π:

Definition 7. Given a CCSp process T , the protection PtML(T ) provided by T , in the
Maximum Likelihood approach, is given by

PtML(T ) = min
ζ∈A

(m− 1)!
∫

�π

PML(Mζ(T ), 	π) d	π

In the above definition, (m − 1)! represents a normalization function: 1
(m−1)! is the

hyper-volume of the domain of all possible distributions 	π on S, namely the (m − 1)-
dimensional space of points 	π such that 0 ≤ πs ≤ 1 and 0 ≤∑

s∈S πs = 1 (where m
is the cardinality of S).

Fortunately, it turns out that this definition is equivalent to a much simpler one: the
average value of the probability of error, under the Maximum Likelihood rule, can be
obtained simply by computing PML on the uniform distribution 	πu = ( 1

m ,
1
m , . . . ,

1
m ).



452 C. Braun, K. Chatzikokolakis, and C. Palamidessi

Theorem 1
PtML(T ) = min

ζ∈A
PML(Mζ(T ), 	πu)

The next corollary follows immediately from Theorem 1 and from the definitions of
PMAP and PML.

Corollary 1
PtML(T ) = min

ζ∈A
PMAP(Mζ(T ), 	πu)

We conclude this section with some properties of PMAP . Note that the same properties
hold also for PML on the uniform distribution, because PML(M,	πu) = PMAP(M,	πu).

The next proposition shows that the probabilities of error are concave functions with
respect to the space of matrices.

Proposition 2. Consider a family of channels {(S,O,Mi)}i∈I , and a family {ci}i∈I
of convex coefficients, namely 0 ≤ ci ≤ 1 for all i ∈ I , and

∑
i∈I ci = 1. Then:

PMAP(
∑

i∈I
ciMi, 	π) ≥

∑

i∈I
ci PMAP(Mi, 	π)

Corollary 2. Consider a family of channels {(S,O,Mi)}i∈I , and a family {ci}i∈I of
convex coefficients. Then:

PMAP(
∑

i∈I
ciMi, 	π) ≥ min

i∈I
PMAP(Mi, 	π)

The next proposition shows that if we transform the observables, and collapse the
columns corresponding to observables which have become the same after the trans-
formation, the probability of error does not decrease.

Proposition 3. Consider a channel (S,O,M), where M has conditional probabilities
p(o|s), and a transformation of the observables f : O → O′. Let M ′ be the matrix
whose conditional probabilities are p′(o′|s) =

∑
f(o)=o′ p(o|s) and consider the new

channel (S,O′,M ′). Then:

PMAP(M ′, 	π) ≥ PMAP(M,	π)

The following propositions are from the literature.

Proposition 4 ([21]). Given S, O, let M be a matrix indexed on S, O such that all the
rows of M are equal, namely p(o|s) = p(o|s′) for all o ∈ O, s, s′ ∈ S. Then,

PMAP(M,	π) = 1−max
s

πs

FurthermorePMAP(M,	π) is the maximum probability of error, i.e. for every other matrix
M ′ indexed on S, O we have:

PMAP(M,	π) ≥ PMAP(M ′, 	π).



Compositional Methods for Information-Hiding 453

Proposition 5 ([22]). Given a channel (S,O,M), the rows ofM are equal (and hence
the probability of error is maximum) if and only if p(s|o) = πs for all s ∈ S, o ∈ O.

The condition p(s|o) = πs means that the observation does not give any additional
information concerning the hypothesis. In other words, the a posteriori probability of
s coincides with its a priori probability. The property p(s|o) = πs for all s ∈ S and
o ∈ O was used as a definition of (strong) anonymity by Chaum [23] and was called
conditional anonymity by Halpern and O’Neill [24].

6 Safe Constructs

In this section we investigate constructs of the language CCSp which are safe with
respect to the protection of the secrets.

We start by giving some conditions that will allow us to ensure the safety of the
parallel and the restriction operators.

Definition 8. Consider process terms T1, T2, and observables o1, o2, . . . , ok such that

(i) T1 does not contain any secret action, and
(ii) the observable actions of T1 are included in o1, o2, . . . , ok.

Then we say that T1 and o1, o2, . . . , ok are safe with respect to T2.

The following theorem states our main results for PtMAP . Note that they are also valid
for PtML, because PtML(T ) = PtMAP(T, 	πu).

Theorem 2. The probabilistic choice, the nondeterministic choice, and a restricted
form of parallel composition are safe constructs, namely, for every input probability
π, and any terms T1, T2, . . . , Th, we have

(1) PtMAP( �
∑

i

pi Ti, 	π) ≥
∑

i

pi PtMAP(Ti, 	π) ≥ min
i

PtMAP(Ti, 	π)

(2) PtMAP(
�

i

oi.Ti, 	π) = min
i

PtMAP(Ti, 	π)

(3) PtMAP((νo1, o2, . . . , ok) (T1 | T2)) ≥ PtMAP(T2, 	π)

if T1 and o1, o2, . . . , ok are safe w.r.t. T2

Unfortunately the safety property does not hold for the secret choice. The following is
a counterexample.

Example 1. Let Sec = {s1, s2} and assume that S does not contain the empty se-
quence. Let T = o1.0

�
o2.0. Then PtMAP(T, 	π) is maximum (i.e. PtMAP(T, 	π) =

1 − max	π) because for every sequence s ∈ S we have p(o1|s) = p(o2|s). Let
T ′ = s1.T

�
s2.T . We can now define a scheduler such that, if the secret starts

with s1, it selects o1, and if the secret starts with s2, it selects o2. Hence, under this
scheduler, p(o1|s1s) = p(o2|s2s) = 1 while p(o1|s2s) = p(o2|s1s) = 0. Therefore
PtMAP(T ′, 	π) = 1 − p1 − p2 where p1 and p2 are the maximum probabilities of the
secrets of the form s1s and s2s, respectively. Note now that either max	π = p1 or



454 C. Braun, K. Chatzikokolakis, and C. Palamidessi

max	π = p2 because of the assumption that S does not contain the empty sequence.
Let 	π be such that both p1 and p2 are positive. Then 1 − p1 − p2 < 1 −max	π, hence
PtMAP(T ′, 	π) < PtMAP(T, 	π).

The reason why we need the condition (i) in Definition 8 for the parallel operator is
analogous to the case of secret choice. The following is a counterexample.

Example 2. Let Sec and S be as in Example 1. Define T1 = s1.0
�
s2.0 and T2 =

o1.0
�
o2.0. Clearly, PtMAP(T2, 	π) = 1 −max	π. Consider now the term T1 | T2 and

define a scheduler that first executes an action s in T1 and then, if s is s1, it selects o1,
while if s is s2, it selects o2. The rest proceeds like in Example 1, where T ′ = T1 | T2

and T = T 2.

The reason why we need the condition (ii) in Definition 8 is that without it the par-
allel operator may create different interleavings, thus increasing the possibility of an
adversary discovering the secrets. The following is a counterexample.

Example 3. Let Sec andS be as in Example 1. Define T1 = o.0 and T2 = s1.(o1.0 ⊕.5
o2.0)

�
s2.(o1.0 ⊕.5 o2.0). It is easy to see that PtMAP(T2, 	π) = 1 − max	π.

Consider the term T1 | T2 and define a scheduler that first executes an action s in
T2 and then, if s is s1, it selects first T1 and then the continuation of T2, while if
s is s2, it selects first the continuation of T2 and then T1. Hence, under this sched-
uler, p(oo1|s1s) = p(oo2|s1s) = .5 and also p(o1o|s2s) = p(o2o|s2s) = .5 while
p(oo1|s2s) = p(oo2|s2s) = 0 and p(o1o|s1s) = p(o2o|s1s) = 0. Therefore we have
that PtMAP(T, 	π) = 1 − p1 − p2 where p1 and p2 are the maximum probabilities of
the secrets of the form s1s and s2s, respectively. Following the same reasoning as in
example 1, we have that for certain 	π, PtMAP(T ′, 	π) < PtMAP(T, 	π).

7 A Case Study: The Dining Cryptographers

In this section we consider the Dining Cryptographers (DC) protocol proposed by
Chaum in [23], we show how to describe it in CCSp, and we apply the results of previ-
ous section to obtain a generalization of Chaum’s strong anonymity result.

In its most general formulation, the DC consists of a multigraph where one of the
nodes (cryptographers) may be secretly designated to pay for the dinner. The cryp-
tographers would like to find out whether there is a payer or not, but without either
discovering the identity of the payer, nor revealing it to an external observer. The prob-
lem can be solved as follows: we put on each edge a probabilistic coin, which can give
either 0 or 1. The coins get tossed, and each cryptographer computes the binary sum of
all (the results of) the adjacent coins. Furthermore, it adds 1 if it is designated to be the
payer. Finally, all the cryptographers declare their result.

It is easy to see that this protocol solves the problem of figuring out the existence of
a payer: the binary sum of all declarations is 1 if and only if there is a payer, because
all the coins get counted twice, so their contribution to the total sum is 0.

The property we are interested in, however, is the anonymity of the system. Chaum
proved that the DC is strongly anonymous if all the coins are fair, i.e. they give 0 and 1
with equal probability, and the multigraph is connected, namely there is a path between



Compositional Methods for Information-Hiding 455

Table 2. The dining cryptographers protocol expressed in CCSp

Crypt i = ci,i1(x1) . . . . . ci,ik (xk) . pay i(x) . d̄i〈x1 + . . .+ xk + x〉

Coinh = c̄�,h〈0〉 . c̄r,h〈0〉.0 ⊕ph c̄�,h〈1〉 . c̄r,h〈1〉.0

Collect = d1(y1) . d2(y2) . . . . . dn(yn) . out〈y1, y2, . . . , yn〉

DC = (ν�c)(ν �d)(
�

i Crypt i |
�

h Coinh | Collect)

each pair of nodes. To state formally the property, let us denote by s the secret identity
of the payer, and by o the collection of the declarations of the cryptographers.

Theorem 3 ([23]). If the multigraph is connected, and the coins are fair, then DC is
strongly anonymous, namely for every s and o, p(s|o) = πs holds.

We are now going to show how to express the DC in CCSp. We start by introducing a
notation for value-passing in CCSp, following standard lines.

Input c(x).T =
�
v cv.T [v/x]

Output c̄〈v〉 = c̄v

The protocol can be described as the parallel composition of the cryptographers pro-
cesses Crypt i, of the coin processes Coinh, and of a process Collect whose purpose
is to collect all the declarations of the cryptographers, and output them in the form of
a tuple. See Table 2. In this protocol, the secret actions are pay i. All the others are
observable actions.

Each coin communicates with two cryptographers. ci,h represents the communica-
tion channel between Coinh and Crypt i if h is indeed the index of a coin, otherwise
it represents a communication channel “with the environment”. We will call the latter
external. In the original definition of the DC there are no external channels, we have
added them to prove a generalization of Chaum’s result. They could be interpreted as a
way for the environment to influence the computation of the cryptographers and hence
test the system, for the purpose of discovering the secret.

We are now ready to state our generalization of Chaum’s result.

Theorem 4. A DC is strongly anonymous if it has a spanning tree consisting of fair
coins only.

Proof. Consider the term DC in Table 2. Remove all the coins that do not belong to the
spanning tree, and the corresponding restriction operators. Let T be the process term
obtained this way. Let A be the class of schedulers which select the value 0 for all the
external channels. This situation corresponds to the original formulation of Chaum and
so we can apply Chaum’s result (Theorem 3) and Proposition 5 to conclude that all
the rows of the matrix M are the same and hence, by Proposition 4, PMAP(M,	π) =
1−maxi πi.

Consider now one of the removed coins, h, and assume, without loss of generality,
that c�,h(x), cr,h(x) are the first actions in the definitions of Crypt � and Cryptr. Con-
sider the class of schedulers B that selects value 1 for x in these actions. The matrix



456 C. Braun, K. Chatzikokolakis, and C. Palamidessi

M ′ that we obtain is isomorphic to M : the only difference is that each column o is
now mapped to a column o + w, where w is a tuple that has 1 in the 
 and r positions,
and 0 in all other positions, and + represents the componentwise binary sum. Since
this map is a bijection, we can apply Proposition 3 in both directions and derive that
PMAP(M ′, 	π) = 1−maxi πi.

We can conclude, therefore, that PtMAP(T, 	π) = 1 −maxi πi in the class of sched-
ulersA ∪ B.

By repeating the same reasoning on each of the removed coins, we can conclude that
PtMAP(T, 	π) = 1−maxi πi for any scheduler ζ of T .

Consider now the term T ′ = (νc�,hcr,h)(Coinh | T ) obtained from T by adding
back the coin h. By applying Theorem 2 we can deduce that PtMAP(T ′, 	π)≥PtMAP(T, 	π).
By repeating this reasoning, we can add back all the coins, one by one, and obtain the
original DC . Hence we can conclude that PtMAP(DC , 	π) ≥ PtMAP(T, 	π) = 1−maxi πi
and, since PtMAP(T, 	π) is maximum, we have PtMAP(DC , 	π) = 1 − maxi πi, which
concludes the proof.

Interestingly, also the other direction of Theorem 4 holds. We report this result for
completeness, however we have proved it by using traditional methods, not by applying
the compositional methods of Section 6.

Theorem 5. A DC is strongly anonymous only if it has a spanning tree consisting of
fair coins only.

8 Conclusion and Future Work

In this paper we have investigated the properties of the probability of error associated
to a given information-hiding protocol, and we have investigated CCSpconstructs that
are safe, i.e. that are guaranteed not to decrease the protection of the protocol. Then we
have applied these results to strengthen a result of Chaum: the dining cryptographers
are strongly anonymous if and only if they have a spanning tree of fair coins.

In the future, we would like to extend our results to other constructs of the language.
This is not possible in the present setting, as the examples after Theorem 2 show. The
problem is related to the scheduler: the standard notion of scheduler is too powerful
and can leak secrets, by depending on the secret choices that have been made in the
past. All the examples after Theorem 2 are based on this kind of problem. In [25], we
have studied the problem and we came out with a language-based solution to restrict
the power of the scheduler. We are planning to investigate whether such approach could
be exploited here to guarantee the safety of more constructs.

References

1. Fujioka, A., Okamoto, T., Ohta, K.: A practical secret voting scheme for large scale elections.
In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT 1992. LNCS, vol. 718, pp. 244–251. Springer,
Heidelberg (1993)

2. Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web transactions. ACM Transactions on
Information and System Security 1, 66–92 (1998)

3. McLean, J.: Security models and information flow. In: Proc. of SSP, pp. 180–189. IEEE, Los
Alamitos (1990)



Compositional Methods for Information-Hiding 457

4. Gray III, J.W.: Toward a mathematical foundation for information flow security. In: Proc. of
SSP 1991, pp. 21–35. IEEE, Los Alamitos (1991)

5. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confidential data.
In: Proc. of QAPL 2001. ENTCS, pp. 238–251. Elsevier Science B.V., Amsterdam (2001)

6. Clark, D., Hunt, S., Malacaria, P.: Quantified interference for a while language. In: Proc. of
QAPL 2004. ENTCS, vol. 112, pp. 149–166. Elsevier Science B.V., Amsterdam (2005)

7. Lowe, G.: Quantifying information flow. In: Proc. of CSFW 2002, pp. 18–31. IEEE Com-
puter Society Press, Los Alamitos (2002)

8. Moskowitz, I.S., Newman, R.E., Crepeau, D.P., Miller, A.R.: Covert channels and anonymiz-
ing networks. In: Jajodia, S., Samarati, P., Syverson, P.F. (eds.) WPES, pp. 79–88. ACM, New
York (2003)

9. Moskowitz, I.S., Newman, R.E., Syverson, P.F.: Quasi-anonymous channels. In: IASTED
CNIS, pp. 126–131 (2003)

10. Serjantov, A., Danezis, G.: Towards an information theoretic metric for anonymity. In: Din-
gledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 41–53. Springer, Heidel-
berg (2003)

11. Dı́az, C., Seys, S., Claessens, J., Preneel, B.: Towards measuring anonymity. In: Dingledine,
R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 54–68. Springer, Heidelberg (2003)

12. Clarkson, M.R., Myers, A.C., Schneider, F.B.: Belief in information flow. Journal of Com-
puter Security (to appear, 2008)

13. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Probability of error in information-
hiding protocols. In: Proc. of CSF, pp. 341–354. IEEE, Los Alamitos (2007)

14. Segala, R.: Modeling and Verification of Randomized Distributed Real-Time Systems. Tech.
Rep. MIT/LCS/TR-676, PhD thesis, MIT (1995)

15. Segala, R., Lynch, N.: Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing 2, 250–273 (1995)

16. Milner, R.: Communication and Concurrency. International Series in Computer Science.
Prentice-Hall, Englewood Cliffs (1989)

17. Herescu, O.M., Palamidessi, C.: Probabilistic asynchronous π-calculus. In: Tiuryn, J. (ed.)
FOSSACS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000)

18. Palamidessi, C., Herescu, O.M.: A randomized encoding of the π-calculus with mixed
choice. Theoretical Computer Science 335, 373–404 (2005)

19. Deng, Y., Palamidessi, C., Pang, J.: Compositional reasoning for probabilistic finite-state
behaviors. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.)
Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 309–337.
Springer, Heidelberg (2005)

20. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., Chich-
ester (1991)

21. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Information and Computation (to appear, 2007)

22. Bhargava, M., Palamidessi, C.: Probabilistic anonymity. In: Abadi, M., de Alfaro, L. (eds.)
CONCUR 2005. LNCS, vol. 3653, pp. 171–185. Springer, Heidelberg (2005)

23. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology 1, 65–75 (1988)

24. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. Jour-
nal of Computer Security 13, 483–512 (2005)

25. Chatzikokolakis, K., Palamidessi, C.: Making random choices invisible to the scheduler. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR. LNCS, vol. 4703, pp. 42–58. Springer, Hei-
delberg (2007)



Products of Message Sequence Charts�

Philippe Darondeau, Blaise Genest, and Löıc Hélouët

IRISA, campus de Beaulieu, F-35042 Rennes Cedex

Abstract. An effective way to assemble partial views of a distributed
system is to compute their product. Given two Message Sequence Graphs,
we address the problem of computing a Message Sequence Graph that
generates the product of their languages, when possible. Since all MSCs
generated by a Message Sequence Graph G may be run within fixed
bounds on the message channels (that is, G is existentially bounded), a
subproblem is to decide whether the considered product is existentially
bounded. We show that this question is undecidable, but turns co-NP-
complete in the restricted case where all synchronizations belong to the
same process. This is the first positive result on the decision of existential
boundedness. We propose sufficient conditions under which a Message
Sequence Graph representing the product can be constructed.

1 Introduction

Scenario languages, and in particular Message Sequence Charts (MSCs) have
met a considerable interest over the last decade in both academia and industry.
MSCs allow for the compact description of distributed systems executions, and
their visual aspect made them popular in the engineering community. Our ex-
perience with industry (France-Telecom) showed us that MSCs are most often
used there together with extensions such as optional parts (that is choice) and
(weak) concatenation, while iteration is left implicit. (Compositional) Message
Sequence Graphs ((C)MSC-graphs) is the academic framework in which choice,
weak concatenation and iteration of MSCs are formalized. For a recent survey
of Message Sequence Graphs, we refer the reader to [6,9]. A challenging problem
is to automatically implement MSC-languages (that is, sets of MSCs) given by
(C)MSC-graphs. Apart from the restricted case of Local Choice (C)MSC-graphs
[8,7], this problem has received no satisfactory solution, since either deadlocks
arise from the implementation [14,4], or implementation may exhibit unspecified
behaviors [2]. A further challenge is to help designing (C)MSC-graphs for com-
plex systems, while keeping analysis and implementability decidable. Systems
often result from assembling modules, reflecting different aspects. A possible
way to help the modular modeling of systems into (C)MSC-graphs is thus to
provide a product operator. A first attempt in this direction is [10], where the
amalgamation allows the designer to merge 2 nodes of 2 MSG-graphs but not
their paths. We feel that a more flexible operation, defined on MSC languages
and therefore independent from MSC block decompositions, is needed.
� Work supported by France Telecom R&D (CRE CO2) and ANR project DOTS.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 458–473, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Products of Message Sequence Charts 459

Shuffling the linearizations of the languages of two (C)MSC-graphs is not the
right product. On the one hand, such shuffling kills existential bounds [11], i.e.,
there is no upper bound on the size of the message channels within which all
MSCs in the shuffled language can be run. Existential bounds are an important
feature of (safe C)MSC-graphs which allow their analysis. On the other hand,
two states of the (C)MSC-graphs (one for each module) may represent incom-
patible aspects. Hence, one needs some synchronization to control the product
operation, in order to avoid incompatibilities and non existentially bounded be-
haviors. Control may be introduced with synchronization points: one module
waits at a synchronization point until the other module reaches a compatible syn-
chronization point, and then both can proceed. Synchronizations may be defined
either per process or per state of the (C)MSC-graphs. State oriented synchro-
nization conflicts with weak concatenation since it means that all processes of
the same module pass simultaneously the synchronization barrier, which diverges
strongly from the semantics of (C)MSC-graphs. Second, it harms implementabil-
ity, since state-synchronized products of implementable (C)MSC-graphs may not
be implementable. We therefore choose to define synchronizations per process,
by means of shared local events identified by names common to both MSCs.
Formally, we define thus a mixed product of MSCs that amounts to shuffling
their respective events on each process, simultaneously and independently, ex-
cept for the shared events that are not interleaved but coalesced. One appealing
property of this definition of product is that the product of two implementable
(C)MSC-graphs is also implementable (albeit with possible deadlocks), since
it suffices to take the product of the implementations processwise, coalescing
shared events.

In order to be represented as a (safe C)MSC-graph, an MSC language needs
to be existentially bounded. So far, no algorithm is known to check the exis-
tential boundedness of an MSC language in a non-trivial case (e.g., existential
boundedness is undecidable even for deterministic deadlock-free Communicating
Finite State Machines, see http://perso.crans.org/˜genest/GKM07.pdf). This is
the challenging problem studied in this paper. We show that checking existential
boundedness of the product of two (safe C)MSC-graphs is in general undecid-
able, as one expects. Surprisingly, if all shared events (synchronizations) belong
to the same process, then this question becomes decidable. Once a product is
known to be existentially bounded, results [12,4] on representative linearizations
can be used. Namely, languages of MSCs defined by the globally cooperative sub-
class of safe CMSC-graphs have regular sets of linear representatives, where the
regular representations can be computed from the CMSC-graphs and conversely.
Thus, given two globally cooperative CMSC-graphs such that their product is
existentially bounded, this product can be represented with a globally cooper-
ative CMSC-graph. The authors of [4] ignore the contents of messages in the
definition of MSCs. We consider messages with contents, and adapt the FIFO
requirement of [4] to both weak ([2,13]) and strong FIFO ([1]). We recast the
correspondence established in [4] into these different frameworks, and compare
the complexity and decidability of these two semantics.



460 P. Darondeau, B. Genest, and L. Hélouët

The paper is organized as follows. Section 2 recalls the background of MSCs
and MSC-graphs. Section 3 introduces the product of MSC-languages. Sec-
tion 4 recalls the definition of existential channel bounds for MSC-languages.
It is shown in Sections 5 and 6 that one can, in general, not check the existen-
tial boundedness of the product of two existentially bounded MSC-languages,
whereas this problem is co-NP-complete (weak FIFO) or PSPACE (strong FIFO)
when the synchronizations are attached to a single process. Section 7 defines for
that special case an operation of product on CMSC-graphs. Many proofs are
skipped or only briefly sketched by lack of space, but they are available in the
full version of the paper, available at http://perso.crans.org/˜genest/DGH07.pdf.

2 Background

To begin with, we recall the usual definition of compositional Message Sequence
Charts (CMSCs for short), which describe executions of communication pro-
tocols, and of CMSC-graphs, which are generators of CMSC sets. Let P , M,
and A be fixed finite sets of processes, messages and actions, respectively. Pro-
cesses may perform send events S, receive events R and internal events I.
That is, the set of types of events of an MSC is E = S ∪ R ∪ I where S =
{p ! q (m) | p, q ∈ P , p �= q,m ∈ M},R = {p ? q (m) | p, q ∈ P , p �= q,m ∈ M},
and I = {p (a) | p ∈ P , a ∈ A}. For each p ∈ P , we let Ep = Sp ∪Rp ∪ Ip where
Sp, Rp, and Ip are the restrictions of S, R, and I, respectively, to the considered
process p (e.g., p ? q (m) ∈ Sp). We define now MSCs over E .

Definition 1. A compositional Message Sequence Chart M is a tuple M =
(E, λ, μ, (<p)p∈P) where

– E is a finite set of events, with types λ(e) given by a labeling map λ : E → E,
– for each p ∈ P, <p is a total order on Ep = λ−1(Ep),
– μ : E → E is a partially defined, injective mapping,
– if μ(e1) = e2 then λ(e1) = p ! q (m) and λ(e2) = q ? p (m) for some p, q and m,
– [weak FIFO] if e1 <p e′1, λ(e1) = λ(e′1) = p ! q (m) and μ(e′1) is defined, then
μ(e1) <q μ(e′1) (in particular, μ(e1) is defined).
– the union < of ∪p∈P <p and ∪e∈E {(e, μ(e))} is an acyclic relation.
– M is an MSC if the partial map μ is a bijection between λ−1(S) and λ−1(R).

Def. 1 extends the original definition of [5] (see also [4]) by considering messages
with non trivial contents. There are then two alternatives to the FIFO condi-
tion. Strong FIFO requires that e1 <p e′1, λ(e1) = p ! q (m), λ(e′1) = p ! q (m′)
and μ(e′1) defined entail μ(e1) <q μ(e′1), i.e., there is a single channel from p
to q. The weak FIFO requirement used in Def. 1 means that there are as many
FIFO channels from p to q as there are types of events p ! q (m). In general,
there are undecidable problems in the strong FIFO semantics, as weak realiz-
ability [1], which are decidable in the weak FIFO semantics [13]. Anyway, all
(un)decidability results established in this paper hold for both FIFO semantics,
even though complexity depends on the semantics used.



Products of Message Sequence Charts 461

Given a CMSC X = (E, λ, μ, (<p)p∈P), let ≤X be the reflexive and transitive
closure of the relation < from Def. 1. A linear extension of X is an enumeration
of E compatible with ≤X . A linearization of X is the image of a linear extension
of X under the map λ : E → E (hence it is a word of E∗). Let Lin(X) denote the
set of linearizations of X . For a set X of CMSCs, let Lin(X ) denote the union of
Lin(X) for all X ∈ X . Linearizations can be defined more abstractly as follows:

Definition 2. Let Lin ⊆ E∗ be the set of all words w such that for all p, q and m,
the number of occurrences q ? p (m) is at most equal to the number of occurrences
p ! q (m) in every prefix v of w, and both numbers are equal for v = w. In the
strong FIFO setting, we furthermore require the equality of contents of the i-th
emission from p to q and of the i-th reception on q from p.

Any linearization w of an MSC belongs to Lin (it may not be the case for a
CMSC). Conversely, because of weak or strong FIFO, a word w = ε1 . . . εn ∈ Lin
is the linearization of a unique MSC, Msc(w) = ({1, . . . , n}, λ, μ, (<p)), with:

– λ(i) = εi and i <p j if i < j and εi, εj ∈ Ep,
– μ(i) = j if the letter εi = p ! q (m) occurs k times in ε1 . . . εi and the letter
εj = q ? p (m) occurs k times in ε1 . . . εj for some p, q,m, k.

Definition 3. Two words w,w′ ∈ Lin are equivalent (notation w ≡ w′) if
Msc(w) and Msc(w′) are isomorphic. For any language L ⊆ Lin, we write
[L] = {w | w ≡ w′, w′ ∈ L}. A language L ⊆ Lin(X ) is a representative set for
a set X if L ∩ Lin(X) �= ∅ for all X ∈ X , or equivalently, if [L] = Lin(X ).

We deduce the following properties. For any MSC X , Lin(X) is an equivalence
class in Lin. For any MSC X and for any w ∈ Lin, w ∈ Lin(X) if and only
if X is isomorphic to Msc(w). A similar property does not hold for arbitrary
CMSCs. For instance, (p ! q (m)) (q ? p (m)) (q ? p (m)) belongs to Lin(X) for two
different CMSCs X , where the emission is matched by μ either with the first or
with the second reception.

Login

NOK

OK

sync

Client Server Client Server

Fig. 1. Identification Scenario G1

Search

Void

Content

sync

Client Server Client Server

Fig. 2. Searching Scenario G2



462 P. Darondeau, B. Genest, and L. Hélouët

We define the concatenation X1 ·X2 of two CMSCs Xi = (Ei, λi, μi, (<ip)p∈P)
as the set of CMSCs X = (E1 �E2, λ1 � λ2, μ, (<p)p∈P ) such that:

– μ ∩ (Ei × Ei) = μi and <p ∩ (Ei × Ei) =<ip for i ∈ {1, 2} and p ∈ P ,
– e ∈ E2 and e ≤X e′ entail e′ ∈ E2 for all e, e′ ∈ E1 �E2.

We let X1 · X2 be the union of X1 ·X2 for all Xi ∈ Xi, i ∈ {1, 2}. We can now
give a description of sets of MSCs with rational operations.

Definition 4. A CMSC-graph is a tuple G = (V,→, Λ, V 0, V f ) where (V,→)
is a finite graph, V 0, V f ⊆ V are the subsets of initial and final vertices, respec-
tively, and Λ maps each vertex v to a CMSC Λ(v). We define L(G) as the set
of all MSCs in Λ(v0) ·Λ(v1) · . . . ·Λ(vn) where v0, v1 . . . , vn is a path in G from
some initial vertex v0 ∈ V 0 to some final vertex vn ∈ V f . The CMSC-graph G
is safe if any such set Λ(v0) · . . . · Λ(vn) contains at least one MSC.

Intuitively, the semantics of CMSC-graphs is defined using the concatenation of
the CMSCs labeling the vertices met along the paths in these graphs. Notice
that Λ(v0) · . . . · Λ(vn) may contain an arbitrary number of CMSCs, but at
most one of these CMSCs is an MSC. An example of a non-safe CMSC-graph
is G = (V,→, Λ, {v0}, {vf}) where V = {v0, vf}, v0 → vf , the CMSC Λ(v0)
has a single event labeled with q ? p (m), and the CMSC Λ(vf ) has a single
event labeled with p ! q (m). Indeed the two events cannot be matched by μ in
Λ(v0) · Λ(vf ). Notice that this is a XCMSG [12]. The reason why we do not
allow XCMSGs is that safe XCMSGs are not necessarily existentially bounded,
hence the Mazurkiewicz trace coding needed for the results of [4] that we use for
Theorem 3 fails. Fig. 1 and 2 show two (C)MSC-graphs. Their nodes are labeled
with MSCs. Concatenating OK and the local event sync gives an MSC with 3
events. The reception of OK and the event sync are unordered (in G1). On the
contrary, the event sync and the reception of Void are ordered (in G2).

A safe CMSC-graph G may always be expanded into a safe atomic CMSC-
graph G′, that is a graph in which each node is labeled with a single event, such
that L(G) = L(G′). In the following, every safe CMSC-graph is assumed to be
atomic. The expansion yields, by the way, a regular representative set for L(G).

3 Product of MSC-Languages

In order to master the complexity of distributed system descriptions, it is desir-
able to have at one’s disposal a composition operation that allows us to weave
different aspects of a system. When system aspects are CMSC-graphs with dis-
joint sets of processes, the concatenation of their MSC-languages can be used
to this effect. Else, some parallel composition with synchronization capabilities
is needed. We propose here to shuffle the events of the two MSC-graphs per
process, except for the common events that serve to the synchronization. We
require that all common events are internal events. Formally, what we define
is an extension of the mixed product of words. The intersection with a regular



Products of Message Sequence Charts 463

language could be used in place of the synchronizations to control the shuffle,
but this would not change significantly the results of this paper. However, syn-
chronizing on messages could change the results, as we can encode shared events
using shared messages, but not the other way around.

First, we recall the definition of the mixed product L1 ‖ L2 of two languages
L1, L2 of words (see [3]), defined on two alphabets Σ1, Σ2 not necessarily disjoint.
Let Σ = Σ1∪Σ2. For i = 1, 2 let πi : Σ∗ → Σ∗i be the unique monoid morphism
such that πi(σ) = σ for σ ∈ Σi and πi(σ) = ε, otherwise. Then L1 ‖ L2 = {w |
πi(w) ∈ Li, i = {1, 2}} is the set of all words w ∈ Σ∗ with respective projections
πi(w) in Li; e.g., {ab} ‖ {cad} = {cabd, cadb} (a is the synchronizing action).

Definition 5. For i = {1, 2}, let Xi be an MSC-language over some E i, such
that x ∈ E1 ∩ E2 implies x = p(a) for some p, a. The mixed product X1 ‖ X2 is
Msc ( (Lin(X1) ‖ Lin(X2)) ∩ Lin ) and it is an MSC-language over E1 ∪ E2.

The mixed product operation serves to compose the languages of two CMSC-
graphs that share only internal events, as is the case for the CMSC-graphsG1, G2

of Fig. 1,2. The synchronization sync ensures that in any MSC in L(G1) ‖ L(G2),
the server never answers a search request from the client unless the client is
logged in. Thus, synchronizations serve to avoid mixing incompatible fragments
of the two CMSC-graphs. When a set X is a singleton X = {X}, we abusively
write X ‖ Y instead of {X} ‖ Y. Note that even though X1 and X2 are MSCs,
X1 ‖ X2 may contain more than one MSC. Under weak FIFO semantics, mixing
all linearizations pairwise yields all and only linearizations of a product of MSCs.
However, the product of two linearizations of strong FIFO MSCs may contain
words that are not linearizations of strong FIFO MSCs. Intersecting with Lin
allows us to keep only linearizations of (strong FIFO) MSCs.

Proposition 1. Lin(X1 ‖ X2) = (Lin(X1) ‖ Lin(X2)) ∩ Lin.

Lemma 1. (Lin(X1) ‖ Lin(X2)) ∩ Lin is closed under ≡ (see Def. 3).

However, {X1} ‖ {X2} may be larger than Msc (w1 ‖ w2) for fixed representa-
tions w1 ∈ Lin(X1) and w2 ∈ Lin(X2). This situation is illustrated with

w1 = (p ! q (m1)) (q ? p (m1)) (p ! q (m1)) (q ? p (m1)),
w′1 = (p ! q (m1))2 (q ? p (m1))2,
w2 = (q ! p (m2)) (p ? q (m2)) (q ! p (m2)) (p ? q (m2)),
w′2 = (q ! p (m2))2 (p ? q (m2))2,
w3 = (p ! q (m1))2 (q ! p (m2))2 (p ? q (m2))2 (q ? p (m1))2.

and X1 = Msc(w1) = Msc(w′1), X2 = Msc(w2) = Msc(w′2), X3 = Msc(w3).
There is no synchronization. Now X3 ∈Msc(w′1 ‖ w′2), but X3 /∈Msc(w1 ‖ w2).
This observation shows that products must be handled with care. Indeed, an
advantage of CMSC-graphs is to represent large sets of linearizations with small
subsets of representatives. However, w1 is a representative for X1, w2 is for X2,
but w1 ‖ w2 is not a set of representatives for X1 ‖ X2.



464 P. Darondeau, B. Genest, and L. Hélouët

4 Bounds for MSCs and Products

We review in this section ways of classifying CMSC-graphs based on bounds
for communication channels, and we examine how these bounds behave under
product of CMSC-languages. We focus on MSC-languages with regular represen-
tative sets. As indicated earlier, a regular representative set for the language of
a safe CMSC-graph G may be obtained by expanding G into an atomic CMSC-
graph G′. As observed in [12], it follows from a pumping lemma that whenever
L ⊆ Lin is a regular representative set for some X , the words in L are uniformly
B-bounded, for some B > 0, as defined hereafter. First, the definition of a chan-
nel depends on the semantics. In the weak FIFO setting, a channel is a triple
p, q ∈ P ,m ∈ M, and p!q(m) is an emission (q?p(m) is a reception) on this
channel. In the strong FIFO setting, a channel is a pair p, q ∈ P , and p!q(m) is
an emission (q?p(m′) is a reception) on this channel for any m,m′ ∈M. A word
w ∈ E∗ is B-bounded if, for any prefix v of w and any channel c, the number of
emissions on c in v exceeds the number of receptions on c in v by at most B.

A MSC X is ∀-B-bounded if every linearization w ∈ Lin(X) is B-bounded. A
MSC X is ∃-B-bounded if some linearization w ∈ Lin(X) is B-bounded. A set of
MSCs X is ∃-B-bounded if all MSCs X ∈ X are ∃-B-bounded; X is existentially
bounded if it is ∃-B-bounded for some B. Let LinB(X ) denote the set of B-
bounded words w in Lin(X ). Clearly, any X with a regular representative set
is existentially B-bounded for some B, but it may not be ∀-B-bounded for
any B. Conversely, when an MSC-language X is ∃-B-bounded, LinB(X ) is a
representative set for X , but it is not necessarily a regular language.

Proposition 2. LinB(X1 ‖ X2) = (LinB(X1) ‖ LinB(X2)) ∩ LinB .

The above result shows that the mixed product behaves nicely with respect
to bounded linearizations. If X1 and X2 are ∀-B-bounded, then Lin(Xi) =
LinB(Xi), and using Prop. 1, their product is also ∀-B-bounded. However, it
may occur that both X1 and X2 are ∃-B-bounded but their mixed product
is not existentially bounded. For instance, for all j, let Xj

1 be the MSC with
j messages m1 from p to q and Xj

2 be the MSC with j messages m2 from
q to p. All these MSCs are ∃-1-bounded since (p!q(m1)q?p(m1))j ∈ Lin(Xj

1)
is 1-bounded. Define X1 = {Xj

1 | j > 0} and X2 = {Xj
2 | j > 0}, thus

X1, X2 are ∃-1-bounded, but X1 ‖ X2 is not ∃-B-bounded for any B since
Msc(p!q(m1)B(q!p(m2)p?q(m2))Bq?p(m1)B) ∈ X1 ‖ X2, but it is not ∃-(B − 1)-
bounded.

Definition 6. Given an MSC X = (E, λ, μ, (<p)p∈P) and a non-negative inte-
ger B, let RevB be the binary relation on E such that eRevB e′ if and only if,
for some channel c, e is the i-th reception on channel c and e′ is the i + B-th
emission on channel c. We also define Rev≥B = ∪B′≥BRevB′ .

Proposition 3 (lemma 2 in [11]). A MSC X is ∃-B-bounded if and only if
the relation < ∪RevB is acyclic, if and only if the relation < ∪Rev≥B is acyclic.



Products of Message Sequence Charts 465

If X is ∃-B-bounded then X is ∃-B′-bounded for all B′ ≥ B, because RevB′

is included in the least order relation containing RevB and
⋃
p∈P <p. For in-

stance, in Msc(p!q(m1)B (q!p(m2) p?q(m2))B q?p(m1)B) let (ai, bi) denote the i-
th pair of events (p!q(m1), q?p(m1)) and (ci, di) the i-th pair of events (q!p(m2),
p?q(m2)), then aB <p d1Rev(B−1) cB <q b1Rev(B−1) aB is a cycle.

5 Monitored Product of MSC-Languages

It is important to analyze formally MSC-languages, since following paths in
MSC-graphs does not help grasping all the generated scenarios. Most often, in
decidable cases [7,16], the analysis of an MSC-language X amounts to check
either the membership of a given MSC X , or whether Lin(X ) has an empty
intersection with a regular language L (representing the complement of a desired
property). In the case of a product languageX1 ‖ X2, membership can be checked
using the projections, since X ∈ X1 ‖ X2 if and only if πi(X) ∈ Xi for i = 1, 2.
However, in order to analyse regular properties of L(G1) ‖ L(G2), one often
needs computing a safe CMSC-graph G such that L(G) = L(G1) ‖ L(G2). In
particular, one needs an existential bound B for the product. Unfortunately, the
theorem below shows that one cannot decide whether such G exists when G1

and G2 share events on two processes or more.

Theorem 1. Let G1, G2 be two (safe C)MSC-graphs. It is undecidable whether
L(G1) ‖ L(G2) is existentially bounded, in both weak and strong FIFO semantics.

Proof. We show that the Post correspondence problem may be reduced to the
above decision problem. Given two finite lists of words u1, . . . , un and w1, . . . , wn
on some alphabet Σ with at least two symbols, the problem is to decide whether
ui1ui2 . . . uik = wi1wi2 . . . wik for some non-empty sequence of indices i1 · · · ik.
This problem is known to be undecidable for n > 7. Given an instance of the
Post correspondence problem, i.e., two lists of words u1, . . . , un and w1, . . . , wn
on Σ, consider the two MSC-graphs G1 = (V,→, Λ1, V

0, V f ) and G2 = (V,→,
Λ2, V

0, V f ), with the same underlying graph (V,→, V 0, V f ), constructed as fol-
lows (G1 is partially shown in Fig. 3).

Define V = {v0, v1, . . . , vn, vn+1} with V 0 = {v0} and V f = {vn+1}. Let
v0 → vi, vi → vj , and vi → vn+1 for all i, j ∈ {1, . . . , n} (where possibly i = j).
Finally let vn+1 → vn+1.

For each v ∈ V , Λ1(v) is a finite MSC over P1 = {p, q}, A1 = {1, . . . , n} ∪Σ,
M1 = {m1,m

′
1}. Actions i ∈ {1, . . . , n} represent indices of pairs of words (ui, vi)

and they occur on process p. Actions σ ∈ Σ represent letters of words ui and they
occur on process q. Let Λ1(v0) be the empty MSC. For i ∈ {1, . . . , n}, let Λ1(vi)
be the MSC with p!q(m1) followed by p(i) on process p and with q?p(m1) followed
by the sequence q(σi,1) q(σi,2) . . . q(σi,li ), representing ui = σi,1 σi,2 . . . σi,li , on
process q. Finally let Λ1(vn+1) be the MSC with the events p!q(m′1) and q?p(m′1)
on processes p and q, respectively.

For each v ∈ V , Λ2(v) is a finite MSC over P2 = {p, r, q}, A2 = {1, . . . , n}∪Σ,
M2 = {m2,m

′′
2 ,m

′
2}. For i = 0, . . . , n, Λ2(vi) is defined alike Λ1(vi) but now



466 P. Darondeau, B. Genest, and L. Hélouët

1 n

?p(m1)
σ1,1

σ1,l1

!q(m1)

σn,ln

σn,1

?p(m1)

?p(m′
1)

!q(m′
1)

!q(m1)

Fig. 3.

replacing the message p!q(m1), q?p(m1) with two messages p!r(m2), r?p(m2),
r!q(m′′2 ), q?r(m′′2 ) and ui with wi. Λ2(vn+1) is the MSC with the events p?q(m′2)
and q!p(m′2) on processes p and q, respectively.

For i = 1, 2 let Xi = L(Gi), then Lin1(Xi) is a regular representative set for
Xi. If the Post correspondence problem has no solution, then X1 ‖ X2 is empty,
hence it is existentially bounded. In the converse case, X1 ‖ X2 contains for all
B some MSC including a crossing of B messages m′1 by B messages m′2, hence
it is not existentially bounded. ��
The proof of Theorem 1 is inspired by the proof that L(G1) ∩ L(G2) = ∅ is
undecidable for generic MSC-graphs G1, G2 [15]. Theorem 1 motivates the in-
troduction of a monitor process mp and a monitored product in which all syn-
chronizations are (internal) events located on the monitor process. The set of
synchronizations is denoted by SE . The monitored product X1 ‖mp X2 of sets X1

and X2 on monitor process mp ∈ P is defined only if SE ⊆ {mp(a) | a ∈ A}.
In that case, we set X1 ‖mp X2 = X1 ‖ X2. For instance, in the monitored prod-
uct L(G1) ‖mp L(G2) of the CMSC-graphs of Fig. 1 and Fig. 2, we can choose
mp = server and SE = {mp(sync)}. The adequacy of the monitored product
to weave aspects of a distributed system is confirmed by the following theorem,
which holds for both strong and weak FIFO semantics. We conjecture that the
problem is PSPACE-complete in the strong FIFO case.

Theorem 2. Given two safe CMSC-graphs G1, G2, one can decide whether the
monitored product of L(G1) and L(G2) is ∃-bounded. The problem is co-NP-
complete and in PSPACE for weak and strong FIFO semantics respectively.

The next section sketches a proof for this theorem. Notice that the proof is
trivial in the case where G1, G2 have disjoint sets of processes except for mp.
Then, L(G1) ‖mp L(G2) is existentially bounded (with the bound given by the
maximum of the minimal existential bounds of L(G1) and L(G2)).



Products of Message Sequence Charts 467

6 Checking Existential Boundedness

We prove Theorem 2 in two stages. First, we show that if the monitored product
L(G1) ‖mp L(G2) is existentially bounded, then this property holds for a ’small’
bound with respect to the size of G1 and G2.

Proposition 4. Given two safe CMSC-graphs G1 and G2, the MSC-language
L(G1) ‖mp L(G2) is existentially bounded if and only if it is existentially Bw-
bounded (resp. Bs-bounded) for weak (resp. strong) FIFO semantics, where Bw =
2K1B

′, Bs = 2K2K3B
′, and K1,K2, B

′ (resp. K3) are polynomial (resp. expo-
nential) in the size of P,G1, G2.

Then we show that one can check whether the monitored product of L(G1) and
L(G2) is ∃-B-bounded, using the bounds Bw, Bs of Prop. 4. Notice that Bs

written in binary is of size polynomial in |G1|+ |G2|.
Proposition 5. Given two safe CMSC-graphs G1, G2 and an integer B, it is
co-NP-complete (resp. PSPACE) to decide whether L(G1) ‖mp L(G2) is ∃-B-
bounded, for weak (resp. strong) FIFO semantics. The PSPACE result holds
also when B is written in binary.

� Graph representation of monitored products

X1 X2 X mpmpmp

Fig. 4. X ∈ X1 ‖mp X2 and the corresponding relations →1 ∪ →2, ↔

These two results are obtained using special representations for MSCs con-
structed by monitored product. Let X ∈ X1 ‖mp X2 then ∃w ∈ Lin: X =
Msc(w) and πi(w) = wi ∈ Lin(Xi). The MSC X is determined up to isomor-
phism by its projections on processes, because of FIFO. More precisely, for each
p ∈ P , πp(w) ∈ πp(w1) ‖ πp(w2). Moreover, for p = mp, πp(w1) and πp(w2)
have the same projection on SE . Therefore the projection (Ep, <p) of X on each
process p may be seen as an interleaving of (E1

p , <
1
p) and (E2

p , <
2
p) where the

synchronized pairs of events e1 ∈ E1
mp and e2 ∈ E2

mp with labels in SE are coa-
lesced. Let ←→⊆ E1

mp × E2
mp be the relation comprising synchronized pairs of

events. For each p ∈ P , let →1
p⊆ E2

p ×E1
p (resp. →2

p⊆ E1
p ×E2

p) be the relation
comprising ordered pairs of events e2 e1 (resp. e1 e2) switching from E2

p to E1
p



468 P. Darondeau, B. Genest, and L. Hélouët

(resp. E1
p to E2

p) in the interleaved sequence (Ep, <p). The MSC X may now be
represented by the juxtaposition of X1 and X2 interlinked with ←→ and with
the relations →1

p and →2
p for all p ∈ P . The result is a graph, that we denote

X1‖mp2, with set of nodes E1 ∪E2. Conversely, any acyclic graph connecting X1

and X2 with relations →i
p and ←→ represents a non-empty set of weak FIFO

MSCs X . We say that the transitive closure <‖mp of <pi , →i
p and ←→ is com-

patible with strong FIFO if there do not exist two messages (s, r), (s′, r′) on the
same channel c such that s < s′ and r′ < r. There may be several such MSCs
if for some p the relation →1

p ∪ →2
p ∪ <1

p ∪ <2
p is not a total order on Ep.

Otherwise, the original MSC X may be reconstructed from X1‖mp2 as follows: E
is the quotient of E1 ∪E2 by the equivalence relation ←→ and <=<‖mp |E . For
an illustration, see Fig. 4 where the edges of the graph represent the relations
<ip, μi, ←→ (dashed) and →i

p (dotted). The graph is compatible with strong
FIFO. A unique MSC X can be reconstructed from it, depicted on the right of
the figure. More formally, we can state the following lemma:

Lemma 2. Let G1 and G2 be safe and atomic CMSC-graphs and B an integer.
Then L(G1) ‖mp L(G2) is ∃-B-bounded if and only if, for any synchronized pair
of MSCs X1 ∈ L(G1) and X2 ∈ L(G2) with respective sets of events E1 and E2,
there is no subset {e1, . . . , en} ⊆ E1 ∪ E2 with at most two events in E1

p ∪ E2
p

for each process p ∈ P such that:

1. for all j, (ej , e(j+1) mod n) belongs to one of the relations <i, RevB, or
Eip × E3−i

p for i = 1 or 2 and p ∈ P,
2. there is no proper cycle in {e1, . . . , en} w.r.t. the transitive closure <‖mp of

the relation <1 ∪ <2 ∪ ←→ ∪ → where ←→ is the synchronizing relation
among coalesced events, and e → e′ if e = ej ∈ Eip and e′ = e(j+1) mod n ∈
E3−i
p for some j ∈ {1, . . . n}, i ∈ {1, 2} and p ∈ P,

3. in the strong FIFO case, <‖mp is compatible with strong FIFO.

The proofs of Prop. 4 and 5 are based on synchronized paths and Lemma 3.
A synchronized path αβ1 · · ·βnγ of G1, G2 is a sequence of pairs of paths α =
(α1, α2), βi = (β1

i , β
2
i ), γ = (γ1, γ2), where αkβk1 · · ·βknγk is a path ofGk, πSE (α1)

= πSE(α2), πSE(β1
i ) = πSE(β2

i ) and πSE(γ1) = πSE (γ2). Furthermore, βki is a
loop of Gk for all i, k. Lemma 3 claims that if n is sufficiently large, there exists a
synchronized loop of ρ2 which has no contribution to the ordering between events
in ρ1 and ρ2. This loop can thus be removed or iterated without compromising
acyclicity, and is compatible with strong FIFO if needed.

Lemma 3. Let G1 and G2 be safe and atomic CMSC-graphs, K be an integer
and (α1, α2)(β1

1 , β
2
1) · · · (β1

K , β
2
K)(γ1, γ2) be a synchronized path of G1, G2. Let→

be a partial order on a set E of n ≤ 2|P| events of α1 ∪ α2 ∪ γ1 ∪ γ2 compatible
with the order of the synchronized path. For all j ≥ i ≥ 1,  ≥ 0, we denote by
<�i,j the relation on (α1, α2)(β1

1 , β
2
1) · · · [(β1

i , β
2
i ) · · · (β1

j , β
2
j )]� · · · (β1

K , β
2
K)(γ1, γ2)

generated by the synchronizations and the relation →.



Products of Message Sequence Charts 469

– For all i, j, i′, j′, <1
i,j=<

1
i′,j′ , denoted <, and this relation is a partial order.

– Let K1,K2,K3 be the constants of Prop. 4.
– If K > K1, then there exists i such that for all x, y ∈ α1 ∪ α2 ∪ γ1 ∪ γ2 and
l ≥ 0, we have x <�i,i y iff x < y (in particular, <�i,i is a partial order).

– If K > K2K3 and < is compatible with strong FIFO, then there exist i, j
such that <�i,j is an order compatible with strong FIFO, for all l ≥ 0.

� General outline of the proof for Prop. 4

Let X ∈ L(G1) ‖mp L(G2), thus X may be represented in product form by
X1‖mp2 = (X1, X2,←→, (→i

p)
i=1,2
p∈P ). Suppose that X is not ∃-B-bounded for

some B = 2KB′. By Prop. 3, < ∪Rev≥B has a cycle in X .We have Rev1
≥B ∪

Rev2
≥B ⊆ Rev≥B ⊆ Rev1

≥B/2 ∪ Rev2
≥B/2. Therefore, the union of ←→ and the

relations <i, Revi≥KB′ , and →i
p for i = 1, 2 has a cycle e1 e2 . . . em with ej �= ek

for j �= k. We let em+1 = e1. One can assume that e1 e2 . . . em contains no
synchronization event with shared label and at most two events on each pro-
cess p (Lemma 5.5 in [4]), hence m ≤ 2 |P|. Furthermore, there is at least one
pair of events (ej , ej+1) in ReviBj

, w.l.o.g. e1Rev1
B1
e2, with B1 ≥ KB′. No-

tice that (e1 · · · em) is also a cycle for the union of ←→, <i, Revi≥KB′ , and
→i
p ∩(ej , ej+1)j≤m for i = 1, 2, that is we need to consider only a linear number

of pairs in→i
p. We construct MSCs X ′1 ∈ L(G1), X ′2 ∈ L(G2) embedding X1, X2

via φ : Xi ↪→ X ′i such that φ(e1)φ(e2) . . . φ(em) is a cycle for φ(Rev≥KB′)∪ <X′ ,
where (X ′, <X′) is the oriented graph obtained by connecting X ′1 and X ′2 with
←→ and φ(→i

p) ∩ (φ(ej), φ(ej+1))j≤m. More precisely, X ′1, X ′2 are such that
φ(e1)Rev1

≥2B1+1 φ(e2) and ej ReviBj
ej+1 ⇒ φ(ej)Revi≥Bj

φ(ej+1) for j �= 1 and
Bj ≥ KB′. As soon as <X′ is a partial order (compatible with strong FIFO if
needed), Prop. 4 follows by induction and by applying Lemma 2.

� General outline of the proof for Prop. 5

In order to conclude that L(G1) ‖mp L(G2) is not ∃-B-bounded, one should
search for MSCs X1 ∈ L(G1), X2 ∈ L(G2), and X ∈ (X1 ‖mp X2) such that
<X ∪RevB contains a cycle. In the weak FIFO setting, we use a small model
property. Assume that the product of L(G1) and L(G2) is not existentially Bw

bounded. We apply Lemma 2 to obtain a synchronized pair of paths ρ1, ρ2 of
G1, G2, with a set E of at most 2|P| events, and a relation →∈ E × E which
creates a cycle with <i ∪ReviBw . By contradiction, assume that the minimal size
of such a synchronized path (ρ1, ρ2) (that is its number of transitions) is larger
than ((4|P|Bw + 1)K1B

′, then it contains (4|P|Bw + 1)K1 synchronized pairs of
loops. Applying Lemma 3 with  = 0, we know that there are 4|P|Bw + 1 loops
which can be individually deleted without changing the order on E. There are
at most 2|P|Bw messages which can affect the ReviBw relation, hence 4|P|Bw
loops which contain some emission or reception of such messages. Therefore,
one synchronized pair of loops can be deleted without changing the order on E
nor the ReviBw relations, which contradicts the minimality of ρ1, ρ2. To obtain



470 P. Darondeau, B. Genest, and L. Hélouët

a co-NP algorithm, it suffices to guess a path of G1 and a path of G2 of size
polynomial, to guess 2|P| events, and to check in polynomial time that there is
no cycle in <1 ∪ <2 ∪ ↔ ∪ →, whereas there is a cycle in <1 ∪ <2 ∪ ↔ ∪ →
∪ReviBw . Notice that we cannot do the same in the strong FIFO setting, since
the exponential bound Bs would lead to a co-NEXPTIME algorithm. Instead,
we construct a finite automaton, whose language is empty iff the product is
existentially Bs bounded. Each state can be described in polynomial space w.r.t.
|G1|, |G2| and ||Bs|| = log2(Bs) written in binary.

� General outline of the co-NP-completeness reduction

We prove the co-NP hardness of the problem of deciding either the existential-
boundedness or the existential-B-boundedness of the product of languages of two
MSC-graphs. We do not use the contents of the messages, hence the reduction
holds for both weak and strong FIFO semantics. Let φ be a 3-CNF-SAT instance,
with n variables and m clauses. This formula is true iff for each clause, one can
choose a literal of the clause to be true, and no conflict occurs on a variable (one
cannot choose a literal and its opposite being true). Let B > m + 1. We build
two MSC-graphs G1 and G2 on processes {p, q, r, pi, p′i | 1 ≤ i ≤ n} such that
G1 ‖mp G2 is ∃-B-bounded iff φ is non satisfiable. We let mp = p.

a1

b1

c1

a2

b2

c2

am

bm

cm

p q p q
p qr

a

a

Fig. 5. MSC M1 and MSC-graph G2

Graph G1 is made of one node, both initial and final. The node is labeled by
MSC M1, which is a synchronization action a on process p, then a message from
p to r, then a message from r to q. For graph G2, the initial node is labeled with
B + 1 messages from p to q. Then G2 has a succession of m choices between
three nodes ai, bi, ci, i ≤ m. Then the final node of G2 is labeled by the syn-
chronization event a on process p. Informally, the m choices correspond to the
m clauses, and ai, bi, ci correspond to the choice of the first, second and third
literal true in the i-th clause. That is, if the first literal in the i-th clause is vj ,
then ai is labeled by a message from q to pj and a message from p′j to p. If the
first literal in the i-th clause is ¬vj , then ai is labeled by a message from q to
p′j and a message from pj to p. Any MSC from G2 corresponds to some choice
of literal true in each of the clauses and vice versa. Now, a conflict occurs on
one variable iff the receptions on q from p (in G2) are before the synchronization
event a, iff for the corresponding MSC M2 of G2, all MSCs in M2 ‖mp M1 are
∃-B-bounded.



Products of Message Sequence Charts 471

7 CMSC-Graph Representation of a Monitored Product

In the case where L(G1) ‖mp L(G2) is ∃-bounded, one may wish to compute
a safe CMSC-graph representation of this MSC-language, which can be input
to existing tools for analyzing MSC-graphs (MSCan, SOFAT. . .). For this pur-
pose, we use the results from [4], where a syntax-semantics correspondence is
established between globally cooperative CMSC-graphs [7], and MSC-languages
X with regular representative sets LinB(X ) for some B > 0.

Definition 7. G = (V,→, Λ, V 0, V f ) is a globally cooperative CMSC-graph if

– G is a safe CMSC-graph, and
– for any circuit v1 . . . vn in G, all CMSCs in the set Λ(v1) · . . . · Λ(vn) have
connected communication graphs.

The communication graph induced by X = (E, λ, μ, (<p)p∈P) is the undirected
graph (Q,E) with the set of vertices Q = {p ∈ P | (∃e ∈ E) λ(e) ∈ Sp∪Rp} and
with the set of edges E = {{p, q} | (∃e1, e2 ∈ E) (∃m ∈ M) λ(e1) = p ! q (m) ∧
λ(e2) = q ? p (m)}.
Notice that the MSC-graph from Fig. 3 is globally cooperative. Thus, bounded-
ness of the product of L(G1) and L(G2) stays undecidable even when both G1, G2

are globally cooperative (Theorem 1). Quite remarkably, L(G1) ∩ L(G2) = ∅ is
decidable as soon as G1 or G2 is globally cooperative [7].

Theorem 3. Let X be a set of MSCs. The following are equivalent:

– X = L(G) for some globally cooperative CMSC-graph G,
– LinB(X ) is a regular representative set for X for sufficiently large B > 0.
Moreover, B and a finite automaton recognizing LinB(X ) can be computed ef-
fectively from G. Conversely, G can be computed effectively from LinB(X ).

The statement of Theorem 3 is the same as (a fragment of) the main theorem
of [4]. However, we consider in this paper messages with contents, while [4]
does not. Instead of proving Theorem 3 from scratch, we derive it from [4]. The
strong FIFO case comes directly from the proof of [4]. For weak FIFO, we use
a translation from sets of weak FIFO MSCs to sets of FIFO MSCs with exactly
one (type of) message m (hence they embed in weak FIFO MSCs). In few words,
the translation adds as many processes as types of messages per channel, and
it preserves the existential boundedness of sets of MSCs, although the bound
B may grow to 3B. Once this translation is defined, the proof of Theorem 3 is
almost immediate.

Now let G1, G2 be two globally cooperative CMSC-graphs. If L(G1) ‖mp

L(G2) is ∃-bounded, then this MSC-language is ∃-B-bounded, for B ∈ {Bs, Bw}
as defined in Prop. 4. Therefore, LinB(L(G1) ‖mp L(G2)) is a representative set
for L(G1) ‖mp L(G2). By Prop. 2, LinB(L(G1) ‖mp L(G2)) = LinB(L(G1)) ‖mp

LinB(L(G2)) ∩ LinB . Since both G1, G2 are globally cooperative, we get that
both LinB(L(G1)) and LinB(L(G2)) are regular and effectively computable.
Since the shuffle of regular language is regular, we get the following.



472 P. Darondeau, B. Genest, and L. Hélouët

Theorem 4. Let G1, G2 be two globally cooperative CMSC-graphs such that
L(G1) ‖mp L(G2) is ∃-bounded. Then one can effectively compute a globally co-
operative CMSC-graph G with L(G) = L(G1) ‖mp L(G2). Moreover, G is of size
at most exponential and doubly exponential in the size of |G1|, |G2|, respectively
with weak and strong FIFO.

8 Conclusion

We presented a framework to work with the controlled products of distributed
components, granted that synchronizations are operated on a single monitor pro-
cess, and components are given as globally cooperative CMSC-graphs. Namely,
one can test whether the monitored product of components can be represented
as a globally cooperative CMSC-graph. In that case, a complete analysis of the
product system can be performed with existing tools. We analyze the problem
in both weak and strong FIFO contexts. Weak FIFO enjoys a better complex-
ity, while strong FIFO allows us to use non-synchronized actions with common
names on different components (it suffices to rename the actions according to
components, perform the product, and then rename the actions back). A di-
rection for future work is to propose guidelines and tools for modeling product
systems with one monitor process.

References

1. Alur, R., Etessami, K., Yannakakis, M.: Realizability and Verification of MSC
Graphs. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 797–808. Springer, Heidelberg (2001)

2. Caillaud, B., Darondeau, P., Hélouët, L., Lesventes, G.: HMSCs as Partial Specifi-
cations.. with PNs as Completions. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M.
(eds.) MOVEP 2000. LNCS, vol. 2067, pp. 125–152. Springer, Heidelberg (2001)

3. Duboc, C.: Mixed Product and Asynchronous Automata. Theoretical Computer
Science 48(3), 183–199 (1986)

4. Genest, B., Kuske, D., Muscholl, A.: A Kleene Theorem and Model Checking for
a Class of Communicating Automata. Inf. Comput. 204(6), 920–956 (2006)

5. Gunter, E., Muscholl, A., Peled, D.: Compositional Message Sequence Charts.
STTT 5(1), 78–89, (2003); In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS,
vol. 2031, pp. 496–511. Springer, Heidelberg (2001)

6. Genest, B., Muscholl, A., Peled, D.: Message Sequence Charts. In: Desel, J., Reisig,
W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 537–558. Springer,
Heidelberg (2004)

7. Genest, B., Muscholl, A., Seidl, H., Zeitoun, M.: Infinite-state High-level MSCs:
Model-checking and Realizability. JCSS 72(4), 617–647 (2006); Widmayer, P.,
Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.): ICALP
2002. LNCS, vol. 2380, pp. 617–647. Springer, Heidelberg (2002)

8. Hélouët, L., Jard, C.: Conditions for synthesis of communicating automata from
HMSCs. In: FMICS 2000, pp. 203–224 (2000)

9. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M.A., Thiagarajan, P.S.: A
theory of regular MSC languages. Inf. Comput. 202(1), 1–38 (2005)



Products of Message Sequence Charts 473

10. Klein, J., Caillaud, B., Hélouët, L.: Merging scenarios. In: FMICS 2004, pp. 209–
226 (2004)

11. Lohrey, M., Muscholl, A.: Bounded MSC communication. Inf. Comput. 189(2),
160–181 (2004)

12. Madhusudan, P., Meenakshi, B.: Beyond Message Sequence Graphs. In: Hariharan,
R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 256–267.
Springer, Heidelberg (2001)

13. Morin, R.: Recognizable Sets of Message Sequence Charts. In: Alt, H., Ferreira, A.
(eds.) STACS 2002. LNCS, vol. 2285, pp. 523–534. Springer, Heidelberg (2002)

14. Mukund, M., Kumar, K.N., Sohoni, M.A.: Bounded time-stamping in message-
passing systems. TCS 290(1), 221–239 (2003)

15. Muscholl, A., Peled, D., Su, Z.: Deciding properties of Message Sequence Charts. In:
Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 226–242. Springer, Heidelberg
(1998)

16. Muscholl, A., Peled, D.: Message Sequence Graphs and Decision Problems on
Mazurkiewicz Traces. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.)
MFCS 1999. LNCS, vol. 1672, pp. 81–91. Springer, Heidelberg (1999)



What Else Is Decidable about Integer Arrays?�

Peter Habermehl1, Radu Iosif2, and Tomáš Vojnar3

1 LSV, ENS Cachan, CNRS, INRIA; 61 av. du Président Wilson, F-94230 Cachan, France
and LIAFA, University Paris 7, Case 7014, 75205 Paris Cedex 13

haberm@liafa.jussieu.fr
2 VERIMAG,CNRS, 2 av. de Vignate, F-38610 Gières, France

iosif@imag.fr
3 FIT BUT, Božetěchova 2, CZ-61266, Brno, Czech Republic

vojnar@fit.vutbr.cz

Abstract. We introduce a new decidable logic for reasoning about infinite arrays
of integers. The logic is in the ∃∗∀∗ first-order fragment and allows (1) Presburger
constraints on existentially quantified variables, (2) difference constraints as well
as periodicity constraints on universally quantified indices, and (3) difference
constraints on values. In particular, using our logic, one can express constraints
on consecutive elements of arrays (e.g., ∀i . 0 ≤ i < n→ a[i + 1] = a[i]− 1) as
well as periodic facts (e.g., ∀i . i ≡2 0→ a[i] = 0). The decision procedure fol-
lows the automata-theoretic approach: we translate formulae into a special class
of Büchi counter automata such that any model of a formula corresponds to an
accepting run of an automaton, and vice versa. The emptiness problem for this
class of counter automata is shown to be decidable as a consequence of earlier
results on counter automata with a flat control structure and transitions based on
difference constraints.

1 Introduction

Arrays are a fundamental data structure in computer science. They are used in all mod-
ern imperative programming languages. To verify software which manipulates arrays, it
is essential to have a sufficiently powerful logic, which can express meaningful program
properties, arising as verification conditions within, e.g., inductive invariant checking,
or verification of pre- and post-conditions. In order to have an automatic decision pro-
cedure for the program verification problems, one needs a decidable logic.

In this paper, we develop a logic of arrays indexed by integer numbers, and having
integers as values. To be as general as possible, and also to avoid having to deal explic-
itly with expressions containing out-of-bounds array accesses, we interpret formulae
over both-ways infinite arrays. Bounded arrays can then be conveniently expressed in
the logic by restricting indices to be within given bounds.

Properties that are typically of interest about arrays in a program are (existentially
quantified) boolean combinations of formulae of the form ∀i.G→V where G is a guard
expression containing constraints over the universally quantified index variables i

� The work was supported by the French Ministry of Research (RNTL project AVERILES),
the Czech Grant Agency (projects 102/07/0322, 102/05/H050), the Czech-French Barrande
project 2-06-27, and the Czech Ministry of Education by project MSM 0021630528.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 474–489, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



What Else Is Decidable about Integer Arrays? 475

(which often range in between some existentially quantified bounds), and V is a value
expression containing constraints over array values. Based on examples, we identified
two types of array properties which seem to appear quite often in programs: (1) proper-
ties relating consecutive elements of an array, e.g., ∀i . l1 ≤ i < l2→ a[i+1] = a[i]−1,
which states the fact that each value of a between two bounds l1 and l2 is less than its
predecessor by one, (2) properties stating periodic facts, e.g., ∀i . i ≡2 0→ a[i] = 0,
stating that all even elements of an array a are equal to 0.

Without specific syntactic restrictions, a logic with such an expressive power can be
easily shown to be undecidable as one can encode histories of computations of a 2-
counter machine [13] as models of a formula over arrays. From this reduction, one can
derive two restrictions leading to decidability. The first restriction forbids references to
a[i] and a[i+1] in the same formula, which is considered in the work of Bradley, Manna,
and Sipma [5]. The second restriction, considered in this paper, allows only array for-
mulae ∀i.G→V in which V does not contain disjunctions. We have chosen the second
option, mainly to retain the possibility of relating consecutive arrays elements, i.e., a[i]
and a[i+ 1], which appears to be important for expressing properties of programs.

We introduce a new logic LIA (Logic on Integer Arrays) in the ∃∗∀∗ first-order
fragment. LIA is essentially the set of existentially quantified boolean combinations of
(1) array formulae of the form ∀i . ϕ(k, i)→ψ(k, i,a) where i is a set of index variables
and a (resp. k) is a set of existentially quantified array (resp. array-bound) variables,
ϕ is a formula on index variables with difference as well as periodicity constraints on
variables i wrt. the array-bounds k, and ψ is a difference constraint on array terms, and
(2) Presburger arithmetic formulae on array-bound variables. In [8], we give an example
program showing the usefulness of this logic to express verification conditions.

We prove decidability of the logic LIA using the classical idea of the connection
between logic and automata [18]: from a formula ϕ of the logic, we build an automaton
Aϕ such that ϕ is satisfiable if and only if the language of Aϕ is not empty. Decidability
of the logic then follows from decidability of the emptiness problem for the class of
automata that is deployed. To this end, we define a new class of counter automata,
called FBCA (bi-infinite Flat Büchi Counter Automata). These are counter automata
running to infinity in both left and right directions, equipped with a Büchi acceptance
condition. For an arbitrary formula ϕ of LIA, we give the construction of the FBCA Aϕ
whose runs correspond to models of ϕ: the value of the counter xa at a given point i in an
execution of Aϕ corresponds to the value of a[i] in a model of ϕ. We prove decidability
of LIA by showing that the emptiness problem for FBCA is decidable by extending
known results [6,4] on flat counter automata with difference bound constraints.

Related work. In the seminal paper [12], the read and write functions from/to arrays
and their logical axioms were introduced. A decision procedure for the quantifier-free
fragment of the theory of arrays was presented in [10]. Since then, various decid-
able logics on arrays have been considered—e.g., [17,11,9,16,1,7]. These logics in-
clude working with various predicates (reasoning about sortedness, permutations, etc.)
and in terms of various arithmetic (usually Presburger) constraints on array indices
and/or values of array entries. However, unlike our logic, most of these works consider
quantifier free formulae. In these cases, nested array reads (like a[a[i]]) are allowed,
which is not the case in our logic.



476 P. Habermehl, R. Iosif, and T. Vojnar

In [5], an interesting logic within the ∃∗∀∗ fragment is developed. Unlike our deci-
sion procedure based on automata theory, the decision procedure of [5] is based on the
fact that the universal quantification can be replaced by a finite conjunction. The result
is parameterised in the sense of allowing an arbitrary decision procedure to be used for
the data stored in arrays. However, compared to our results, [5] does not allow modulo
constraints (allowing to speak about periodicity in the array values), general difference
constraints on universally quantified indices (only i− j ≤ 0 is allowed), nor reasoning
about array entries at a fixed distance (i.e., reasoning about a[i] and a[i + k] for a con-
stant k and a universally quantified index i). The authors of [5] give also interesting
undecidability results for extensions of their logic. For example, they show that relating
adjacent array values (a[i] and a[i+1]), or having nested reads, leads to undecidability.

A restricted form of universal quantification within ∃∗∀∗ formulae is also allowed in
[2], where decidability is obtained based on a small model property. Unlike [5] and our
work, [2] allows a hierarchy-restricted form of array nesting. However, similar to the
restrictions presented above, neither modulo constraints on indices nor reasoning about
array entries at a fixed distance are allowed. A similar restriction not allowing to express
properties of consecutive elements of arrays then appears also in [3] where a quite
general ∃∗∀∗ logic on multisets of elements with associated data values is considered.

Remark. For space reasons, all proofs are deferred to [8].

2 Counter Automata

Given a formula ϕ, we denote by FV (ϕ) the set of its free variables. If we denote
a formula as ϕ(x1, ...,xn), we assume FV (ϕ)⊆ {x1, ...,xn}. For ϕ(x1, ...,xn), we denote
by ϕ[t/xi], 1 ≤ i≤ n, the formula in which each occurrence of xi is replaced by a term
t. Given a formula ϕ, we denote by |= ϕ the fact that ϕ is logically valid, i.e., it holds in
every structure corresponding to its signature. By σ : Z→ Z, σ(n) = n + 1, we denote
the successor function on integers. In the following, we work with two sets of arithmetic
formulae: difference bound matrices and Presburger arithmetic.

A difference bound matrix (DBM) formula is a conjunction of inequalities of the
form x−y≤ c, x≤ c, or x≥ c where c∈Z is a constant. If there is no constraint between
x and y, we may explicitly write x− y≤ ∞. In the following, Z∞ denotes Z∪{∞}. Let
z = {z1, . . . ,zn} be a designated set of variables, called parameters. A parametric DBM
formula is a conjunction of a DBM formula with atomic propositions of the forms x≤
f (z) or x≥ f (z) where f is a linear combination of parameters, i.e., f = a0 + ∑n

i=1 aizi

for some ai ∈ Z, 0≤ i≤ n.
A Presburger arithmetic (PA) formula is a disjunction of conjunctions of either linear

constraints of the form ∑n
i=1 aixi +b≥ 0 or modulo constraints ∑n

i=1 aixi +b≡ c mod d
where ai,b,c,d ∈ Z, c≥ 0 and d > 0, are constants. It is well-known that every formula
of the arithmetic of integers with addition 〈Z,≥,+,0,1〉 can be written in this form due
to quantifier elimination [15]. Clearly, every DBM formula is also in PA.

A counter automaton (CA) is a tuple A = 〈x,Q,−→〉 where x is a finite set of counters

ranging over Z, Q a finite set of control states, and−→ a transition relation given by rules

q
ϕ(x,x′)−−−−→ q′ where ϕ is an arithmetic formula relating current values of counters x to



What Else Is Decidable about Integer Arrays? 477

their future values x′. A configuration of a CA A is a pair (q,ν) where q∈Q is a control
state, and ν : x→ Z is a valuation of the counters in x. For a configuration c = (q,ν),
we designate by val(c) = ν the valuation of the counters in c. A configuration (q′,ν′) is

an immediate successor of (q,ν) if and only if A has a transition rule q
ϕ(x,x′)−−−−→ q′ such

that |= ϕ(ν(x),ν′(x′)). A configuration c is a successor of another configuration c′ iff
there exists a sequence of configurations c = c0c1 . . .cn = c′ such that, for all 0≤ i< n,
ci+1 is an immediate successor of ci. Given two control states q,q′ ∈Q, a run of A from
q to q′ is a finite sequence of configurations c0c1 . . .cn with c0 = (q,ν), cn = (q′,ν′) for
some valuations ν,ν′ : x→ Z, and ci+1 is an immediate successor of ci for all 0≤ i< n.

Let S be a set. A bi-infinite sequence of S is a function β : Z→ S.1 We denote by
ωSω the set of all bi-infinite sequences over S. A bi-infinite Büchi counter automaton
(BCA) is a tuple A = 〈x,Q,L,R,−→〉 where x is a finite set of counters, Q is a finite set

of control states, L,R ⊆ Q are the left-accepting and right-accepting states, and −→ is

a transition relation defined in the same way as for counter automata.
A run of a BCA A is a bi-infinite sequence of configurations . . .c−2c−1c0c1c2 . . .

such that, for all i ∈ Z, ci+1 is an immediate successor of ci. A run r is left-accepting iff
there exists a state q∈ L and an infinite decreasing sequence of integers . . . < i2 < i1 < 0
such that, for all j ∈ N, we have r(i j) = (q,ν j) for some valuations ν j of the counters
of A. Symmetrically, a run is right-accepting iff there exists a state q ∈ R and an infinite
increasing sequence of integers 0 < i0 < i1 < i2 < .. . such that, for all j ∈ N, we have
r(i j) = (q,ν j) for some valuations ν j of the counters of A. A run is accepting iff it is
both left- and right-accepting. The set of all accepting runs of A is denoted as R (A). If
r ∈ R (A) is a run of A, we define as val(r) = . . .val(r(−1))val(r(0))val(r(1)) . . . the
bi-infinite sequence of valuations in r, and we let V (A) = {val(r) | r ∈ R (A)}.
Lemma 1. For any BCA A, we have r ∈ R (A) if and only if r ◦σ ∈ R (A).

A control path in a CA (or BCA) A is a finite sequence q0q1 . . .qn of control states such

that, for all 0≤ i < n, there exists a transition rule qi
ϕi−→ qi+1. A cycle is a control path

starting and ending in the same control state. An elementary cycle is a cycle in which
each state appears only once, except the first one that appears twice. A CA (or BCA) is
said to be flat iff each control state belongs to at most one elementary cycle.

Decidability and Closure Properties of FBCA. We consider in the following the class
of bi-infinite Büchi counter automata which are flat, whose elementary cycles are la-
belled with parametric DBM formulae, and the remaining transitions are labelled with
PA formulae. Moreover, each transition constraint enforces the values of parameters to
remain constant. We call this class FBCA. We prove that the emptiness problem for
FBCA is decidable using results of [6,4] and their extensions that can be found in [8].

Lemma 2. The emptiness problem is decidable for the class of FBCA.

1 In the early literature [14], a bi-infinite sequence is defined as the equivalence class of all
compositions β◦σn ◦σ−m for arbitrary n,m∈N. This is because a bi-infinite sequence remains
the same if shifted left or right. For simplicity, we formally distinguish here the bi-infinite
sequences β, β◦σn, and β◦σ−n for n> 0.



478 P. Habermehl, R. Iosif, and T. Vojnar

The FBCA class is also effectively closed under union and intersection. However, be-
fore proceeding, we need to elucidate the meaning of these operations for CA (BCA).
For a valuation ν : x→ Z, if z⊆ x is a subset of the counters in x, let ν↓z denote the re-
striction of ν to the domain z. For some subset z⊂ x of the counters of A and s ∈V (A),
we define the restriction operator on sequences s ↓z= . . .val(s(−1)) ↓z val(s(0)) ↓z
val(s(1)) ↓z . . ., and V (A) ↓z= {s ↓z | s ∈ V (A)}. Symmetrically, for z ⊃ x, we de-
fine the extension operator on sequences V (A)↑z= {v ∈ ω(z �→ Z)ω | v↓x∈ V (A)}.

A class of counter automata is said to be closed under union and intersection if
there exist operations � and ⊗ such that, for any two FBCA Ai = 〈xi,Qi,Li,Ri,→i〉,
i = 1,2, we have that V (A1�A2) = V (A1)↑x1∪x2 ∪ V (A2)↑x1∪x2 and V (A1⊗A2) =
V (A1) ↑x1∪x2 ∩ V (A2) ↑x1∪x2 , respectively. The class is said to be effectively closed
under union and intersection if these operators are effectively computable.

Proposition 1. Let A = 〈x,Q,L,R,−→〉 be a FBCA. Let Ac = 〈x,Q,Lc,Rc,−→〉 be the

FBCA such that (1) for all q ∈ L and q′ ∈Q, q′ belongs to the same elementary cycle as
q iff q′ ∈ Lc, (2) for all q ∈ R and q′ ∈ Q, q′ belongs to the same elementary cycle as q
iff q′ ∈ Rc. Then we have that R (A) = R (Ac).

Assuming w.l.o.g. that Q1 ∩Q2 �= /0, the union is defined as A1 �A2 = 〈x1 ∪ x2,Q1 ∪
Q2,L1 ∪ L2,R1 ∪R2,→1 ∪ →2〉. The product is defined as A1⊗ A2 = 〈x1 ∪ x2,Q1×
Q2,Lc

1×Lc
2,R

c
1×Rc

2,−→〉 where−→ is as follows: (q1,q′1)
ϕ1 ∧ ϕ2−−−−→ (q2,q′2) iff q1

ϕ1−→ q2 is

a transition rule of A1 and q′1
ϕ2−→ q′2 is a transition rule of A2. Here, Lc

i and Rc
i denote the

extended left-accepting and right-accepting sets of Ai from Proposition 1 for i = 1,2.

Lemma 3. The class of FBCA is effectively closed under union and intersection.

3 A Logic for Integer Arrays

In this section we define the Logic of Integer Arrays (LIA) that we use to specify
properties of programs handling arrays of integers.

Syntax. We consider three types of variables. The array-bound variables (k, l) appear
within the so-called array-bound terms. These terms can be used to define intervals
of indices and also as static references inside arrays. The index (i, j) and array (a,b)
variables are used to build array terms. Fig. 1 shows the syntax of the logic LIA. We use
the symbol � to denote the boolean value true. In the following, we will use f ≤ i≤ g
instead of f ≤ i ∧ i ≤ g, i < f instead of i ≤ f − 1, and i = f instead of f ≤ i ≤ f .
Intuitively, our logic is the set of existentially quantified boolean combinations of:

1. Array formulae of the form ∀i . ϕ(k, i)→ ψ(k, i,a) where k is a set of array-bound
variables, i is a set of index variables, a is a set of array variables, ϕ is an arith-
metic formula on index variables, and ψ is an arithmetic formula on array terms.
In particular, ψ is a DBM formula, and ϕ is composed of atomic propositions of
the form either f ≤ i, i ≤ f , i− j ≤ n, or i ≡s t where f is a linear combination of
array-bound variables, n ∈ Z, and 0 ≤ t < s. Both k and a variables are free in the
array formulae, but they can be existentially quantified at the top-most level.

2. PA formulae on array-bound variables.



What Else Is Decidable about Integer Arrays? 479

n,m,s,t . . . ∈ Z constants (0≤ t < s)
k, l, . . . ∈ BVar array-bound variables
i, j, . . . ∈ IVar index variables
a,b, . . . ∈ AVar array variables

B := n | k | B+B | B−B array-bound terms
I := i | I +n index terms
A := a[I] | a[B] array terms
G := B≤ I | I ≤ B | I− I ≤ n | I ≡s t | G∨G | G∧G guard expressions
V := A≤ B | B≤ A | A−A≤ n | V ∧V value expressions
C := B≤ n | B≡s t array-bound constraints
P := �→V | G→V | ∀i . P array properties
U := P | C | ¬U |U ∨ U |U ∧ U universal formulae
F := U | ∃k . F | ∃a . F LIA formulae

Fig. 1. Syntax of the logic LIA

Examples. To accustom the reader with the logic, we consider several properties of
interest that can be stated about arrays. For instance, a strictly increasing ordering of an
array a up to a certain bound is defined as ∃k ∀i . 0≤ i < k→ a[i]−a[i+1]≤−1. The
fact that the first k elements of an array a are below the first l elements of an array b at
distance 5 is defined as ∃k, l ∀i, j . 0≤ i< k ∧ 0≤ j< l→ a[i]−b[ j]≤−5. Equality of
two arrays up to a certain bound can be expressed as ∃n∀i . 0≤ i< n→ a[i] = b[i]. The
use of modulo constraints as guards for indices allows one to express periodic facts,
e.g., ∀i, j . i≡2 0 ∧ j ≡2 1→ a[i]≤ a[ j] meaning that any value at some even position
is less than or equal to any value at some odd position in a. In [8], we show that to prove
the correctness of an array merging program, such properties are needed.

Semantics. The logic LIA is interpreted on both-ways infinite arrays. This allows
us to conveniently deal with out-of-bound reference situations common in programs
handling arrays. One can prevent and/or check for out-of-bound references by intro-
ducing explicit existentially quantified array-bound variables for array variables. Let
ϕ(k,a) be any LIA formula. A valuation is a pair of partial functions2 〈ι,µ〉 with
ι : BVar∪ IVar→ Z⊥ associating an integer value with every free integer variable and
µ : AVar→ ωZω

⊥ associating a bi-infinite sequence of integers with every array symbol
a ∈ a. The valuation ι is extended in the standard way to array-bound terms (ι(B)) and
index terms (ι(I)). By Iι,µ(A), we denote the value of the array term A given by the
valuation 〈ι,µ〉. The semantics of a formula ϕ is defined in terms of the forcing relation
|= as follows:

Iι,µ(a[I]) = µ(a)(ι(I))
Iι,µ(a[B]) = µ(a)(ι(B))

〈ι,µ〉 |= A≤ B ⇐⇒ Iι,µ(A)≤ ι(B)
〈ι,µ〉 |= A1−A2 ≤ n ⇐⇒ Iι,µ(A1)− Iι,µ(A2)≤ n
〈ι,µ〉 |= ∀i . G→V ⇐⇒ ∀ n ∈ Z . 〈ι[i← n],µ〉 |= G→V
〈ι,µ〉 |= ∃a . ψ ⇐⇒ ∃ β ∈ ωZω . 〈ι,µ[a← β]〉 |= ψ

For space reasons, we do not give here a full definition. However, the missing rules
are standard in first-order arithmetic. A model of ϕ(k,a) is a valuation 〈ι,µ〉 such that

2 The symbol ⊥ is used to denote that a partial function is undefined at a given point.



480 P. Habermehl, R. Iosif, and T. Vojnar

the formula obtained by interpreting each variable k ∈ k as ι(k) and each array vari-
able a ∈ a as µ(a) is logically valid: 〈ι,µ〉 |= ϕ. We define [[ϕ]] = {〈ι,µ〉 | 〈ι,µ〉 |= ϕ}.
A formula is satisfiable if and only if [[ϕ]] �= /0.

An Undecidability Result. The reason behind the restriction that array terms may
not occur within disjunctions in value expressions (cf. Fig. 1) is that, without it, the
logic becomes undecidable. The essence of the proof is that an array formula ∀i.G→
V1 ∨ . . . ∨ Vn, for n> 1, corresponds to n nested loops in a counter automaton. Unde-
cidability is shown by reduction from the halting problem for 2-counter machines [13].

Lemma 4. The logic obtained by extending LIA with disjunctions within the value
expressions is undecidable.

Note that having more than one nested loop is a necessary condition for undecidability
of 2-counter machines since a flat 2-counter machine would trivially fall into the class
of decidable counter machines from [6,4].

4 Decidability of the Satisfiability Problem

The idea behind our method for deciding the satisfiability problem for LIA is that, for
any formula of LIA, there exists an FBCA Aϕ such that ϕ has a model if and only if
Aϕ has an accepting run. More precisely, each array variable in ϕ has a corresponding
counter in Aϕ, and given any model of ϕ that associates integer values to all array entries,
Aϕ has a run such that the values of the counters at different points of the run match the
values of the array entries at corresponding indices in the model. Since, by Lemma 2,
the emptiness problem is decidable for FBCA, this leads to decidability of LIA.

In order to build an automaton from a LIA formula, we first normalise it into an exis-
tentially quantified positive boolean combination of simple array property formulae (cf.
Fig. 1). Second, each such array property formula is translated into an FBCA. The final
automaton Aϕ is defined recursively on the structure of the normalised formula with the
� and ⊗ operators being the counterparts for the ∨ and ∧ connectives, respectively.

4.1 Normalisation of Formulae

The goal of this step is to transform any formula written using the syntax of Figure 1
into a formula of the following normal form:

∃k∃a .
�

c

(�

d

φcd(a,k)
)
∧θc(k) (NF)

where a is a set of array variables, k is a set of integer variables, and

– θd is a conjunction of terms of the forms (i) g(k)≥ 0 or (ii) g(k)≡s t with g being
a linear combination of the variables in k and 0≤ t < s,

– φcd is a formula of the following forms for∼∈ {≤,≥},m∈N, 0≤ t < s, 0≤ v< u,
q∈ Z, and fk, gl , f 1

k , g1
l , f 2

k , g2
l being linear combinations of array-bound variables:

∀i .
K�

k=1

fk ≤ i ∧
L�

l=1

i≤ gl ∧ i≡s t→ a[i]∼ h(k) (F1)



What Else Is Decidable about Integer Arrays? 481

The (F1) formulae bind all values of a in some interval by some linear combination
h of variables in k.

∀i .
K�

k=1

fk ≤ i ∧
L�

l=1

i≤ gl ∧ i≡s t→ a[i]−b[i+ p]∼ q (F2)

Here, p∈ Z. The (F2) formulae relate all values of a and b in the same interval such
that the distance between the indices of a and b, respectively, is constant.

∀i, j .
�K1

k=1 f 1
k ≤ i ∧ �L1

l=1 i≤ g1
l ∧

�K2
k=1 f 2

k ≤ j ∧ �L2
l=1 j ≤ g2

l ∧
i− j ≤ p ∧ i≡s t ∧ j ≡u v→ a[i]−b[ j]∼ q

(F3)

Here, p ∈ Z∞. The (F3) formulae relate all values of a with all values of b within
two (possibly equal) intervals. The case when p = ∞ corresponds to the situation
when no constraint i− j≤ p with p ∈ Z is used.

Lemma 5. A formula of LIA can be equivalently written in the form (NF).

In the following, we refer to the matrix of ϕ as to the formula obtained by forgetting the
existential quantifier prefix from the (NF) form of ϕ.

4.2 Formulae and Constraint Graphs

In [6,4], the set of runs of a flat counter automaton is represented by an unbounded
constraint graph. Here, we view the models of a formula as a constraint graph both
left- and right-infinite. These constraint graphs are then seen as executions of FBCA,
relating in this way models of formulae to runs of automata.

Let ϕ(k,a) be a formula of type (F1)-(F3), and ι : k→ Z a valuation of its array-
bound variables k. For the rest of this section, we fix the valuation ι, and we denote by
ϕι the formula obtained from ϕ by replacing each occurrence of k ∈ k by the value ι(k).

The formula ϕι can thus be represented by a weighted directed graph Gι,ϕ in which
each node (a,n) represents the array entry a[n] for some a ∈ a and n ∈ Z, and there is
a path of weight w between nodes (a,n) and (b,m) iff the constraint a[n]−b[m]≤ w is
implied by ϕι. In the next section, we will show that these graphs are in a one-to-one
correspondence with the accepting runs of an FBCA.

In order to build the constraint graph of a formula, one needs to pay attention to the
following issue. Consider, e.g., the formula ∀i, j.i− j ≤ 3∧ i ≡2 0∧ j ≡2 1→ a[i]−
b[ j]≤ 5. The constraint graph of this formula needs to have a path of weight 5 between,
e.g., a[0] and b[1], a[0] and b[3], a[0] and b[5], etc. As one can easily notice, the span
of such paths is potentially unbounded. Since we would like this graph to represent
a computation of a flat counter automaton, it is essential to define it as a sequence
composed of (a possibly unbounded number of) repetitions of a finite number of (finite)
sub-graphs (see, e.g., Fig. 2(a) or Fig. 2(b)). To this end, we introduce intermediary
nodes which are connected between themselves with 0 arcs such that, for each non-
local constraint of the form a[n]−b[m]≤w where |n−m| can be arbitrarily large, there
exists exactly one path of weight w through these nodes. E.g., in Fig. 2(a), there is a path



482 P. Habermehl, R. Iosif, and T. Vojnar

(a,0) 5−→ (tϕ,−3) 0−→ . . .
0−→ (tϕ,1) 0−→ (b,1) for the constraint a[0]−b[1]≤ 5, another path

(a,0) 5−→ (tϕ,−3) 0−→ . . .
0−→ (tϕ,3) 0−→ (b,3) for the constraint a[0]−b[3]≤ 5, etc.

Formally, the constraint graph Gι,ϕ = 〈V,E〉 of a formula ϕ of type (F1)-(F3) is
defined as follows: The set of vertices is V = (A ∪T ∪{ζ})×Z. Here, A = {a} for
(F1) formulae, and A = {a,b} for (F2)-(F3) formulae, with a or a,b being the arrays that
appear in ϕ of type (F1) or (F2)-(F3), respectively. Next, T = /0 for (F1)-(F2) formulae,
and T = {tϕ} for (F3) formulae where tϕ is a unique auxiliary symbol (track) associated
with each formula ϕ of type (F3). Finally, ζ is a special shared symbol (zero track). The
set of edges E is defined based on the type (F1)-(F3) of ϕ. For space reasons, we give
here only the definitions for formulae of type (F3), which are the most interesting.
Formulae (F1) and (F2) are treated in [8]. In general, for all types of formulae, we have:

E ⊃ {(ζ,k) 0−→ (ζ,k + 1) | k ∈ Z} ∪ {(ζ,k + 1) 0−→ (ζ,k) | k ∈ Z}
i.e., the value of the zero track stays constant.

Constraint graphs for (F3) formulae. Let ϕ be the formula below where 0 ≤ s < t,
0 ≤ u < v, p ∈ Z∞, q ∈ Z, and f 1

k , g1
l , f 2

k , g2
l are linear combinations of array-bound

variables:

∀i, j .
K1�

k=1

f 1
k ≤ i ∧

L1�

l=1

i≤ g1
l ∧ i≡s t

︸ ︷︷ ︸

φ1

∧
K2�

k=1

f 2
k ≤ j ∧

L2�

l=1

j ≤ g2
l ∧ j ≡u v

︸ ︷︷ ︸

φ2

∧ i− j ≤ p→ a[i]−b[ j]∼ q

Let φ1(i,k) and φ2( j,k) be the subformulae defining the ranges of i and j, respectively,
and P 1

ι = {n∈ Z | |= φ1
ι [n/i]} and P 2

ι = {n∈ Z | |= φ2
ι [n/ j]} be these ranges under the

valuation ι. Let T≤ = {(tϕ,k) 0−→ (tϕ,k +1) | k ∈ Z∧∃n ∈ P 1
ι ∃m ∈ P 2

ι . n−m≤ p} and

T≥ = {(tϕ,k) 0−→ (tϕ,k−1) | k ∈ Z∧∃n ∈ P 1
ι ∃m ∈ P 2

ι . n−m≥ p}. Note that T≤ and

T≥ are empty if the precondition of ϕ is not satisfiable. The set of edges E is defined by
the following case split:

1. If p< ∞, we consider two cases based on the direction of a[i]−b[ j]∼ q:

(a) for a[i]−b[ j]≤ q, we have (Fig. 2(a)):

E ⊃ {(a,k) q−→ (tϕ,k− p) | k ∈ P 1
ι } ∪ {(tϕ,k) 0−→ (b,k) | k ∈ P 2

ι }∪ T≤
(b) for a[i]−b[ j]≥ q, we have:

E ⊃ {(b,k) −q−→ (tϕ,k + p) | k ∈ P 2
ι } ∪ {(tϕ,k) 0−→ (a,k) | k ∈ P 1

ι }∪ T≥

2. If p = ∞, we consider again two cases based on the direction of a[i]−b[ j]∼ q:

(a) for a[i]−b[ j]≤ q, we have (Fig. 2(b)):

E ⊃ {(a,k) q−→ (tϕ,k) | k ∈ P 1
ι } ∪ {(tϕ,k) 0−→ (b,k) | k ∈ P 2

ι } ∪ T≤ ∪ T≥
(b) for a[i]−b[ j]≥ q, we have:

E ⊃ {(b,k) −q−→ (tϕ,k) | k ∈ P 2
ι } ∪ {(tϕ,k) 0−→ (a,k) | k ∈ P 1

ι } ∪ T≤ ∪ T≥

Nothing else is in E .



What Else Is Decidable about Integer Arrays? 483

ι(l1) ι(u1)

a

b

tϕ 0

5 5 5

ι(u2)ι(l2)

0 0 00000
0 0 0

(a) ∀i, j.l1≤ i≤ u1∧ l2≤ j≤ u2∧ i− j≤ 3∧ i≡2
0∧ j ≡2 1→ a[i]−b[ j]≤ 5

ι(l1)

a
5 5

ι(u1)

tϕ

b

00 0
0

ι(l2) ι(u2)

000
0

(b) ∀i, j.l1≤ i≤ u1∧ l2≤ j≤ u2∧ i≡2
0∧ j ≡2 1→ a[i]−b[ j]≤ 5

Fig. 2. Examples of constraint graphs for (F3) formulae

Relating constraint graphs and models of formulae. We can now prove a corre-
spondence between constraint graphs and models of formulae of the forms (F1)-(F3).
Namely, it is the fact that if the vertices of a constraint graph for a formula ϕ can be
labelled in a consistent way, then from the labelling, one can extract a model for ϕ, and
vice versa. This formalises correctness of the construction for constraint graphs using
the additional tracks.

Let ϕ(k,a) be a formula of the forms (F1)-(F3), ι : k→ Z a valuation of the array-
bound variables in ϕ, and Gι,ϕ = (V,E) its corresponding constraint graph. A labelling

Lab : V → Z of Gι,ϕ is called consistent if and only if (1) for all edges v1
k−→ v2 ∈ E , we

have Lab(v1)−Lab(v2)≤ k and (2) Lab((ζ,n)) = 0 for all n ∈ Z.

Lemma 6. Let ϕ(k,a) be a formula of the form (F1)-(F3). Then, for all valuations
ι : k→Z and µ : a→ ωZω, we have that 〈ι,µ〉 |= ϕ if and only if there exists a consistent
labelling Lab of Gι,ϕ such that µ(a)(i) = Lab((a, i)) for all a ∈ a and i ∈ Z.

4.3 From Formulae to Counter Automata

In this section, we describe the construction of an FBCA Aϕ corresponding to a formula
ϕ such that (1) each run of Aϕ corresponds to a model of ϕ, and (2) for each model of ϕ,
Aϕ has at least one corresponding run. In this way, we effectively reduce the satisfiability
problem for LIA to the emptiness problem for FBCA.

The construction of FBCA is by induction on the structure of the formulae. For the
rest of this section, let ϕ be a formula, k the set of array-bound variables in ϕ, and
a the set of array variables in ϕ, i.e., FV (ϕ) = k∪ a. Suppose that ϕ is the matrix of
a formula in the normal form (NF), i.e., ϕ :

�
i∈I θi(k)∧� j∈J ψi j(k,a) where θi are PA

constraints and ψi j are formulae of types (F1)-(F3). The automaton Aϕ is defined as�
i∈I Aθi⊗

�
j∈J Aψi j where � and⊗ are the union and intersection operators on FBCA.

The construction of counter automata Aψi j for the formulae ψi j of type (F1)-(F3) relies
on the definition of the constraint graphs in Section 4.2. Namely, each accepting run of
Aψi j gives a consistent valuation of the constraint graph of ψi j.

Counter Automata Templates. To simplify the definition of counter automata, we
note that each constraint graph for the basic formulae of type (F1)-(F3) is composed



484 P. Habermehl, R. Iosif, and T. Vojnar

of horizontal, vertical, and diagonal edges, which are defined in roughly the same way
for all types of formulae (cf. Section 4.2). We take advantage of this fact and we start
by defining three types of counter automata templates, which are subsequently used to
define the counter automata for the basic formulae.3 More precisely, the automata for
(F1)-(F3) formulae will be defined as⊗-products of particular instances of the automata
templates for the horizontal, vertical, and diagonal edges of the appropriate constraint
graphs. In the following definitions, we assume the existence of a special counter xτ
(tick) incremented by each transition rule, i.e., we suppose that the constraint x′τ = xτ +1
is implicitly in conjunction with each formula labelling a transition rule. Intuitively, the
role of the xτ counter is to synchronise all automata composed by the ⊗-product on
a common current position.

The template for the horizontal edges. Let a be an array symbol, dir∈{left,right,bi}
be a direction parameter, and φ be a formula on array-bound variables. Let xk be the set
{xk | k ∈ FV (φ)}. We define the template H(a,dir,φ) = 〈x,Q,L,R,−→〉 where:

– x = {xa}∪xk. These counters will have the same names in all instances of H.
– Q = {qL,qR, pL, pR}. The control states are required to have fresh names in every

instance of H. L = {qL, pL} and R = {qR, pR}.
– qL

ξ−→ qL, qR
ξ−→ qR, qL

φ(xk) ∧ ξ−−−−−→ qR, pL
�−→ pL, pR

�−→ pR, and pL
¬φ(xk)−−−−→ pR.

In the above, φ(xk) is the formula obtained by replacing each occurrence of an
array-bound variable k ∈ FV (φ) by its corresponding counter xk. The formula ξ(xa,x′a)
is xa− x′a ≤ 0 if dir = right, x′a − xa ≤ 0 if dir = left, and x′a = xa if dir = bi.
Moreover, for each transition rule, we assume the conjunction

�
k∈FV (φ) x′k = xk to be

added implicitly to the labelling formula, i.e., the value of an xk counter stays constant
throughout a run.

If the formula φ holds for a given valuation of the parameters xk, then any accepting
run of (any instance of) H visits qL infinitely often on the left and qR infinitely often
on the right. Otherwise, if φ does not hold for the given valuation of xk, the instance
automata have a run that goes infinitely often through pL on the left and through pR on
the right. In this case, the automata do not impose any constraints on xa.

The template for the diagonal edges. Let a,b be array symbols, q ∈ Z, p,s ∈ N+,
t ∈ [0,s− 1], and dir ∈ {left,right} be a direction parameter. In the following, we
refer to the sets L = {l1, . . . , lK} and U = {u1, . . . ,uL} of lower and upper bounds, re-
spectively, where li and u j are linear combinations of array-bound variables. Let xk =
{xk | k ∈�K

i=1 FV (li) ∪ �L
j=1 FV (u j)}. Further, we assume that L∪U �= /0 and we deal

with the case of L∪U = /0 later on. We define the template D(a,b, p,q,s, t,L,U,dir) =
〈x,Q,L,R,−→〉 where:

– x = {xa,xb}∪xk∪{xi | 1≤ i < p}. The counters xa,xb, and xk will have the same
names in all instances of D. On the other hand, the counters xi, 1 ≤ i < p, will
have fresh names in every instance of D. The xi counters are used for splitting

3 By a template, we mean a class of counter automata which all share the same structure.



What Else Is Decidable about Integer Arrays? 485

diagonal edges that span over more than one position into series of diagonal edges
connecting only adjacent positions.4

– Q = {qL,qR}∪{qi | 0 ≤ i < s}∪{q j
i | 0 ≤ j < s, j + 1 ≤ i < j + p}. The control

states are required to have fresh names in every instance of D. Let L = {qL} ∪
{qi | 0≤ i< s} and R = {qR}∪{qi | 0≤ i< s}.

– qL
�−→ qL, qR

�−→ qR, and qL
¬(∃i . �l∈L i≥l(xk) ∧ �u∈U i≤u(xk) ∧ i≡st)−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.

– qL

�
l∈L xτ≥l(xk)−1 ∧ (

�
l∈L xτ=l(xk)−1) ∧ xτ+1≡si−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi for all 0≤ i < s.

– qi

�
l∈L xτ≥l(xk) ∧ �u∈U xτ<u(xk) ∧ ξi[xa/x0,xb/xp]−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mod s for all 0≤ i< s.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi[xa/x0,xb/xp]−−−−−−−−−−−−−−−−−−−−−−−→ qi

i+1 for all 0≤ i < s.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si ∧ ξi[xa/x0,xb/xp]−−−−−−−−−−−−−−−−−−−−−−−→ qR for all 0≤ i < s if p = 1.

– q j
i

ξi[xa/x0,xb/xp]−−−−−−−−→ q j
i+1 for all 0≤ j < s, j < i < j + p−1.

– q j
j+p−1

ξi [xa/x0,xb/xp]−−−−−−−−→ qR for all 0≤ j < s if p> 1.

In the above, l(xk) and u(xk) denote the expressions l and u in which each occurrence of
an array-bound variable k is replaced by its corresponding parameter xk. As before, for
each transition rule, we assume the conjunction

�
k∈FV (φ) x′k = xk to be added implicitly

to the labelling formula, i.e., we require that the value of an xk counter stays constant
throughout the run. The formulae ξi are defined as follows:

– if dir = right, ξi =
�

k∈Ki
xk − x′k+1 ≤ αk for Ki = {k | 0 ≤ k < p, i ≡s k + t},

α0 = q, and αk = 0, k > 0,
– if dir = left, ξi =

�
k∈Ki

x′k−1− xk ≤ αk, Ki = {k | 1≤ k ≤ p, k + i≡s t}, α1 = q,
and αk = 0, k > 1.

Finally, for the case L = U = /0, we define any instance of D(a,b, p,q,s,t, /0, /0,dir) to
be A1⊗A2 where A1 is an instance of D(a,b, p,q,s, t, /0,{0},dir) and A2 is an instance
of D(a,b, p,q,s,t,{0}, /0,dir).

The construction can be understood by considering an accepting run of (any instance
of) D. Let us consider the case in which there exists a value i in between the bounds that
satisfies also the modulo constraint. If this is not the case, there will be an accepting run

that takes the transition qL
¬(∃i . �l∈L i≥l(xk) ∧ �u∈U i≤u(xk) ∧ i≡st)−−−−−−−−−−−−−−−−−−−−−−−−−→ qR exactly once.

Since the run is accepting, it must visit a state from L infinitely often on the left, and
a state from R infinitely often on the right. There are three cases: (1) L �= /0 and U �= /0,
(2) L = /0 and U �= /0, and (3) L �= /0 and U = /0. In the case (1), a bi-infinite run will visit
qL infinitely often on the left and qR infinitely often on the right. Notice that the run

4 For instance, the constraint a[i]−b[i+3]≤ 5 can be split to a[i]−x1[i+1]≤ 5, x1[i+1]−x2[i+
2] ≤ 0, and x2[i + 2]− b[i + 3] ≤ 0. The constraints for array values of neighbouring indices
can then be conveniently expressed by using the current and future values of the appropriate
counters (e.g., for our example constraint, xa− x′1 ≤ 5, x1− x′2 ≤ 0, and x2− x′b ≤ 0, which of
course appear on subsequent transitions of the appropriate FBCA).



486 P. Habermehl, R. Iosif, and T. Vojnar

qL qR

q1 q1
2

q0
1 q0

2

q1
3

x′a −x1 ≤ 5

� �

x′1 −x2 ≤ 0q0 x ′
a −x1 ≤ 5

x′ 1
−x2

≤
0

x′1 −x2 ≤ 0∧ xτ ≡2 1

∧x′a −x1 ≤ 5
∧x′2 −xtϕ ≤ 0

∧x′1 −x2 ≤ 0

∧x′2 −xtϕ ≤ 0

∧x ′
2 −xtϕ ≤ 0

∧xτ +1 ≡
2 1

∧xτ +1 ≡2 0xτ ≥
xl1

−4∧ xτ = xl1
−4

xτ ≥ xl1 −4∧ xτ = xl1 −4

∧xτ ≡2 0

∧x′a −x1 ≤ 5∧ x′2 −xtϕ ≤ 0

xτ = xu1 −3∧

¬(∃i . xl1 ≤ i ≤ xu1 ∧ i ≡2 0)

xτ ≥ xl1 −3∧ xτ < xu1 −3
xτ ≥ xl1 −3∧ xτ < xu1 −3

xτ = xu1 −3

Fig. 3. The FBCA for the diagonal edges in the formula ϕ : ∀i, j.l1≤ i≤ u1∧ l2 ≤ j≤ u2∧ i− j≤
3∧ i≡2 0∧ j≡2 1→ a[i]−b[ j]≤ 5 from Fig. 2(a) obtained as D(a,tϕ,3,5,2,0−3,{l1−3},{u1−
3},left). To understand the formula ξ0 on the transition from q0 to q1, note that the constraint
i≡s k+t in the definition of the set K0 instantiates to 0≡2 k−3, and hence K0 = {1,3}. A similar
reasoning applies for the other transitions.

cannot visit the loop q0 −→ . . .−→ qs−1 infinitely often due to the presence of both lower

and upper bounds on xτ. In the case (2), the run cannot take any of the transitions qL −→
qi, 0 ≤ i < s, due to the emptiness of L, which makes the guard unsatisfiable. Hence,
the only possibility for an accepting bi-infinite run is to visit the states q0 −→ . . .−→ qs−1

infinitely often on the left. Due to the presence of the upper bound on xτ, the run cannot
stay forever inside this loop and must exit via one of the qi −→ qi

i+1 (or qi −→ qR for

p = 1) transitions, getting trapped into qR on the right. Case (3) is symmetric to (2).
Note that, in all cases, due to the modulo tests on xτ in the entry and exit of the main

loop q0−→ . . .−→ qs−1 on any accepting run, whenever a state qi, 0≤ i< s, is visited, the

value of the xτ counter must equal i modulo s. Note also that the role of the q j
i states is

to describe constraints corresponding to edges that start inside the given interval bounds
and lead above its upper bound (or vice versa). The number of such edges is bounded.
We do not use the same construction at the beginning of the interval as the templates
are applied such that none of the edges represented goes below the lower bounds.

Template for the vertical edges. Let a,b be array symbols, q a linear combination of
array-bound variables, p,s ∈ N+, and t ∈ [0,s− 1]. We again refer to the sets L =
{l1, . . . , lK} and U = {u1, . . . ,uL} of lower and upper bounds, respectively, where li and
u j are linear combinations of array-bound variables. Also, let xk = {xk | k∈�K

i=1 FV (li)
∪ �L

j=1 FV (u j)}. Further, we assume that L∪U �= /0 and we deal with the case of
L∪U = /0 later on. We define the template V (a,b, p,q,s, t,L,U) = 〈x,Q,L,R,−→〉where:

– x = {xa,xb}∪xk. The counters xa,xb, xk have the same names in all instances of V .
– Q = {qL,qR}∪{qi | 0≤ i< s}. The control states are required to have fresh names

in every instance of V . L = {qL}∪{qi | 0≤ i< s} and R = {qR}∪{qi | 0≤ i≤ s}.
– qL

�−→ qL, qR
�−→ qR, and qL

¬(∃i . �l∈L i≥l(xk) ∧ �u∈U i≤u(xk) ∧ i≡st)−−−−−−−−−−−−−−−−−−−−−−−−−→ qR.



What Else Is Decidable about Integer Arrays? 487

– qL

�
l∈L xτ≥l(xk)−1 ∧ �l∈L xτ+1=l(xk) ∧ xτ+1≡si−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ qi, 0≤ i< s.

– qi

�
l∈L xτ≥l(xk) ∧ �u∈U xτ<u(xk) ∧ xa−xb≤q(xk)−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q(i+1) mod s, 0≤ i < s and i≡s t.

– qi

�
l∈L xτ≥l(xk) ∧ �u∈U xτ<u(xk)−−−−−−−−−−−−−−−−−−→ q(i+1) mod s, 0≤ i< s and i �≡s t.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si ∧ xa−xb≤q(xk)−−−−−−−−−−−−−−−−−−−−−−−→ qR, 0≤ i< s and i≡s t.

– qi

�
u∈U xτ=u(xk) ∧ xτ≡si−−−−−−−−−−−−−→ qR, 0≤ i < s and i �≡s t.

In the above, l(xk), u(xk), and q(xk) denote the expressions l, u, and q where each oc-
currence of an array-bound variable k is replaced by the parameter xk. As before, we as-
sume that for each transition rule the conjunction

�
k∈FV (φ) x′k = xk is added implicitly to

the labelling formula, i.e., the value of an xk counter stays constant throughout the run.
Finally, if L = U= /0, we define any instance of V (a,b, p,q,s,t, /0, /0) as A1⊗A2 where A1

is an instance of V (a,b, p,q,s,t, /0,{0}) and A2 is an instance of V (a,b, p,q,s, t,{0}, /0).
The intuition behind the construction of V is similar to the one of D.

4.4 Counter Automata for Basic Formulae

We are now ready to define the construction of FBCA for the basic formulae. This is
done by composing instances of templates using the ⊗ operator for intersection (cf.
Section 2). For space reasons, we only give here the construction of the FBCA for (F3)
formulae. The formulae of type (F1), (F2), and PA constraints on array-bound variables
are treated analogously in [8]. Let ϕ be an (F3)-type formula

∀i, j .
K1�

k=1

f 1
k ≤ i ∧

L1�

l=1

i≤ g1
l ∧

K2�

k=1

f 2
k ≤ j ∧

L2�

l=1

j ≤ g2
l ∧ i− j ≤ p ∧ i≡s t ∧ j ≡u v

︸ ︷︷ ︸

φ

→ a[i]−b[ j]∼ q

where 0≤ s< t and 0≤ u< v. Let Li = { f i
1, . . . , f i

Ki
} and Ui = {gi

1, . . . ,g
i
Li
} for i = 1,2,

respectively. By φ, we denote the precondition of ϕ. The automaton Aϕ is defined as
Aϕ = A1⊗A2⊗A3 where A1, A2, A3 are instantiated according to Table 1.

4.5 Assembling Automata for Entire Normalised Formulae

Given a formula ϕ(k,a) which is a positive boolean combination of formulae of types
(F1)-(F3) and PA constraints on the array-bound variables k, let Aϕ be the automaton
defined inductively on the structure of ϕ as follows:

– if ϕ is of type (F1)-(F3), or a PA constraint on k, then Aϕ is as in Section 4.4,
– if ϕ = ψ1∧ψ2, then Aϕ = Aψ1⊗Aψ2 ,
– if ϕ = ψ1∨ψ2, then Aϕ = Aψ1 �Aψ2 .

Let r ∈ R (Aϕ) be an accepting run of Aϕ and δ(r) = val(r(0))(xτ) be the value of
the xτ (tick) counter at position 0 on r. We denote by η(r) = r ◦σ−δ(r) the centered
run obtained from r by shifting it such that the value of xτ at position 0 is also 0. By
Lemma 1, r is an accepting run of Aϕ if and only if η(r) is. Notice that r induces the



488 P. Habermehl, R. Iosif, and T. Vojnar

Table 1. The instantiation table for (F3) formulae. Note that in some lines, we shift the original
bounds appearing in the formula in order to be able to re-use the prepared templates that do
not explicitly deal with edges leaving from within the given bounds and going below the lower
bound. Due to the way the templates are constructed, the shifting preserves the semantics of the
formula—instead of edges going below the lower bound of a certain interval, we obtain the same
edges just going above the upper bound of the shifted interval, which our templates are prepared
for. Given a set of integers S and an integer p, we use the notation S+ p for {s+ p | s ∈ S}.

p ∼ A1 A2 A3

∞ ≤ V (a,tϕ,q,s,t,L1,U1) H(tϕ,bi,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
∞ ≥ V (b,tϕ,−q,u,v,L2,U2) H(tϕ,bi,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
0 ≤ V (a,tϕ,q,s,t,L1,U1) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
0 ≥ V (b,tϕ,−q,u,v,L2,U2) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
> 0 ≤ D(a,tϕ, p,q,s,t− p,L1−p,U1−p,left) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
> 0 ≥ D(b,tϕ, p,−q,u,v,L2,U2,right) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)
< 0 ≤ D(a,tϕ,−p,q,s,t,L1,U1,right) H(tϕ,right,∃i, j.φ) V (tϕ,b,0,u,v,L2,U2)
< 0 ≥ D(b,tϕ,−p,−q,u,v+p,L2+p,U2+p,left) H(tϕ,left,∃i, j.φ) V (tϕ,a,0,s,t,L1,U1)

following valuations on k and a, respectively: ιr(k) = val(η(r)(0))(xk) for all k ∈ k,
and µr(a)(i) = val(η(r)(i))(xa) for all a ∈ a and i ∈ Z.

For an arbitrary valuation ν ∈ V (Aϕ), there exists r ∈ R (Aϕ) such that ν = val(r).
Let Mϕ(ν) = 〈ιr,µr〉 be the valuation of the free variables in ϕ that corresponds to r.
One can see now that Mϕ defines a function Mϕ : V (Aϕ)→ (k �→ Z)× (a �→ ωZω).5

Theorem 1. Let ϕ(k,a) be a positive boolean combination of formulae of types (F1)-
(F3) and PA constraints on the array-bound variables k, and Aϕ be the automaton
defined in the previous. Then, Mϕ(V (Aϕ)) = [[ϕ]].

The proof is by induction on the structure of ϕ. For the base case, we use the corre-
spondence between models and constraint graphs of formulae (F1)-(F3) (Lemma 6).
The inductive step follows as a consequence of the fact that the class of FBCA is closed
under union and intersection (Lemma 3). The main result of the paper is the following:

Corollary 1. The logic LIA is decidable.

The proof of Corollary 1 uses the normalisation step (cf. Lemma 5) to rewrite any
formula of LIA into the form (NF) and applies Theorem 1 to the matrix of the formula
(i.e., the formula obtained by skipping the existential quantifier prefix).

5 Conclusions and Future Work

We have presented a new decidable logic for reasoning about properties of programs
with integer arrays. This logic allows one to relate adjacent array values as well as to

5 By definition, for each ν ∈ V (Aϕ), there exist valuations ιr and µr , so Mϕ is defined for all
ν ∈ V (Aϕ). Let r1,r2 ∈ R (Aϕ) be two runs such that val(r1) = val(r2) = ν. We have δ(r1) =
δ(r2), therefore η(r1) = η(r2), which leads to ιr1 = ιr2 and µr1 = µr2 .



What Else Is Decidable about Integer Arrays? 489

express periodic facts relating all values situated at equidistant positions. We have estab-
lished decidability of this logic by following the automata-theoretic approach. To this
end, we have defined a new class of Büchi automata with counters, for which empti-
ness is decidable. We translate each formula into a corresponding automaton of this
kind and transform deciding satisfiability of the formula to deciding emptiness of the
automaton.

Future work will include the study of the complexity of our decision procedure and
its implementation. We furthermore plan to develop invariant generation methods in
order to give automatic correctness proofs for programs with integer arrays.

References

1. Armando, A., Ranise, S., Rusinowitch, M.: Uniform Derivation of Decision Procedures by
Superposition. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, p. 2001. Springer, Heidel-
berg (2001)

2. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized Verification with Automati-
cally Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, Springer, Heidelberg (2001)

3. Bouajjani, A., Jurski, Y., Sighireanu, M.: A Generic Framework for Reasoning About Dy-
namic Networks of Infinite-State Processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, Springer, Heidelberg (2007)

4. Bozga, M., Iosif, R., Lakhnech, Y.: Flat Parametric Counter Automata. In: Bugliesi, M., Pre-
neel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, Springer, Heidelberg
(2006)

5. Bradley, A.R., Manna, Z., Sipma, H.B.: What ’s Decidable About Arrays? In: Emerson, E.A.,
Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, Springer, Heidelberg (2005)

6. Comon, H., Jurski, Y.: Multiple Counters Automata, Safety Analysis and Presburger Arith-
metic. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, Springer, Heidelberg (1998)

7. Ghilardi, S., Nicolini, E., Ranise, S., Zucchelli, D.: Decision Procedures for Extensions of
the Theory of Arrays. Annals of Mathematics and Artificial Intelligence 50 (2007)

8. Habermehl, P., Iosif, R., Vojnar, T.: What else is decidable about integer arrays? Technical
Report TR-2007-8, Verimag (2007)

9. Jaffar, J.: Presburger Arithmetic with Array Segments. Inform. Proc. Letters 12 (1981)
10. King, J.: A Program Verifier. PhD thesis, Carnegie Mellon University (1969)
11. Mateti, P.: A Decision Procedure for the Correctness of a Class of Programs. Journal of the

ACM 28(2) (1980)
12. McCarthy, J.: Towards a Mathematical Science of Computation. In: IFIP Congress (1962)
13. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Englewood

Cliffs (1967)
14. Nivat, M., Perrin, D.: Ensembles reconnaissables de mots biinfinis. Canad. J. Math. 38, 513–

537 (1986)
15. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du
Premier Congrès des Mathématiciens des Pays Slaves, Warsaw, Poland, pp. 92–101 (1929)

16. Stump, A., Barrett, C.W., Dill, D.L., Levitt, J.R.: A Decision Procedure for an Extensional
Theory of Arrays. In: Proc. of LICS 2001 (2001)

17. Suzuki, N., Jefferson, D.: Verification Decidability of Presburger Array Programs. Journal of
the ACM 27(1) (1980)

18. Thomas, W.: Automata on Infinite Objects. In: Handbook of Theoretical Computer Science.
Formal Models and Semantics, vol. B, Elsevier, Amsterdam (1990)



Model Checking Freeze LTL over One-Counter
Automata�

Stéphane Demri1, Ranko Lazić3, and Arnaud Sangnier1,2

1 LSV, ENS Cachan, CNRS, INRIA
2 EDF R&D

3 Department of Computer Science, University of Warwick, UK

Abstract. We study complexity issues related to the model-checking problem
for LTL with registers (a.k.a. freeze LTL) over one-counter automata. We con-
sider several classes of one-counter automata (mainly deterministic vs. nondeter-
ministic) and several syntactic fragments (restriction on the number of registers
and on the use of propositional variables for control locations). The logic has the
ability to store a counter value and to test it later against the current counter value.
By introducing a non-trivial abstraction on counter values, we show that model
checking LTL with registers over deterministic one-counter automata is PSPACE-
complete with infinite accepting runs. By constrast, we prove that model checking
LTL with registers over nondeterministic one-counter automata is Σ1

1 -complete
[resp. Σ0

1 -complete] in the infinitary [resp. finitary] case even if only one register
is used and with no propositional variable. This makes a difference with the facts
that several verification problems for one-counter automata are known to be de-
cidable with relatively low complexity, and that finitary satisfiability for LTL with
a unique register is decidable. Our results pave the way for model-checking LTL
with registers over other classes of operational models, such as reversal-bounded
counter machines and deterministic pushdown systems.

1 Introduction

Logics for data words and trees. Data words are sequences in which each position is
labelled by a letter from a finite alphabet and by another letter from an infinite alphabet
(the datum). This fundamental and simple model captures the timed words accepted by
timed automata [1], and its extension to trees is useful to model XML documents with
values, see e.g. [4,15]. In order to really speak about data, known logical formalisms
for data words/trees contain a mechanism that stores a value and tests it later against
other values, see e.g. [5,9]. This is a powerful feature shared by other memoryful tem-
poral logics [18,16]. However, the satisfiability problem for these logics becomes easily
undecidable even when stored data can be tested only for equality. For instance, first-
order logic for data words restricted to three individual variables is undecidable [5],
whereas LTL with registers (also known as freeze LTL) restricted to a single register is
undecidable over infinite data words [9]. By contrast, decidable fragments of the satisfi-
ability problems have been found in [5,10,19] either by imposing syntactic restrictions

� Work supported by the Agence Nationale de la Recherche, grant ANR-06-SETIN-001.

R. Amadio (Ed.): FOSSACS 2008, LNCS 4962, pp. 490–504, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



Model Checking Freeze LTL over One-Counter Automata 491

(bound the number of registers, constrain the polarity of temporal formulae, etc.) or
by considering subclasses of data words (finiteness for example). Similar phenomena
occur with metric temporal logics and timed words [22,23]. A key point for all these
logical formalisms is the ability to store a value from an infinite alphabet, which is a
feature also present in models of register automata, see e.g [7,21,25]. However, the stor-
ing mechanism has a long tradition (apart from its ubiquity in programming languages)
since it appeared for instance in real-time logics [2] (the data are time values) and in
so-called hybrid logics (the data are node addresses), see an early undecidability result
with reference pointers in [13]. Meaningful restrictions for hybrid logics can also lead
to decidable fragments, see e.g. [24].

Our motivations. In this paper, our main motivation is to analyze the effects of adding
a binding mechanism with registers to specify runs of operational models such as push-
down systems and counter automata. The registers are simple means to compare data
values at different points of the execution. Indeed, runs can be naturally viewed as data
words: for example, the finite alphabet is the set of locations and the infinite alphabet is
the set of data values (natural numbers, stacks, etc.). To do so, we enrich an ubiquitous
logical formalism for model-checking techniques, namely linear-time temporal logic
LTL, with registers. Even though this was the initial motivation to introduce LTL with
registers in [10], most decision problems considered in [10,19,9] are essentially oriented
towards satisfiability. In this paper, we focus on the following type of model-checking
problem: given a set of runs generated by an operational model, more precisely by a
one-counter automaton, and a formula from LTL with registers, is there a run satisfy-
ing the given formula? In our context, it will become clear that the extension with two
counters is undecidable. It is not difficult to show that this model-checking problem
differs from those considered in [19,10] and are of a different nature from those for
hybrid logics investigated in [12,27]. However, since two consecutive counter values in
a run are ruled by the set of transitions, constraints on data that are helpful to get fine-
tuned undecidability proofs for satisfiability problems in [10,9] may not be allowed on
runs. This is precisely what we want to understand in this work. Like in [6], LTL with
registers makes sense to specify and reason about configurations of operational models,
precisely counter systems.

Our contribution. We study complexity issues related to the model-checking problem
for LTL with registers over one-counter automata that are simple operational models
but our undecidability results can be obviously lifted to pushdown systems when regis-
ters store the stack value. Moreover, in order to determine borderlines for decidability,
we also present results for deterministic one-counter models that are less powerful but
remain interesting when they are viewed as a means to specify an infinite path on which
model checking is performed, see analogous issues in [20].

We consider several classes of one-counter automata (deterministic and nondeter-
ministic) and several fragments by restricting the use of registers or the use of letters
from the finite alphabet. Moreover, we distinguish finite accepting runs from infinite
ones as data words. Unlike several results from [22,23,9,19], the decidability status
of the model checking does not depend on the fact that we consider finite data words
instead of infinite ones. In this paper, we present the following results.



492 S. Demri, R. Lazić, and A. Sangnier

– Model checking LTL with registers over deterministic one-counter automata is
PSPACE-complete (see Sect. 3.2). PSPACE-hardness is established by reducing
QBF and it also holds when no letters from the finite alphabet are used in for-
mulae. When the number of registers is bounded, the problem can be solved in
polynomial time. In order to get these complexity upper bounds, we introduce an
abstraction on counter values even though the counter values may not be bounded
along the unique run of the deterministic automata. This makes a substantial differ-
ence with [20] in which no data values are considered, but still our problem amounts
to model checking a path specified by a deterministic one-counter automaton.

– Model checking LTL with registers over nondeterministic one-counter automata
restricted to a unique register and without alphabet is Σ1

1 -complete in the infinitary
case by reducing the recurrence problem for Minsky machines (see Sect. 4). In the
finitary case, the problem is shown Σ0

1 -complete by reducing the halting problem
for Minsky machines. These results are quite surprising since several verification
problems for one-counter automata are known to be decidable with relatively low
complexity [14,26]. Moreover, finitary satisfiability for LTL with one register is
decidable [9] even though with nonprimitive complexity.

Because of lack of space, omitted proofs can be found in [11].

2 Preliminaries

2.1 One-Counter Automaton

Let us recall standard definitions and notations about our operational models. A one-
counter automaton is a tuple A = 〈Q, qI , δ, F 〉 where Q is a finite set of locations,
qI ∈ Q is the initial location, F ⊆ Q is the set of accepting locations and δ ⊆ Q ×
L × Q is the transition relation over the instruction set L = {inc, dec, ifzero}. A
counter valuation v is an element of N and a configuration of A is a pair in Q×N. The
initial configuration is the pair 〈qI , 0〉. As usual, a one-counter automaton A induces a
(possibly infinite) transition system 〈Q × N,−→〉 such that 〈q, n〉 −→ 〈q′, n′〉 iff one of
the conditions below holds true: (1) 〈q, inc, q′〉 ∈ δ and n′ = n+1, (2) 〈q, dec, q′〉 ∈ δ
and n′ = n − 1 (and n′ ∈ N), (3) 〈q, ifzero, q′〉 ∈ δ and n = n′ = 0. A finite [resp.
infinite] run ρ is a finite [resp. infinite] sequence ρ = 〈q0, n0〉 −→ 〈q1, n1〉 −→ · · ·
where 〈q0, n0〉 is the initial configuration. A finite run is accepting iff it ends with an
accepting location. An infinite run ρ is accepting iff it contains an accepting location
infinitely often (Büchi acceptance condition).

A one-counter automatonA is deterministic whenever it corresponds to a determin-
istic one-counter Minsky machine: for every location q, eitherA has a unique transition
from q incrementing the counter, or A has exactly two transitions from q, one with in-
struction ifzero and the other one with instruction dec, or A has no transition from
q (not present in original deterministic Minsky machines). In the transition system in-
duced by any deterministic one-counter automaton, each configuration has at most one
successor. One-counter automata in full generality are understood as nondeterministic
one-counter automata.



Model Checking Freeze LTL over One-Counter Automata 493

2.2 LTL over Data Words

Formulae of the logic LTL↓,Σ where Σ is a finite alphabet are defined as follows:

φ ::= a | ↑r | ¬φ | φ ∧ φ | φUφ | Xφ | ↓r φ

where a ∈ Σ and r ranges over N \ {0}. We write LTL↓ to denote LTL with registers
for some unspecified finite alphabet. An occurrence of ↑r within the scope of some
freeze quantifier ↓r is bound by it; otherwise it is free. A sentence is a formula with no
free occurrence of any ↑r. Given a natural number n > 0, we write LTL↓,Σn to denote
the restriction of LTL↓,Σ to registers in {1, . . . , n}. Models of LTL↓,Σ are data words.
A data word σ over a finite alphabet Σ is a non-empty word in Σ<ω or Σω, together
with an equivalence relation∼σ on word indices. We write |σ| for the length of the data
word, σ(i) for its letters where 0 ≤ i < |σ|.

A register valuation v for a data word σ is a finite partial map from N \ {0} to the
indices of σ. Whenever v(r) is undefined, the formula ↑r is interpreted as false. The
satisfaction relation |= is defined as follows (Boolean clauses are omitted).

σ, i |=v a
def⇔ σ(i) = a

σ, i |=v ↑r def⇔ r ∈ dom(v) and v(r) ∼σ i
σ, i |=v Xφ

def⇔ i+ 1 < |σ| and σ, i+ 1 |=v φ

σ, i |=v φ1Uφ2
def⇔ for some j ≥ i, σ, j |=v φ2 and for all i ≤ j′ < j, σ, j′ |=v φ2

σ, i |=v ↓r φ def⇔ σ, i |=v[r �→i] φ

v[r �→ i] denotes the register valuation equal to v except that the register r is mapped
to the position i. In the sequel, we omit the subscript “v” in |=v when sentences are
involved. We use the standard abbreviations for the temporal operators (G, F, . . . ) and
for the Boolean operators and constants (∨,⇒, �,⊥, . . . ). The infinitary [resp. finitary]
satisfiability problem for LTL with registers, noted ω-SAT-LTL↓ [resp. f -SAT-LTL↓],
is defined as follows: given a finite alphabet Σ and a formula φ in LTL↓,Σ , is there an
infinite [resp. a finite] data word σ such that σ, 0 |= φ?

Theorem 1. [9] ω-SAT-LTL↓ restricted to one register is Π0
1 -complete and f -SAT-

LTL↓ restricted to one register is decidable with non-primitive recursive complexity.

Given a one-counter automatonA = 〈Q, qI , δ, F 〉, finite [resp. infinite] accepting runs
of A can be viewed as finite [resp. infinite] data words over the alphabet Q. Indeed,
given a run ρ, the equivalence relation ∼ρ is defined as follows: i ∼ρ j iff the counter
value at the ith position of ρ is equal to the counter value at the jth position of ρ. In
order to ease the presentation, in the sequel we store in registers counter values, which
is an equivalent way to proceed by slightly adapting the semantics for ↑r and ↓r, and
the values stored in registers (data).

The finitary [resp. infinitary] (existential) model-checking problem over one-counter
automata for LTL with registers, noted MC<ω [resp. MCω] is defined as follows: given
a one-counter automatonA = 〈Q, qI , δ, F 〉 and a sentence φ in LTL↓,Q, is there a finite
[resp. infinite] accepting run ρ ofA such that ρ, 0 |= φ? If the answer is “yes”, we write



494 S. Demri, R. Lazić, and A. Sangnier

A |=<ω φ [resp. A |=ω φ ]. In this existential version of model checking, this problem
can be viewed as a variant of satisfiability in which satisfaction of a formula can be
only witnessed within a specific class of data words, namely the accepting runs of the
automata. Results for the universal version of model checking will follow easily from
those for the existential version.

We write MCαn to denote the restriction of MCα to formulae with at most n regis-
ters. Very often, it makes sense that only counter values are known but not the current
location of a configuration, which can be understood as an internal information about
the system. We write PureMCαn to denote the restriction of MCαn (its “pure” version)
to formulae with atomic formulae only of the form ↑r.
Example 1. Here are properties that can be stated in LTL↓,Q2 along a run.

– “There is a suffix such that all the counter values are different”: FG(↓1 XG¬ ↑1).
– “Whenever location q is reached with current counter value n and next current

counter value m, if there is a next occurrence of q, the two consecutive counter
values are also n and m”: G(q ⇒↓1 X ↓2 XG(q ⇒↑1 ∧X ↑2)).

We show how to get rid of propositional variables by reducing the model-checking
problem over one-counter automata to its pure version.

Lemma 2 (Purification). Given a one-counter automaton A and a sentence φ in
LTL↓,Qn , one can compute in logarithmic space in |A| + |φ| a one-counter automa-
ton AP and φP in LTL↓,∅max(n,1) such that A |=<ω φ [resp. A |=ω φ ] iff AP |=<ω φP
[resp. AP |=ω φP ]. Moreover, A is deterministic iff AP is deterministic.

The idea of the proof is simply to identify locations with patterns about the changes of
the unique counter that can be expressed in LTL↓,∅.

Proof. LetA = 〈Q, qI , δ, F 〉withQ = {q1, ..., qn} and φ in LTL↓,Q. In order to define
AP , we identify locations with patterns about the changes of the unique counter. For
each location qi in Q we associate the new sequence of transitions described in Fig. 1
and qi

a−→ qj ∈ δ iff qFi
a−→ qj ∈ δ′. In the sequence of picks numbered from 0 to n+ 1,

the only pick of height 2 is one numbered i. In order to identify the beginning of the
first pick of height 3 we introduce formulae in LTL↓,∅1 : ϕ¬ 3

7
expresses that “among the

7 next counter values (including the current counter value), there are no 3 equal values”
and ϕ0∼6 expresses that “the current counter value is equal to the counter value at the
6th next position”. We write LOC to denote the formula ϕ¬ 3

7
∧ϕ0∼6. By a simple case

analysis, one can check that for k ≥ 0, in the run ofAP , LOC holds true iff the current
location is in Q. We pose φi = X6+2(i−1) ↓1 X2¬ ↑1 for 1 ≤ i ≤ n. One can check that
for k ≥ 0, in the run of AP LOC ∧ φi holds true iff the current location is qi. φP is
equal to T(φ) with the map T that is homomorphic for Boolean operators and ↓r, and
its restriction to ↑r is identity. The rest of the inductive definition is as follows.

T(qi) = φi; T(Xφ) = X
10+2(n+1)+1T(φ); T(φUφ′) =

�
LOC ⇒ T(φ)

�
U
�
LOC ∧ T(φ′)

�

We remark that φ and φP have the same amount of registers unless φ has no register.
��



Model Checking Freeze LTL over One-Counter Automata 495

qi

0

1 2

i

i + 1 n + 1

qF
i

inc

dec

. . . . . . . . . . . . . . . . . .

g

Fig. 1. Encoding qi by a pattern made of n+ 2 increasing picks of length 10 + 2(n+ 1)

3 Model Checking Deterministic One-Counter Automata

In this section, we show that MCω restricted to deterministic one-counter automata is
PSPACE-complete and the same restriction for MC<ω is in EXPSPACE. First, we show
PSPACE-hardness.

Proposition 3. PureMC<ω and PureMCω restricted to deterministic one-counter au-
tomata are PSPACE-hard problems.

Proof. Consider a QBF instance φ = ∀p1 ∃p2 · · · ∀p2N−1 ∃ p2N Ψ(p1, ...,p2N )
where p1,...,p2N are propositional variables and Ψ(p1, . . . ,p2N ) is a quantifier-free
propositional formula built over p1, . . . , p2N . The fixed deterministic one-counter au-
tomatonA below generates the sequence of counter values (01)ω.

q0 q1
inc

dec

Let ψ be the formula in LTL↓,∅ defined from the family ψ1, . . . , ψ2N+1 of formulae
with ψ =↓2N+1 ψ1: ψ2N+1 = Ψ [pi ← (↑i⇔↑2N+1)] and for i ∈ {1, ..., N}, ψ2i =
F(↓2i ψ2i+1) and ψ2i−1 = G(↓2i−1 ψ2i). One can show that φ is satisfiable iff Aφ |=ω

ψ. For PureMC<ω, one can enforce the sequence of counter values from the accepting
run to be (01)2N0 and then use X to define the ψis. ��
Observe that in the reduction, we use an unbounded number of registers (see Theo-
rem 12) but a fixed deterministic one-counter automaton.

3.1 Properties on Runs for Deterministic Automata

Any deterministic one-counter automatonA has at most one infinite run, possibly with
an infinite amount of counter values. If this run is not accepting, i.e. no accepting loca-
tion is repeated infinitely, then for no formula φ, we haveA |=ω φ. We show below that
we can decide in polynomial-time whetherA has accepting runs either finite or infinite.
Moreover, we shall show that the infinite unique run has some regularity.

Let ρωA be the unique run (if it exists) of the deterministic one-counter automatonA
represented by the following sequence of configurations 〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . .



496 S. Demri, R. Lazić, and A. Sangnier

Lemma 4. Let A be a deterministic one-counter automaton with an infinite run. There
are K1,K2,K3 such that K1 + K2 ≤ |Q|3, K3 ≤ |Q| and for every i ≥ K1,
〈qi+K2 , ni+K2〉 = 〈qi, ni +K3〉.
Hence, the run ρωA can be encoded by its first K1 + K2 configurations. ρωA has a sim-
ple structure: it is composed of a polynomial-size prefix 〈q0, n0〉 · · · 〈qK1−1, nK1−1〉
followed by the polynomial-size loop 〈qK1 , nK1〉 · · · 〈qK1+K2−1, nK1+K2−1〉 repeated
infinitely often. The effect of applying the loop consists in adding K3 to every counter
value. Testing whether A has an infinite run or ρωA is accepting amounts to check
whether there is an accepting location in the loop, which can be done in cubic time
in |Q|. In the rest of this section, we assume that ρωA is accepting. Similarly, testing
whether A has a finite accepting run amounts to check whether an accepting location
occurs in the prefix or in the loop.

When K3 = 0 and A has an infinite run, ρωA is precisely

〈q0, n0〉 · · · 〈qK1−1, nK1−1〉(〈qK1 , nK1〉 · · · 〈qK1+K2−1, nK1+K2−1〉)ω .

It is then possible to apply a polynomial-space labelling algorithm à la CTL for model
checking LTL↓,Q formulae on A. However, one needs to take care of register valua-
tions, which explains why unlike the polynomial-time algorithm for model checking
ultimately periodic models on LTL formulae (see e.g., [20]), model checking restricted
to deterministic automata with K3 = 0 is still PSPACE-hard.

3.2 A PSPACE Symbolic Model-Checking Algorithm

In this section, we provide decision procedures for solving MC<ω and MCω restricted
to deterministic one-counter automata. Let us introduce some notations. Let ρωA =
〈q0, n0〉 〈q1, n1〉 〈q2, n2〉 . . . be the unique run of the deterministic one-counter automa-
ton A and φ be a sentence with N ≥ 1 registers. Let i ≥ 0 be a position in ρωA and m
be a register value in N. We write posA(i,m) to denote the following (possibly infinite)
set of offsets: posA(i,m) = {j ∈ N : m = ni+j}. The values m should be understood
as register values when evaluation of subformulae is done at position i. In general, the
set {posA(i,m) ⊆ N : i,m ∈ N} can be infinite but if we restrict ourselves to m in
{n0, . . . , ni} then it is not anymore the case. After all, this is a reasonable assumption
when m is intended to be a value stored in a register. Before showing this property,
we establish that whenever K3 > 0, two positions with identical counter values are
separated by a distance that is bounded by a polynomial in |Q|.
Lemma 5. Suppose K3 > 0. For all i ≤ j, (I) ni = nj and i < K1 imply (j − i) ≤
K1 +K1K2, (II) ni = nj and i ≥ K1 imply (j − i) ≤ K2

2 .

Lemma 6. {posA(i,m) : i ∈ N, m ∈ {n0, . . . , ni}} is finite and its cardinality is
polynomial in |Q|.
We write REGVALUESA to denote the above finite set with polynomial cardinality.
Observe that even though the set of counter values occurring in ρωA may be infinite
(exactly when K3 > 0) we can represent symbolically each register value v(r) at a



Model Checking Freeze LTL over One-Counter Automata 497

position i by a concise representation for posA(i, v(r)). One consequence of the proof
of Lemma 6 is that |REGVALUESA| is bounded by (1 + K1 + K2

2)2 + K2 × (1 +
K1 +K2

2 ).
We define below the equivalence relation ≡ between positions of ρωA: i ≡ i′ iff

qi = q′i, and for all α, β ≥ 0, (ni+α = ni+β iff ni′+α = ni′+β) and (qi+α = qi+β
iff qi′+α = qi′+β). Typically, i and i′ are equivalent whenever the path starting at
position i is isomorphic to the path starting at position i′. It is easy to see that ≡ has
at most K1 + K2 equivalence classes since i ≡K2 i′ and i, i′ ≥ K1 imply i ≡ i′

(here ≡K2 is the congruence relation). We extend ≡ to pairs composed of positions
and register valuations. Given positions i, i′ ∈ N and register valuations v, v′ such that
ran(v) ⊆ {n0, . . . , ni} and ran(v′) ⊆ {n0, . . . , ni′}, 〈i, v〉 ≡ 〈i′, v′〉 iff (1) i ≡ i′ and
(2) for all α ≥ 0 and registers r ∈ {1, . . . , N}, ni+α = v(r) iff ni′+α = v′(r). Again,
≡ is an equivalence relation. A pair 〈i, v〉 is called a context.

Condition (2) on the definition of≡ is equivalent to: for every register r∈{1, . . . , N},
posA(i, v(r)) = posA(i′, v′(r)). Consequently,

Lemma 7. There are polynomials P1 and P2 such that the number of equivalence
classes for ≡ on contexts 〈i, v〉 is bounded by P1(|Q|) × [P2(|Q|)]N (N is the num-
ber of registers).

The bound is exactly (K1 +K2)× [(1 +K1 +K2
2)2 +K2× (K2

2 +K1 + 1)]N , where
(1+K1+K2

2 )2+K2×(K2
2 +K1+1) is the cardinal of REGVALUESA andK1+K2

is the number of equivalent positions w.r.t. to ≡.

Lemma 8. If 〈i, v〉 ≡ 〈i′, v′〉, then (I) for all j > 0,〈i+ j, v〉 ≡ 〈i′ + j, v′〉 and (II) for
every formula ψ ∈ LTL↓,QN , ρωA, i |=v ψ iff ρωA, i

′ |=v′ ψ.

Lemma 8(I) is by an easy verification (recurrence on j) whereas Lemma 8(II) is by
structural induction on ψ.

3.3 Abstraction and Complexity Issues

We have seen that the equivalence relation ≡ on contexts has finite index. We present
below a means to represent symbolically an equivalence class. In the case K3 = 0, a
symbolic context is a pair 〈i, pos〉where i ∈ {0, . . . ,K1+K2−1} and pos is a symbolic
register valuation of the form {1, . . . , N} → {n0, . . . , nK1+K2−1}. A context 〈i, v〉 is
represented by the symbolic context 〈i′, pos〉 where

– i < K1 implies i′ = i otherwise i′ is the unique element of {K1, . . . ,K1+K2−1}
such that i ≡K2 i

′,
– for r ∈ {1, . . . , N}, pos(r) = v(r). Observe that v(r) ∈ {n0, . . . , nK1+K2−1}

and pos(r) can be encoded with O(log(|Q|)) bits.

When K3 > 0, the definition of a symbolic context is modified for the second compo-
nent only since the set of counter values along the run is infinite. A symbolic context
remains a pair 〈i, pos〉 but i ∈ {0, . . . ,K1 +K2−1} and pos is a symbolic register val-
uation of the form {1, . . . , N} → P({0, . . . ,K1 +K1K2}) ∪P({0, . . . ,K2

2}). More-
over, when i < K1, pos(r) ⊆ {0, . . . ,K1 +K1K2}, otherwise pos(r) ⊆ {0, . . . ,K2

2}.



498 S. Demri, R. Lazić, and A. Sangnier

Indeed, from Lemma 5, whenever K3 > 0, for all i ∈ N and m ∈ {n0, . . . , ni}, if i <
K1, then posA(i,m) ⊆ {0, . . . ,K1 + K1K2} otherwise posA(i,m) ⊆ {0, . . . ,K2

2}.
A context 〈i, v〉 is represented by the symbolic context 〈i′, pos〉 where i′ is defined as
above and for r ∈ {1, . . . , N}, pos(r) = posA(i, v(r)).

Each value pos(r) can be encoded with a polynomial amount of bits in |Q|. One
can compute in polynomial time in |Q| the range of any symbolic register valuation
(whether K3 = 0 or not) thanks to Lemma 6. When we bound the number of registers,
the number of symbolic contexts occurring in ρωA is polynomial in |Q| and they can be
computed in polynomial time.

Given a context 〈i, v〉, we write [〈i, v〉] to denote its corresponding symbolic context
(w.r.t.A). Symbolic contexts correspond to the equivalence classes of≡:

Lemma 9. Let 〈i, v〉 and 〈i′, v′〉 be contexts. Then [〈i, v〉] = [〈i′, v′〉] iff 〈i, v〉 ≡
〈i′, v′〉.
Let us define a map next that takes as argument a symbolic context 〈i, pos〉 and returns
the symbolic context obtained at the next step. This is a well-defined function because
taking two contexts that are ≡-equivalent, moving one step forward leads to two new
contexts that are also ≡-equivalent (see Lemma 10 below). The map next is defined as
follows : next(〈i, pos〉) = 〈i′, pos′〉 where

– if i < K1 +K2 − 1 then i′ = i+ 1, otherwise i′ = K1.
– if K3 > 0, then for r ∈ {1, . . . , N}, pos′(r) = {α− 1 : α ∈ pos(r), α > 0},
– if K3 = 0, then pos′ = pos.

Lemma 10. Let 〈i, v〉 be a context with ran(v) ⊆ {n0, . . . , ni}. Then next([〈i, v〉]) =
[〈i+ 1, v〉].
Below, we solve the model-checking problem by following an automata-based ap-
proach [30]. We consider alternating word automata with Büchi acceptance condition
on ω-words, see e.g. [29]: every infinite branch of accepting runs has an accepting state
repeated infinitely often. Let φ be a formula in NNF built over disjunction ∨ and the
release operator R (dual of U). Observe that X and ↓r are self-dual. We build an alter-
nating automaton Aφ that can be viewed as the product between the run of A and the
automaton for φ. The synchronization mode between these two components takes into
account the presence of registers. When K3 > 0 and A has an accepting run (which
can be checked in PTIME), let Aφ = 〈Σ,S, s0, δ, F 〉 be defined as follows:

– Σ = {a} and S is the set of states of the form 〈〈i, pos〉, ψ〉 where 〈i, pos〉 is a
symbolic context and ψ is a subformula of φ.

– the initial state is s0 = 〈〈0, pos0〉, φ〉 where pos0 is the symbolic register valuation
representing the zero register valuation and F is the set of accepting states whose
outermost connective of the second component is not until.

– Here is the transition function δ (obvious dual clauses are omitted):
• δ(〈〈i, pos〉, q〉, a) = � if q = qi, otherwise δ(〈〈i, pos〉, q〉, a) =⊥,
• δ(〈〈i, pos〉,¬ ↑r〉, a) =⊥ if 0 ∈ pos(r), otherwise δ(〈〈i, pos〉,¬ ↑r〉, a) = �,
• δ(〈〈i, pos〉, ψ ∧ ψ′〉, a) = δ(〈〈i, pos〉, ψ〉, a) ∧ δ(〈〈i, pos〉, ψ′〉, a),
• δ(〈〈i, pos〉, Xψ〉, a) = 〈next(〈i, pos〉), ψ〉,



Model Checking Freeze LTL over One-Counter Automata 499

• δ(〈〈i, pos〉, ↓r ψ〉, a) = δ(〈〈i, pos[r ← posA(i, ni)]〉, ψ〉, a),
• δ(〈〈i, pos〉, ψUψ′〉, a) =
δ(〈〈i, pos〉, ψ′〉, a) ∨ (δ(〈〈i, pos〉, ψ〉, a) ∧ 〈next(〈i, pos〉), ψUψ′〉).

WhenK3 = 0, the clauses for ↓r and ↑r can be easily adapted. We writeA〈〈i,pos〉,ψ〉φ

to denote the automaton defined fromAφ with initial location 〈〈i, pos〉, ψ〉.
Lemma 11. Let i ∈ N and v be a register valuation with range {n0, . . . , ni}. For every

subformula ψ of φ, ρωA, i |=v ψ iff A〈[〈i,v〉],ψ〉φ accepts an infinite run.

The proof (by structural induction) is a variant of the one for LTL and uses Lemma 8
and 10. This will allow us to characterize precisely the complexity of model checking.

Theorem 12. MCω restricted to deterministic one-counter automata is PSPACE-com-
plete and its restriction to n ≥ 1 registers is in PTIME.

Proof. Aφ is an hesitant alternating word automata over a 1-letter alphabet with each
set Sj of the partition being a set of states with identical subformulae. By [17, Theorem
5.6], the nonemptiness problem for hesitant alternating word automata over a 1-letter
alphabet can be solved in space O(m log2n) where n is the number of states and m is
the number of elements in the partition of the set of states. In order to obtain the PSPACE

upper bound, it is sufficient to check that the on-the-fly version of the algorithm given in
the proof of [17, Theorem 5.6] can be performed (computation of the transition function
on demand). This is possible partly because in Aφ, m is linear in |φ|, n is exponential
in |φ|, for each state s, δ(s, a) can be built in polynomial-time in |φ| and testing if a
state is accepting can be done in linear time in |φ|. Moreover, each state in Aφ can be
encoded in polynomial space in |A|+ |φ|.

When the number of registers is fixed, Aφ has a polynomial number of states and
since the nonemptiness problem for weak alternating word automata over a 1-letter
alphabet can be solved in linear time [3], we get the PTIME upper bound. ��
For the finitary case, we cannot invoke the result in [3] because the length of the word
is a distinguishing factor.

Corollary 13. MC<ω restricted to deterministic one-counter automata is in
EXPSPACE.

The proof consists in designing an alternating word automata on ω-words with a two-
letter alphabet on the lines of the previous construction. However, the second letter
marks the end of the word so that all the branches detect the end of the word in a
synchronous way. The recognized ω-words are among a∗ · b · aω. Then, we invoke the
quadratic space upper bound for the nonemptiness of alternating automata [28], which
provides the EXPSPACE upper bound since Aφ is of exponential size in |φ| andAφ can
be built in polynomial space in |φ|.

4 Model Checking Nondeterministic One-Counter Automata

In this section, we show that several model-checking problems over nondeterministic
one-counter automata are undecidable by reducing decision problems for Minsky ma-
chines. Undecidability is preserved even in presence of a unique register. This is quite
surprising since f -SAT-LTL↓ restricted to one register is decidable [9].



500 S. Demri, R. Lazić, and A. Sangnier

In order to illustrate the significance of the following results, it is worth recalling
that the halting problem for Minsky machines with incrementing errors is reducible
to finitary satisfiability for LTL with one register [9]. We show below that, if we have
existential model checking of one-counter automata instead of satisfiability, then we can
use one-counter automata to refine the reduction in [9] so that runs with incrementing
errors are excluded. More precisely, in the reduction in [9], we were not able to exclude
incrementing errors because the logic is too weak to express that, for every decrement,
the datum labelling it was seen before (remember that we have no past operators). Now,
the one-counter automata are used to ensure that such faulty decrements cannot occur.

Theorem 14. MC<ω1 is Σ0
1 -complete.

Proof. The Σ0
1 upper bound is by an easy verification since the existence of a finite

run (encoded in N) verifying an LTL↓,Q1 formula (encoded in first-order arithmetic) can
be encoded by a Σ0

1 formula. So, let us reduce the halting problem for two-counter
automata to MC<ω1 . Let A = 〈Q, qI , δ, F 〉 be a two-counter automaton: the set of
instructions L is {inc, dec, ifzero}× {1, 2}. We build a one-counter automaton B =
〈Q′, q′I , δ′, F ′〉 and a sentence φ in LTL↓,Q

′
1 such that A reaches an accepting location

iff B |=<ω φ.

For each run in A
⎛

⎝
qI

c01 = 0
c02 = 0

⎞

⎠ inst0−−→
⎛

⎝
q1

c11
c12

⎞

⎠ inst1−−→ . . .

⎛

⎝
qN

cN1
cN2

⎞

⎠ where instis are

instructions, we associate the run in B below
(
qI
0

)

−→

( 〈qI , inst0, q1〉
n1

)

−→

( 〈q1, inst1, q2〉
n2

)

. . .

( 〈qN−1, instN−1, qN 〉
nN

)

where

−→ hides steps for updating the counter according to the constraints described

below. During these steps, auxiliary locations are used and there are of two types: loca-
tions that increment or decrement the counter in order to reach an adequate data value
(busyupt,t′ and busydownt,t′ where t, t′ are transitions) and intermediate locations to
perform ε-transitions. The data values in the run of B are governed by the rules below:

(ii) after any configuration labelled by 〈q, inc, c, q′〉 (incrementation of the counter c),
there is no configuration labelled by some 〈q1, inc, c′, q′1〉 with the same counter
value,

(iii) after any configuration labelled by 〈q, inc, c, q′〉, there is at most one configura-
tion labelled by some 〈q1, dec, c, q′1〉 with the same counter value (there are more
incrementations than decrementations),

(iv) after any configuration labelled by 〈q, inc, c, q′〉, there is no configuration labelled
by some 〈q1, dec, c′, q′1〉 with the same counter value and c �= c′,

(v) after any configuration labelled by 〈q, inc, c, q′〉, there is no configuration
labelled by 〈q1, ifzero, c, q′1〉 followed by a configuration labelled by some
〈q1, dec, c, q′1〉 with the same counter value as 〈q, inc, c, q′〉,

(vi) after any configuration labelled by 〈q, inc, c, q′〉 for which there is no subsequent
configuration labelled by 〈q1, dec, c, q′1〉 with the same counter value, there is also
no 〈q2, ifzero, c, q′2〉,



Model Checking Freeze LTL over One-Counter Automata 501

Now, let us define B. We shall partly encode in its control graph the satisfaction of
these conditions. For instance, two successive incrementation transitions in A, leads to
an incrementation in B since we enforce that the counter value is fresh in B iff its letter
is some 〈−, inc,−,−〉 (incrementation instructions). When we write q

�−→ q′ we mean

q
inc−→ auxiq,q′

dec−→ q′ for an auxiliary location auxiq,q′ .

– Q′ is equal to δ � ({qI} ∪ {busydownt,t′ , busyupt,t′ : t, t′ ∈ δ}) plus some
unspecified auxiliary locations,

– F ′ = {〈q, l, c, q′〉 ∈ δ : q ∈ F} ∪ ({qI} ∩ F ) and q′I = qI ,
– The relation δ′ contains the following transitions:
• For 〈qI , inc, c, q〉 ∈ δ, add q′I

inc−→ 〈qI , inc, c, q〉 to δ′;
• For t = 〈qI , ifzero, c, q〉 ∈ δ, add q′I

�−→ t to δ′;
• For every transition t = 〈q, inc, c, q′〉 ∈ δ,

1. if t′ = 〈q′, inc, c′, q′′〉 ∈ δ, then add t
inc−→ t′ to δ′,

2. if t′ = 〈q′, ifzero, c′, q′′〉 ∈ δ with c′ �= c or t′ = 〈q′, dec, c, q′′〉 ∈ δ,

then add t
�−→ t′ to δ′,

3. if t′ = 〈q′, dec, c′, q′′〉 ∈ δ with c′ �= c, then add t
�−→ busydownt,t′ ,

busydownt,t′
dec−→ busydownt,t′ , and busydownt,t′

dec−→ t′ to δ′ (decrement
the counter until it reaches a value for a previous incrementation),

• For every transition t = 〈q, l, c, q′〉 ∈ δ with l ∈ {dec, ifzero},
1. if t′ = 〈q′, inc, c′, q′′〉 ∈ δ, then add t

�−→ busyupt,t′ , busyupt,t′
inc−→

busyupt,t′ , and busyupt,t′
inc−→ t′ to δ′ (increment the counter until it

reaches a new value),

2. if t′ = 〈q′, ifzero, c′, q′′〉 ∈ δ then add t
�−→ t′ to δ′,

3. if t′ = 〈q′, dec, c′, q”〉 ∈ δ, then add to δ′ the transitions from Figure 2.
Observe that this is the only case for which we do not know whether the
counter increases or not.

t

busydownt,t′

busyupt,t′

t′

�

�

dec

inc

dec

inc

Fig. 2. Transitions in δ′

In runs of B, we are only interested in positions with letters in δ. The control graph of B
guarantees that the succession of transitions in A is valid assuming that we ignore the
intermediate (auxiliary or busy) configurations

The formula φ is the conjunction of the following requirements: (ii)-(vi) plus



502 S. Demri, R. Lazić, and A. Sangnier

(i) some configuration in F ′ is visited,
(vii) after any configuration labelled by t = 〈q, inc, c, q′〉, there is no configuration

labelled by some busyupt,t′ with the same counter value and such that the next
configuration has the same label unless there is some configuration labelled by
some 〈q1, inc, c, q′1〉 in between,

G(t ⇒↓1 ¬(¬(
�

〈−,inc,−,−〉
〈−, inc,−,−〉)U

�

t′
(busyupt,t′∧ ↑1 ∧X busyupt,t′)))

(viii) after any configuration labelled by t = 〈q, inc, c, q′〉, there is no configuration
labelled by some 〈q1, dec, c, q′1〉 with a different counter value unless there is
some configuration labelled by some 〈q2, inc, c, q′2〉 in between,

G(t ⇒↓1 ¬(¬(
�

〈−,inc,−,−〉
〈−, inc,−,−〉)U(

�

〈−,dec,c,−〉
(〈−, dec, c,−〉 ∧ ¬ ↑1))))

It is easy to check that each condition in (i)-(viii) can be expressed in LTL↓,Q
′

1 (some
examples are indeed provided above). Now consider any run of B which satisfies (ii)-
(viii). The key achievement of the definitions of B and φ is that, for every position in
the run, the counter value is fresh iff either its letter is some 〈q, inc, c, q′〉 or the letter
is not in δ ∪ {qI}. For any counter c ∈ {1, 2}, we can define its value as the number
of 〈q, inc, c, q′〉 letters for which a latter letter 〈q1, dec, c, q′1〉 with the same value of
the counter B has not yet occurred. Observe that the conditions (vii), (viii) and the
control graph of B induce a stack discipline for the counter values of configurations
with labels of the form either 〈−, inc, c,−〉 and 〈−, dec, c,−〉. This guarantees that no
configuration labelled by 〈−, dec, c,−〉 has a new counter value.

For any run of B which satisfies (ii)-(viii), we can thus extract a valid run of A.
Conversely, any valid run of A can be encoded in the same way as a run of B which
satisfies (ii)-(viii). The latter is done by inserting auxiliary letters as required to reach
appropriate values of the counter of B. ��
Theorem 15. MCω1 is Σ1

1 -complete.

The proof is similar to the proof of Theorem 14 except that instead of reducing the
halting problem for Minsky machines, we reduce the recurrence problem for nondeter-
ministic Minsky machines that is known to be Σ1

1 -hard [2]. The Σ1
1 upper bound is by

an easy verification since an accepting run can be viewed as a function f : N → N

and then checking that it satisfies an LTL↓,Q1 formula can be expressed in first-order
arithmetic. Another consequence of the Purification Lemma is the result below.

Theorem 16. PureMC<ω1 is Σ0
1 -complete and PureMCω1 is Σ1

1 -complete.

The above-mentioned undecidability holds true even if we restrict ourselves to one-
counter automata for which there are no transitions with identical instructions going
from the same location. A one-counter automaton A is weakly deterministic whenever
for every location q, if 〈q, l, q′〉, 〈q, l′, q′′〉 ∈ δ, we have l = l′ implies q′ = q′′. The
transition systems induced by these automata are not necessarily deterministic.

Theorem 17. PureMC<ω1 [resp. PureMCω1 ] restricted to weakly deterministic one-
counter automata is Σ0

1 -complete [resp. Σ1
1 -complete].



Model Checking Freeze LTL over One-Counter Automata 503

The proof uses the Purification Lemma and provides reductions from the
model-checking problems to their restrictions to weakly deterministic automata.

5 Conclusion

We have shown that model checking LTL↓ over one-counter automata is undecidable,
which contrasts with the decidability of many verification problems for one-counter
automata [14,26]. For instance, we have shown that model checking nondeterministic
one-counter automata over LTL↓ restricted to a unique register and without alphabet
is already Σ1

1 -complete in the infinitary case. On the decidability side, a suitable ab-
straction has been introduced to establish the PSPACE upper bound for model checking
LTL↓ over deterministic one-counter automata in the infinitary case.

Viewing runs as data words is an idea that can be pushed further. For instance, the
decidability status of model checking LTL↓ over the class of reversal-bounded counter
automata [8] remains open. Hence, our results pave the way for model checking LTL↓

over other classes of operational models that are known to admit powerful techniques
for solving verification tasks. Finally, among the specific problems left open by this pa-
per, we wish to mention the complexity of model-checking deterministic one-counter
automata with LTL↓ in the finitary case (the complexity is however known in the in-
finitary case). Finitary nonemptiness problem for 1-letter hesitant alternating word au-
tomata also faces the difficulty to determine the end of the word (synchronization is
needed), see e.g. [17].

Acknowledgement. We would like to thank Philippe Schnoebelen for suggesting simpli-
fications in the proofs of Lemma 2 and Proposition 3.

References

1. Alur, R., Dill, D.: A theory of timed automata. TCS 126, 183–235 (1994)
2. Alur, R., Henzinger, T.: A really temporal logic. In: FOCS 1989, pp. 164–169. IEEE, Los

Alamitos (1989)
3. Bernholtz, O., Vardi, M., Wolper, P.: An automata-theoretic approach to branching-time

model checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 142–155. Springer,
Heidelberg (1994)

4. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. In: PODS 2006, pp. 10–19 (2006)

5. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on
words with data. In: LICS 2006, pp. 7–16. IEEE, Los Alamitos (2006)

6. Bouajjani, A., Jurski, Y., Sighireanu, M.: A generic framework for reasoning about dynamic
networks of infinite-state processes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS,
vol. 4424, pp. 690–705. Springer, Heidelberg (2007)

7. Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed lan-
guages. I & C 182(2), 137–162 (2003)

8. Dang, Z., Ibarra, O., Pietro, P.S.: Liveness verification of reversal-bounded multicounter ma-
chines with a free counter. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001.
LNCS, vol. 2245, pp. 132–143. Springer, Heidelberg (2001)



504 S. Demri, R. Lazić, and A. Sangnier

9. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In: LICS 2006,
pp. 17–26. IEEE, Los Alamitos (2006)

10. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: Decidability and
complexity. I & C 205(1), 2–24 (2007)

11. Demri, S., Lazić, R., Sangnier, A.: Model checking freeze LTL over one-counter automata.
Research report, Laboratoire Spécification et Vérification, ENS Cachan (2008)

12. Franceschet, M., de Rijke, M.: Model checking hybrid logics (with an application to
semistructured data). Journal of Applied Logic 4(3), 279–304 (2006)

13. Goranko, V.: Hierarchies of modal and temporal logics with references pointers. Journal of
Logic, Language, and Information 5, 1–24 (1996)

14. Jančar, P., Kučera, A., Moller, F., Sawa, Z.: DP lower bounds for equivalence-checking and
model-checking of one-counter automata. I & C 188(1), 1–19 (2004)

15. Jurdziński, M., Lazić, R.: Alternation-free modal mu-calculus for data trees. In: LICS 2007,
pp. 131–140 (2007)

16. Kupferman, O., Vardi, M.: Memoryful Branching-Time Logic. In: LICS 2006, pp. 265–274.
IEEE, Los Alamitos (2006)

17. Kupferman, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to branching-time
model checking. JACM 47(2), 312–360 (2000)

18. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: LICS
2002, pp. 383–392. IEEE, Los Alamitos (2002)

19. Lazić, R.: Safely freezing LTL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS,
vol. 4337, pp. 381–392. Springer, Heidelberg (2006)

20. Markey, N., Schnoebelen, P.: Model checking a path. In: Amadio, R.M., Lugiez, D. (eds.)
CONCUR 2003. LNCS, vol. 2761, pp. 251–261. Springer, Heidelberg (2003)

21. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite alphabets.
TOCL 5(3), 403–435 (2004)

22. Ouaknine, J., Worrell, J.: On Metric Temporal Logic and faulty Turing machines. In: Aceto,
L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Hei-
delberg (2006)

23. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over
finite words. Logical Methods in Computer Science 3(1:8), 1–27 (2007)

24. Schwentick, T., Weber, V.: Bounded-variable fragments of hybrid logics. In: Thomas, W.,
Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 561–572. Springer, Heidelberg (2007)

25. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z.
(ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

26. Serre, O.: Parity games played on transition graphs of one-counter processes. In: Aceto, L.,
Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 337–351. Springer, Heidelberg
(2006)

27. ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders. In: Ong, L.
(ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg (2005)

28. Vardi, M.: Alternating automata and program verification. In: van Leeuwen, J. (ed.) Com-
puter Science Today. LNCS, vol. 1000, pp. 471–485. Springer, Heidelberg (1995)

29. Vardi, M.: Alternating automata: unifying truth and validity checking for temporal logics. In:
McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 191–206. Springer, Heidelberg (1997)

30. Vardi, M., Wolper, P.: Automata-theoretic techniques for modal logics of programs. JCSS 32,
183–221 (1986)



Author Index

Abadi, Mart́ın 216
Abdulla, Parosh Aziz 35
Antonik, Adam 112

Baier, Christel 287
Barras, Bruno 365
Ben Henda, Noomene 35
Bernardo, Bruno 365
Bertrand, Nathalie 287
Bojańczyk, Miko�laj 172
Bonchi, Filippo 395
Bonsangue, M.M. 231
Bouyer, Patricia 157
Bozzelli, Laura 186
Braun, Christelle 443

Chambart, P. 97
Chatterjee, Krishnendu 302
Chatzikokolakis, Konstantinos 443

Darondeau, Philippe 458
de Alfaro, Luca 35
Demri, Stéphane 490
Di Gianantonio, Pietro 334
Droste, Manfred 142

Ehrig, Hartmut 413

Gardner, Philippa 201
Garg, Deepak 216
Genest, Blaise 458
Gimbert, Hugo 5
Godoy, Guillem 127
Goubault-Larrecq, Jean 50, 318
Größer, Marcus 287
Gruber, Hermann 273

Habermehl, Peter 474
Hasuo, Ichiro 246
Hélouët, Löıc 458
Henzinger, Thomas A. 302
Honsell, Furio 334
Horn, Florian 5
Huth, Michael 112

Iosif, Radu 474

Jacobs, Bart 246
Johannsen, Jan 273

Kikuchi, Kentaro 380
Klin, Bartek 428
König, Barbara 413

Larsen, Kim G. 112
Lazić, Ranko 490
Lengrand, Stéphane 380
Lenisa, Marina 334

Maneth, Sebastian 127
Markey, Nicolas 157
Mayr, Richard 35
Mishra-Linger, Nathan 350
Montanari, Ugo 395

Nyman, Ulrik 112

Palamidessi, Catuscia 443
Parys, Pawe�l 261
Pattinson, Dirk 66

Quaas, Karin 142

Rangel, Guilherme 413
Raza, Mohammad 201
Reynier, Pierre-Alain 157
Rutten, Jan 231

Sandberg, Sven 35
Sangnier, Arnaud 490
Sassone, Vladimiro 428
Schnoebelen, Ph. 97
Schröder, Lutz 66
Selinger, Peter 81
Sen, Koushik 302
Sheard, Tim 350
Silva, Alexandra 231
Sokolova, Ana 246

Tison, Sophie 127

Ummels, Michael 20

Valiron, Benôıt 81
Vojnar, Tomáš 474

Walukiewicz, Igor 1
W ↪asowski, Andrzej 112


	Title Page
	Foreword
	Preface
	Organization
	Table of Contents
	Simple Stochastic Games with Few Random Vertices Are Easy to Solve
	Simple Stochastic Games
	Playing with f-Strategies
	Informal Description of f-Strategies
	Deterministic Attractors
	Computing the f-Strategies

	Optimality of f-Strategies
	An Algorithm for Computing Values of SSGs
	Testing Whether a Permutation Is Self-consistent and Progressive
	Solving SSGs in Time $\mathcal{O}(~|\vr|!\cdot(|\vertices||\edges|+|\tpseul|)~)$

	Conclusion
	Introduction

	The Complexity of Nash Equilibria in Infinite Multiplayer Games
	Introduction
	Preliminaries
	Characterising Nash Equilibria
	Computational Complexity
	Upper Bounds
	Lower Bounds

	Strategy Complexity
	Conclusion

	Stochastic Games with Lossy Channels
	Introduction
	Preliminaries
	Game Probabilistic Lossy Channel Systems (GPLCS)
	Reachability Games on GPLCS
	Büchi-Games on GPLCS
	Conclusions and Future Work

	Simulation Hemi-metrics between Infinite-State Stochastic Games
	Introduction
	Preliminaries
	More on Hemi-metric Spaces
	Hemi-metrics on Powerdomains
	Prevision Transition Systems
	The Hutchinson Hemi-metric on Games, on Previsions
	Conclusion

	Beyond Rank 1: Algebraic Semantics and Finite Models for Coalgebraic Logics
	Introduction
	Preliminaries and Notation
	Rank-1 Logics
	Algebraic Semantics
	The Finite Model Property
	The Finite Algebra Property
	Frame Conditions beyond Rank 0/1
	Reasoning about Uncertainty and Knowledge
	A Logic for Coalitions and Filibusters

	A Linear-non-Linear Model for a Computational Call-by-Value Lambda Calculus
	Introduction
	The Language
	The Type System
	Terms
	Duplicable Pairs and Pairs of Duplicable Elements
	Typing Judgments
	Type Casting and Substitution Lemma
	Axiomatic Equivalence

	Linear Category for Duplication
	Linear Exponential Comonads
	Strong Monad and T-Exponentials
	Idempotent, Strong Monoidal Comonad
	Linear Category for Duplication
	The Category  $\YAQ$

	Denotational Semantics
	Interpretation of the Language
	Soundness of the Denotation
	Completeness

	Towards a Denotational Model of Quantum Lambda Calculus
	Conclusion

	The $\omega$-Regular Post Embedding Problem
	Introduction
	Notations and Definitions
	Post Embedding Problems
	General Embedding for Direct Solutions
	The Unrestricted Problems
	Short Morphisms

	Reducing $\PEPomr$ to $\PEPr$
	Unidirectional Channel Systems
	Lossy Channel Systems
	Concluding Remarks
	Proofs for Section 5
	Commuting UCS Steps
	Proof of Lemma 5.4
	Proof of Lemma 5.5


	Complexity of Decision Problems for Mixed and Modal Specifications
	Introduction
	Related Work
	Background
	Common Implementation
	Consistency
	Thorough Refinement
	Discussion
	Conclusion

	Classes of Tree Homomorphisms with Decidable Preservation of Regularity
	Introduction
	Preliminaries
	The Monadic Case
	Sets of Terms with Regular Constraints and Bounded-Depth Copying Homomorphisms
	A Sufficient Condition for Non-regularity
	Computing the Existence of Infinite Instances
	Deciding the HOM-Problem for Bounded-Depth Copying Homomorphisms


	A Kleene-Sch\"{u}tzenberger Theorem for Weighted Timed Automata
	Introduction
	Preliminaries
	Weighted Timed Automata
	Relation to other Automata Models
	Clock Series
	Rationality Implies Recognizability
	Recognizability Implies Rationality
	Timed Series
	Conclusion

	Robust Analysis of Timed Automata Via Channel Machines
	Introduction
	Preliminaries
	Timed Automata
	Implementability and Robustness of Timed Automata
	Some Subclasses of Metric Temporal Logic
	Channel Automata

	Robust Model-Checking of coFlat-MTL
	From Robustness to Networks of Timed Systems
	From Networks of Timed Systems to CAROTs
	From CAROTs to Robust Model Checking

	Conclusion

	The Common Fragment of ACTL and LTL
	The Common Fragment of CTL and LTL Needs Existential Modalities
	Effective Characterization of Level 3/2 for Infinite Words
	Typed Regular Expressions
	Characterization of Level 3/2 for Finite Words
	Characterization of $\Sigma_2$ for Infinite Words

	Complexity
	Concluding Remarks on CTL

	The Complexity of CTL$^*$ $+$ Linear Past
	Introduction
	Linear-Past Branching-Time Temporal Logic
	Alternating Finite--State Automata for Linear Past
	Decision Procedures for Two-Way HAA

	Decision Procedures for CTL$^*_{lp}+$ and Its Fragments

	Footprints in Local Reasoning
	Introduction
	Background
	Properties of Specifications
	Footprints
	Sufficiency and Small Specifications
	One-Step Local Functions
	Conclusion and Future Work

	A Modal Deconstruction of Access Control Logics
	Introduction
	ICL: A Basic Logic of Access Control
	The Logic
	Translation from ICL to S4
	Decidability and Kripke Models for ICL

	$ICL^{\Rightarrow}$: A Logic with a Primitive ``Speaks For'' Relation
	The Logic
	Translation from $ICL^{\Rightarrow}$ to S4
	Decidability and Kripke Models for $ICL^{\Rightarrow}$

	$ICL^{\cal B}$: A Logic with Boolean Principals
	The Logic
	Translation from $ICL^{\cal B}$ to S4
	Decidability and Kripke Models for $ICL^{\cal B}$

	From $ICL^{\Rightarrow}$ to $ICL^{\cal B}$: Expressing ``Speaks For'' Via Boolean Principals
	On Second-Order Quantification
	The Logic
	Main Results

	Conclusion

	Coalgebraic Logic and Synthesis of Mealy Machines
	Introduction
	Related Work

	Mealy Machines
	Mealy Logic
	Proof System
	Adding Negation

	Synthesis
	Formulae Normalization
	Synthesis

	Conclusions and Future Work

	The Microcosm Principle and Concurrency in Coalgebra
	Introduction
	Parallel Composition of Coalgebras
	Parallel Composition Via sync Natural Transformation
	Examples
	Equational Properties of Parallel Composition

	Formalizing the Microcosm Principle
	Lawvere Theories
	Outer Models: $\LawTh$-Categories
	Remarks on ``Pseudo'' Algebraic Structures
	Inner Models: $\LawTh$-Objects
	Microcosm Structures in Coalgebras

	Conclusions and Future Work

	Systems of Equations Satisfied in All Commutative Finite Semigroups
	Introduction
	Notations and Definitions
	Special Form of Equations: Variables on Both Sides
	One Coefficient
	Many Coefficients

	General Case
	Everywhere Something Is One Everywhere
	Removing ``Wrong'' Variables
	The Algorithm
	Positive 2 Formulas

	Complexity
	Other Questions

	Optimal Lower Bounds on Regular Expression Size Using Communication Complexity
	Introduction
	Preliminaries
	Formal Languages
	Communication Complexity

	A New Lower Bound Technique for Regular Expression Size
	Lower Bounds for the Conversion Problem
	Strength and Limitations
	A Poor Lower Bound
	Optimal Expressions for Parity

	Upper Bounds for Converting NFAs into Regular Expressions
	Conclusions and Further Work

	On Decision Problems for Probabilistic B\"{u}chi Automata
	Preliminaries
	Complementation of PBA
	Undecidability Results
	Almost-Sure Semantics and Decidability Results
	Conclusion

	Model-Checking $\omega$-Regular Properties of Interval Markov Chains
	Introduction
	Formal Models
	$\omega$-Probabilistic Computation Tree Logic ($\omega$-PCTL)
	DTMC Model Checking
	PUMC Model Checking
	UMC Model Checking
	IMDP Model Checking
	Model Checking of Linear Time Formulas
	Conclusion

	Prevision Domains and Convex Powercones
	Introduction
	Preliminaries
	Demonic Non-determinism + Probabilistic Choice
	The Cpo Case
	Angelic Non-determinism + Probabilistic Choice
	Chaotic Non-determinism + Probabilistic Choice
	Conclusion

	RPO, Second-Order Contexts, and λ-Calculus�
	Introduction
	The Theory of Reactive Systems
	Weak Bisimilarity

	The Lambda Calculus
	Lambda Calculus as a Reactive System

	Combinatory Logic
	Correspondence with the $Lambda$-Calculus
	The First-Order Approach: CL as a Context Category

	Second-Order Term Contexts
	CL as Second-Order Rewriting System

	Final Remarks and Directions for Future Work

	Erasure and Polymorphism in Pure Type Systems
	Background and Motivation
	Erasability Is Extrinsic Rather than Intrinsic
	Intrinsic Notions of Erasability Beget Code Duplication
	Methodology and Outline

	Pure Type Systems
	Erasure Pure Type Systems
	Implicit Pure Type Systems
	Erasure
	Erasure Semantics
	Implementation
	Future Work
	Proof Irrelevance
	Parametricity

	Conclusions

	The Implicit Calculus of Constructions as a Programming Language with Dependent Types
	Introduction
	A Decidable Implicit Calculus of Constructions
	Syntax
	Extraction
	Typing Rules

	Metatheory
	Preservation of the Theory and Consistency
	Decidability of Type Inference

	Implementation and Inductive Types
	Examples
	Euclidean Division
	Vectors
	Predicate Subtyping a la PVS
	Subtyping Coercions

	Related Works
	Future Work
	Conclusion

	Strong Normalisation of Cut-EliminationThat Simulates $\beta$-Reduction
	Introduction
	A Rewrite System for Cut-Elimination
	Term Assignment for Sequent Calculus
	The Cut-Elimination Procedure

	Strong Normalisation
	Safeness and Minimality
	Simulation in $\LambdaI$
	Concluding the Proof

	Related Work
	Conclusion

	Symbolic Semantics Revisited
	Introduction
	Background on $\phi$-Calculus
	Saturated and Symbolic Semantics
	Context Interactive Systems for $\phi$-Calculus
	Asynchronous
	Open

	Open Petri Nets
	Context Interactive System for Open Nets
	A Symbolic Semantics for Open Nets

	Leifer and Milner Reactive Systems
	Conclusions

	Deriving Bisimulation Congruences in the Presence of Negative Application Conditions
	Introduction
	Double-Pushout with Borrowed Contexts
	Borrowed Contexts with NACs
	Bisimulation and NACs -- Is Bisimilarity Still a Congruence?
	DPO with Borrowed Contexts -- Extension to Rules with NACs

	Up-to Techniques for DPO-BC with NACs
	Example: Servers as Graphs with Interfaces
	Conclusions and Future Work

	Structural Operational Semantics for Stochastic Process Calculi
	Introduction
	Transition Systems and Process Calculi
	Nondeterministic Systems and GSOS
	Stochastic Systems

	An Abstract Approach to SOS
	Transition Systems as Coalgebras
	Process Syntax Via Algebras
	SOS Rules, Distributive Laws, Bialgebras

	Stochastic GSOS
	Examples of SGSOS
	Associative Parallel Composition for Stochastic Systems
	CCS-Style Communication
	CSP-Style Synchronisation

	Conclusions and Future Work

	Compositional Methods for Information-Hiding
	Introduction
	Information Theory
	Hypothesis Testing
	Contribution
	Plan of the Paper

	Preliminaries
	CCS with Internal Probabilistic Choice
	Modeling Protocols for Information-Hiding
	Protocols as Channels
	Process Terms as Channels

	Inferring the Secrets from the Observables
	Safe Constructs
	A Case Study: The Dining Cryptographers
	Conclusion and Future Work

	Products of Message Sequence Charts
	Introduction
	Background
	Product of MSC-Languages
	Bounds for MSCs and Products
	Monitored Product of MSC-Languages
	Checking Existential Boundedness
	CMSC-Graph Representation of a Monitored Product
	Conclusion

	What Else Is Decidable about Integer Arrays?
	Introduction
	Counter Automata
	A Logic for Integer Arrays
	Decidability of the Satisfiability Problem
	Normalisation of Formulae
	Formulae and Constraint Graphs
	From Formulae to Counter Automata
	Counter Automata for Basic Formulae
	Assembling Automata for Entire Normalised Formulae

	Conclusions and Future Work

	Model Checking Freeze LTL over One-Counter Automata
	Introduction
	Preliminaries
	One-Counter Automaton
	LTL over Data Words

	Model Checking Deterministic One-Counter Automata
	Properties on Runs for Deterministic Automata
	A PSpace Symbolic Model-Checking Algorithm
	Abstraction and Complexity Issues

	Model Checking Nondeterministic One-Counter Automata
	Conclusion

	Author Index



